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2007). Understanding sequential cell fi ring in the neocortex and its 
 functional implications has been the objective of several experimen-
tal studies (Prut et al., 1998; Villa et al., 1999; Ikegaya et al., 2004; 
Euston et al., 2007; Ji and Wilson, 2007). Computational models posit 
that this would underlie key mechanisms of information processing 
and transmission (Abeles, 1991; Destexhe and Contreras, 2006). 
Such precise temporal sequences might arise during spontaneous 
activity (Mao et al., 2001; Kang et al., 2008). Moreover, it has been 
recently shown that cell assemblies formed in the medial prefrontal 
cortex (PFC) of awake rats are transiently reactivated during SWS 
in the form of transient co-fi ring of subgroups of cells, most often 
near the beginning and end of the UP state (Peyrache et al., 2009). 
Nevertheless, the temporal structure of fi ring in UP states and its 
determinants are still largely unexplored.

Here we study cell fi ring order at UP state initiation by analyz-
ing neuronal ensemble data from the prefrontal cortex of naturally 
sleeping rats, concentrating on the global cortical dynamics giving 
rise to the UP state, and the activation of information-carrying 
activity patterns which may play a role in memory trace consolida-
tion (Buzsaki, 1989; Sutherland and McNaughton, 2000).

Furthermore, from a methodological point of view, it is impor-
tant to be able to rigorously characterize sequential neural activity 
during UP states, and the underlying mechanisms. Previously, two 
principal approaches have been used to detect activation sequences: 
fi rst, sequences are constructed on the basis of the fi ring time of the 
fi rst spike of the respective neurons. Sequences are then detected 
with a statistical matching algorithm based on the order of spike 
occurrence only, inspired by genome analysis techniques (Lee and 
Kesner, 2002; Ikegaya et al., 2004; Ji and Wilson, 2007). Alternatively, 
sequences are derived from peak fi ring times in the time series of 

INTRODUCTION
During Slow Wave Sleep (SWS), cortical activity spontaneously 
fl uctuates between periods of sustained activity, the ‘UP’ state, and 
periods of generalized silence, the ‘DOWN’ state. These are the 
so-called slow oscillations (0.1–1 Hz) of the neocortex (Steriade 
et al., 1993). Slow oscillations are generated within the neocortex 
(Contreras et al., 1996; Timofeev et al., 2000; Cash et al., 2009) and 
support global and long-scale synchronization of cortical activity 
(Amzica and Steriade, 1995; Massimini et al., 2004; Dang-Vu et al., 
2008; Nir et al., 2008). After several tens of ms in the DOWN state, 
the cortical network reinitiates its activity. The reinstatement and 
maintenance of the UP state are network processes, depending 
on the effectiveness of synaptic transmission (Sanchez-Vives and 
McCormick, 2000; Massimini and Amzica, 2001; Reig et al., 2006) as 
well as on ionic currents which endow neurons with intrinsic bist-
ability (Metherate and Ashe, 1993; Mao et al., 2001; Timofeev et al., 
2001; Bazhenov et al., 2002; Compte et al., 2003). At the begin-
ning of an UP state it is likely that activity spreads from a ‘core’ of 
particularly excitable cells (Sanchez-Vives and McCormick, 2000; 
MacLean et al., 2005; Kang et al., 2008) to the rest of the cortical net-
work. High synaptic bombardment would then keep the network 
in an active state thereafter (Compte et al., 2003; Destexhe et al., 
2003; Steriade, 2006) by means of recurrent excitatory feedback 
(Contreras et al., 1996; Holcman and Tsodyks, 2006).

The pattern of cell discharges at these times is informative about 
the intrinsic structure, connectivity and recent activity patterns 
of the local cortical network. Indeed, in sensory cortices, at the 
transition from a DOWN to an UP state, principal cells have been 
shown to fi re in sequential order which is preserved for long peri-
ods in both anesthetized and naturally sleeping rats (Luczak et al., 
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binned spike counts (Euston et al., 2007; Luczak et al., 2007). Based 
on this ‘center of mass’ of fi ring (the expected value of the time of 
fi ring for each cell, computed over the time distribution of spike 
events in the initial phase of the UP state), the cells are then ordered 
from the fi rst to the last, and a template sequence is constructed, 
which is then matched over the binned spike counts during sleep 
to detect repeated instances of the same sequence.

We examine here whether the differences between these two 
approaches are mere methodological subtleties, or if they refl ect 
different physiological processes which must be considered sepa-
rately. This is accomplished by comparing the latencies of the fi rst 
spike at the DOWN/UP transition and the peak fi ring times with 
characteristic properties for each cell in ensembles of prefrontal 
neurons.

MATERIALS AND METHODS
ANIMALS
Four Long-Evans (pigmented) male rats (René Janvier, Le Genest-
St-Isle, France) weighing 250–300 g at arrival, were handled and 
pre-trained. All experiments were in accord with institutional 
(CNRS Comité Opérationnel pour l’Ethique dans les Sciences de 
la Vie), international (NIH guidelines) standards and legal regula-
tions (Certifi cate No. 7186, French Ministère de l’Agriculture et de 
la Pêche) regarding the use and care of animals. The experimental 
methods have been described in detail in a previous paper analyzing 
other aspects of these data (Peyrache et al., 2009). Briefl y, for surgi-
cal implantation of the recording devices, rats were anesthetized 
with intramuscular xylazine (Rompun, 0.1 ml), and intra-perito-
neal pentobarbital (35 mg/kg). A drive containing seven tetrodes 
(bundles of four 13 µm diameter fi ne wires: six for recording and 
one reference) was attached to the skull and implanted above the 
right medial prefrontal cortex (AP 3.5–5 mm, ML 0.5–1.5 mm). 
Four of these tetrodes targeted the superfi cial layers and three the 
deep layers of the medial bank of the cortex, and were gradually 
lowered during the experiment, sampling different dorso-ventral 
levels in successive sessions. A separate micro-drive containing three 
tetrodes was targeted to the ventral hippocampus (AP −5.0 mm, ML 
5.0 mm). These tetrodes recorded hippocampal local fi eld poten-
tials (LFPs). For LFP recordings, a screw implanted on the occipital 
bone above the cerebellum served as a reference. Data analyzed 
here pertain to recordings during two rest periods of 25–30 min 
before and after performance of a behavioral task on a Y-maze as 
described in (Peyrache et al., 2009).

HISTOLOGY
At the end of the experiments, a small electrolytic lesion was made 
by passing a small cathodal DC current (20 µA, 10 s) through each 
recording tetrode to mark the location of its tip. The rats were 
then deeply anesthetized with pentobarbital. Intracardial perfusion 
with saline was followed by 10% (v/v) formalin saline. Histological 
sections were stained with cresyl violet. The electrode tracks were 
reconstructed, verifying that the recording sites were in the pre-
limbic cortex, or in exceptional cases, in the dorsal part of the 
infralimbic cortex. The day-to-day positions of the electrodes were 
reconstructed by interpolating the histologically assessed posi-
tions of the marking lesions with the history of electrode descents 
(Peyrache et al., 2009).

SWS DETECTION
SWS was automatically detected via power spectrograms of corti-
cal and hippocampal LFPs computed for each sleep session with 
bins of 1 s. Power in the cortical delta band (1–4 Hz), hippocampal 
theta band (5–10 Hz), cortical spindles (10–20 Hz) and speed of 
head motion were clustered with a K-means algorithm. Clusters 
corresponding to high values of delta and spindle powers, and to 
negligible head movements, were considered to correspond to 
SWS. Successive SWS clusters occurring within intervals of less 
than 1 min were merged and fi nally resulting time intervals of SWS 
briefer than 10 s were discarded.

DATA PREPROCESSING
For single unit activity discrimination, the fi rst three principal com-
ponents of the energy-normalized waveforms were computed from 
spike waveforms for the four tetrodes, generating a 12-dimensional 
vector describing each spike. Those vectors were analyzed by the 
KlustaKwik (Harris et al., 2000) clustering program. The result-
ing classifi cation was manually refi ned using the Klusters inter-
face. Following (Bartho et al., 2004; Hazan et al., 2006), putative 
pyramidal cells and interneurons were identifi ed on the basis of the 
neuron’s spike width. The half peak width distribution was strongly 
bimodal, with the narrowest spikes corresponding to interneurons, 
thus allowing a reliable discrimination between the two cell types. 
According to the estimates in (Bartho et al., 2004) this method 
yields 0% false positives and less than 10% false negatives in clas-
sifying interneurons.

DOWN AND UP STATE IDENTIFICATION
Following Luczak et al. (2007), DOWN states were defi ned as 
periods of at least 60 ms where at most one spike could be detected 
from each of the simultaneously recorded cells. The DOWN to 
UP state transition was taken to occur when the detected spikes 
in the following 60 ms included at least 10% of the cells, and at 
least 25% of the cells each fi red at least one spike in the follow-
ing 200 ms.

SWS EPOCH SELECTION
SWS epochs were included in the analysis if at least 20 putative 
pyramidal cells were detected and the number of detected DOWN 
states exceeded 100.

POISSON PROCESS
The probability of occurrence of a single event for a homogene-
ous (or Poisson) process of rate λ after a delay Δt is given by the 
following formula:

P t te tλ λ λ,Δ Δ Δ( ) =

CENTER OF MASS CALCULATIONS
For each UP state, and for each cell, we computed the average time 
of arrival for the spikes fi red in the time window starting at UP 
state onset and terminating 500 ms later:

Δ Δ
Δ
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where N
spikes

 is the number of spikes emitted by the cell in that 
window.

Then, for each cell, we took the Center of Mass as the mean 
Δt

mean
 across all UP states.

RESULTS
Multiple tetrode recordings in rat PFC were carried out during 
natural SWS, and DOWN and UP states were detected as described 
above. In a total of 18 recording days, 30 experimental recording 
sessions were carried out prior to and/or after training sessions in 
the Y maze (Peyrache et al., 2009). Because of the short duration 
of the sleep episodes, rats virtually never reached deep SWS (stage 
4) or REM for periods long enough to be detected. In total, 887 
putative pyramidal cells and 100 interneurons were recorded from 
the prelimbic (PL) and occasionally from the infralimbic (IL) sub-
division of the medial PFC. (Because electrodes were not moved 
after each session, some cells may have been recorded more than 
once. In successive pairs of sleep sessions on a given day the same 
neurons were likely recorded, since the recordings were separated by 
an active waking period of less than an hour and cluster discrimina-
tion was carried out on data combined from the three sessions.) 
For this analysis, only pyramidal cells with an average fi ring rate 
exceeding 1 Hz during SWS were retained (N = 559), because less 
active cells were inactive during many UP state episodes.

DYNAMICS OF RATE MODULATION AT UP STATE ONSET
Each cell in sensory cortex reaches a characteristic peak activity 
at a constant and reliable time lag after UP state onset (Luczak 
et al., 2007). Prior to comparative analyses, it was important to 

fi rst confi rm this in PFC. Thus spike trains of putative pyramidal 
cells recorded during natural SWS were realigned to the UP state 
onset to obtain Peri-Event Time Histograms (PETH). Figure 1A 
shows the PETH for the pyramidal cells from all recording ses-
sions, sorted by increasing center of mass (that is, the mean spike 
time in the PETH is the average over the fi rst 500 ms of all UP 
states in the session, as depicted in the schematic of Figure 1B). 
The PETH were smoothed with a 30-ms wide gaussian window. 
At the beginning of UP states fi ring rates varied among differ-
ent neurons: each cell fi red maximally at a unique but reliable 
time lag after UP state onset. As a measure of reliability of activ-
ity sequences, PETH centers of mass were signifi cantly corre-
lated with the across UP states mean time of spike occurrence 
(Pearson’s correlation, r = 0.75, p < 10−10, thus explaining ∼55% 
of the variance) (Figure 1C). On the other hand, PETH centers 
of mass were more moderately correlated with cell average fi ring 
rates (Pearson’s correlation, r = 0.15, p < 0.001), explaining only 
2.5% of the variance. Thus, we confi rm and extend the result of 
(Luczak et al., 2007) to prefrontal cortex, showing that measures 
of activity re-initiation at different time scales provide profoundly 
different pictures.

AT UP-STATE ONSET, FIRING RE-INITIATION DEPENDS ON GLOBAL 
ACTIVITY LEVELS
The rate of increase in fi ring rate, as measured by the mean spike 
time after UP state onset, assesses how fast the neuron is recruited 
in UP state dynamics. As demonstrated above, different cells 
responded with peak activity at respectively distinct latencies after 
the UP state began.

FIGURE 1 | Sequential activation of averaged activity at UP state onset. 

(A) PETHs of pyramidal cells, triggered on DOWN/UP state transitions from all 
recording sessions, sorted by their center of mass in the fi rst 500 ms after UP 
state onset. Color displays normalized PETH magnitude (red: high, blue: low). 

(B) Center of mass is computed as the mean of the interval between the 
transition and all spikes emitted by the neuron in the fi rst 500 ms after UP state 
onset. (C) Schematics of the computation of fi rst spike times (Δtfi rst) and mean 
spike times (Δtmean) at each UP state onset.
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To examine whether this inhomogeneity concerned neuronal 
activity from the very beginning of the UP state, we examined the 
distribution of the latencies of the fi rst spike after UP state onset 
across cells. This was defi ned, for each cell, as the average delay from 
the UP state onset until the fi rst spike, if any. For this analysis, only 
UP states with durations of at least 1 s were taken into account. 
Then the latency distribution for each cell was compared to that 
expected from a homogeneous Poisson process with the session-
averaged fi ring rate taken as the rate parameter.

Thus, in this model, the probability distribution of the time of 
occurrence of the fi rst spike is a function only of the fi ring rate 
(see Materials and Methods). Each row of color-coded matrices 
in Figure 2A (presented for one session in the left panel and for 
all analyzed cells to the right) is the Poisson probability density 
function for the fi rst spike, given the fi ring rates shown on the 
ordinate. At UP state onset, cells tend to fi re the fi rst spike according 
to the maximum likelihood prediction given for the homogeneous 
Poisson process. Indeed, fi rst spike latencies and Interspike Spike 
Interval (ISI, the inverse of the mean fi ring rate) showed a strong 
correlation (Pearson’s correlation r = 0.835, p < 10−10).

This observation has a profound impact on interpreting the 
sequences of fi rst spikes of the respective cells that are recorded 
following each DOWN to UP state transition. Several studies have 
reported sequences of fi ring in cortical cells (Prut et al., 1998; Villa 
et al., 1999; Ikegaya et al., 2004) to be related to specifi c behavior or 
sensory inputs. Also reliable sequences were observed during sleep, 
replaying temporal patterns recorded during immediately previous 
experience. By examining individual DOWN to UP state transitions, 
we could also observe repeated sequential patterns. Such transitions 
are shown from three transitions in the same ensemble of PFC cells 
in Figure 2B. In these raster plots, cells are sorted (from top to bot-
tom) by increasing average fi ring rate during the SWS epochs. This 
representation of the data highlights that in each case these neurons 
fi red in reliable sequences following UP state onset. To assess the 
relation between the order in these sequences and the fi ring rate of 
each unit, the Spearman correlation coeffi cients (r) between cells’ fi rst 
spike latencies (Δt

fi rst
 in the scheme of Figure 1C), and the inverse of 

their average fi ring rate were computed. Thus this amounts to rank-
ing the cells from the most to the least active throughout the session 
as a sort of ‘template’ for fi rst-spike sequences. For each DOWN to 
UP state transition this led to a coeffi cient r which quantifi ed the 
relation between latencies and ISIs. This analysis was carried out for 
UP states which lasted longer than 500 ms, and in which more than 
one-third of all cells fi red at least one spike. The distribution of r for 
an example session is plotted in Figure 2C. The average of r was 0.35, 
which is signifi cantly greater than zero (N = 161, t-test, p < 10−10) and 
thus the latency of onset of the fi rst spike is indeed correlated with 
average fi ring rate. The correlation coeffi cients were independent of 
the number of cells which were taken into account in each UP state 
(r = −0.08, p > 0.05, Pearson correlation N = 10–18; Figure 2D).

Thus, these two ways of defi ning fi ring sequences at the onset 
of UP states appear to concern two different dynamic phenomena: 
fi rst spike latency is heavily biased by the average fi ring rate during 
SWS, whereas mean time of spike occurrence Δt

mean
 is not. These 

two methods suggest alternative predictors of neuronal activity 
time course following the initiation of each UP state event: (inverse) 
fi ring rate and PETH center of mass. The two predictors were each 

correlated with different aspects of UP state dynamics: average fi r-
ing rates correlated with fi rst spike latency (and only weakly with 
mean spike times, Δt

mean
 in the schematic of Figure 1C) while the 

PETH center of mass was strongly correlated with mean spike time. 
(This is intuitive since PETH peaks are directly related to average 
mean spike times.) The distributions of r for these two comparisons 
(Figure 2E) were signifi cantly greater than zero (t-test, p < 0.05) for 
all of the sessions. Moreover, the average correlation coeffi cients 
of all sessions were not different from zero for the comparison 
‘fi rst spike time versus PETHs center of mass’ and negative for 
the comparison ‘mean spike time versus ISI’ (Figure 2G), possibly 
refl ecting a tendency for low-fi ring cells to fi re at the beginning 
of the UP state only, while high-fi ring cells fi re throughout the 
UP state. Nevertheless, as suggested by the rightward shift of the 
averaged distributions shown in Figure 2F, fi rst spike sequences 
are better explained (p < 0.05, t-test, all sessions) by average fi ring 
rates than mean spike times by PETH centers of mass (Figure 2F) as 
the average correlation are three to four times higher in the former 
than in the latter condition. Moreover, these two distributions were 
signifi cantly different (Kolmogorov–Smirnov test, p < 10−10).

DISCUSSION
We present here new results concerning the timing of cell activation 
at the beginning of the UP state during natural sleep. UP state onset 
is characterized by more rapid reinstatement of activity in those 
cells with higher average fi ring rates. The latency of each neuron’s 
fi rst spike is, to a large extent, predictable from its activity rate 
during SWS. UP state onset is characterized by an abrupt depolari-
zation of the membrane potential (Steriade et al., 1993; Sanchez-
Vives and McCormick, 2000; MacLean et al., 2005) synchronized 
across cells. It is likely that this process is initiated at the end of the 
DOWN state in a subset of neurons that can spontaneously activate 
regardless of synaptic bombardment (Mao et al., 2001), possibly 
due to intrinsic rectifi er currents (Steriade et al., 1993; Mao et al., 
2001; Bazhenov et al., 2002; Compte et al., 2003; Kang et al., 2008). 
The excitation from this subgroup of cells would be suffi cient to 
bring the membrane potential to the UP state in all cells, because 
of the high input impedance of neurons during the DOWN state 
(Contreras et al., 1996). At that moment, the onset of spiking activ-
ity in all cells is well explained by a Poisson process, with a rate 
parameter that can be determined from that cell’s  session-wide 
activity rate. This suggests that at UP state onset, the cell activity 
may be dominated by the cell’s intrinsic excitability, which may be 
shaped by intrinsic conductances or by upstream synaptic inputs 
(Destexhe and Paré, 1999; Compte et al., 2003; Steriade, 2006), 
both of which are highly variable from cell to cell. Thus, the partly 
stereotyped reinstatement of activity in the network as a whole 
does not appear to refl ect information processing because of the 
bias related to each neuron’s fi ring rate.

Right after UP state initiation, different dynamics seem to take 
over, which bring cells to peak fi ring at different delays, unrelated 
with the latency of the fi rst spike. At the network level, similar to 
Luczak et al.’s (2007) observations in sensorimotor cortex, this led 
to the reliable activation of sequences, which cannot be easily pre-
dicted by basic cell activity statistics. These sequences may be more 
relevant for information processing (as they are not constrained 
by intrinsic cell dynamics), possibly refl ecting sequential replay of 
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FIGURE 2 | Cell global activity level is associated with the order of fi ring. 

(A) The color plot indicates relative probability density of fi rst spike occurrence 
for a homogeneous Poisson process as a function of time elapsed (abscissa) 
and rate of the process. The superimposed white circles show, for each neuron, 
the session-averaged fi ring rate during SWS (ordinate) plotted against the 
averaged latency of fi rst spike occurrence at UP state onset (abscissa). Data are 
from a representative session (left) and from all cells analyzed (right). 
(B) Representative raster plots of population fi ring triggered at three different UP 
state onsets in a single recording session. LFPs appear above. Cells were 
sorted, from top to bottom, according to increasing values of session-averaged 
fi ring rate. Red lines connect fi rst spikes. (C) Distribution across all recorded 
neurons of the Spearman correlation coeffi cients between fi rst spike latencies 
and average fi ring rates for all the UP state onsets in which spikes were 
recorded from each cell. Abscissa is same as (D). (D) Correlation coeffi cients 

were not signifi cantly dependent on the number of cells involved in each 
sequence (r = −0.08, p > 0.05, Pearson correlation). (E) Distributions of the 
correlation coeffi cients for fi rst spike latency versus average ISI (left) and mean 
spike latency versus PETH centers of mass (CoM, right) across all sessions 
(N = 30). In both cases, for all sessions, the correlations were signifi cantly 
greater than zero (p < 0.05, t-test). (F) Averages of the distributions displayed in 
(E), dotted lines display envelope of SD. (G) Average correlation coeffi cients of 
the fi rst spike (left), or the mean spike (right) time vs. session-averaged ISI and 
spike center-of-mass (CoM). The two correlations shown in detail in panels (E,F) 
were the only two signifi cant and positive ones. There was also a small 
signifi cant, negative correlation between mean spike latencies and fi ring rate. 
Note that the correlation of fi rst spike occurrence versus fi ring rates is three to 
four times higher than mean spike times versus PETHs center of mass. Error 
bars display SD.
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cells in ways that may well be irrelevant for neural computation. 
This is likely to not only be the case for DOWN to UP transitions, 
but for any other situation in which there is a rapid change in the 
general drive to the network. For example, one model of theta 
phase precession in the hippocampus (Harris et al., 2002) shows 
that gradual release from inhibition within a theta oscillation cycle 
permits spike activity in neurons, starting from the most to the least 
excited, therefore inducing a non-random order in spike times. 
While in some cases such a ‘rate-to-time’ transformation may be 
useful for computation, in other cases, as shown here, it may be a 
non-coding, confounding factor.

From a methodological point of view, this bias should be 
carefully taken into consideration when analyzing sequences of 
neural activity and their potential role in transmitting informa-
tion. The issue of spike sequence detection in the neocortex is 
still under intense debate (see for example Oram et al., 1998; 
Litvak et al., 2003; Mokeichev et al., 2007). Our results show that 
a null hypothesis of no preferential order of activation across cells 
may not be appropriate in samples with different average fi ring 
rates, and effort should be made to test the sequence hypoth-
esis versus more realistic null alternatives. In conclusion, when 
testing the temporal coding hypothesis in brain activity, it is 
imperative to take into account possible ways in which basic 
physiological mechanisms may bias the probability of different 
spike sequences.
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activity patterns (Euston et al., 2007) and coordinated reactivation 
of cell assemblies (Peyrache et al., 2009) during sleep. This sequen-
tial activation is likely to be an important element in maintaining 
the UP state, and could be informed by the detailed structure of the 
synaptic connectivity matrix, including contributions coming from 
previous experience. A similar decoupling of the detailed patterns 
of temporal activation from the global mechanisms of network 
bistability has been predicted in models, e.g. (Kang et al., 2008).

Thus, two different pictures emerge from examining ensem-
ble activity with different analytical approaches. The latency of 
the fi rst spike in the UP state (Figure 2) depends primarily on 
fast processes, that appear to be non-specifi c, and dictated by the 
general activity levels of single cells. In contrast the center of mass 
analysis, which provides a coarse grained description of the same 
spike trains (Figure 1) reveals slower activity modulations, which 
would refl ect different mechanisms. Thus, it seems unlikely that 
the reliable sequences in the timing of fi rst spikes convey precise 
information while center of mass sequences would be more relevant 
for information processing. For example, it has been shown that 
center of mass sequences during sleep do indeed replay sequences 
observed during previous wakefulness (Euston et al., 2007). The 
distinction is not banal, as spike sequence order has been sug-
gested as a principal mechanism for information encoding in dif-
ferent behavioral contexts and under different dynamical regimes 
(Abeles, 1991; Jensen and Lisman, 2000; VanRullen et al., 2005), e.g. 
in ensemble activity in the hippocampus (Nadasdy et al., 1999; Lee 
and Kesner, 2002; Foster and Wilson, 2006; Pastalkova et al., 2008) 
and in the neocortex (Abeles et al., 1994; Prut et al., 1998; Villa et al., 
1999; Ikegaya et al., 2004; Ji and Wilson, 2007).

In summary, we show here that, under certain dynamical 
 conditions, the intrinsic cell properties refl ected by the average 
fi ring rate may bias the order of arrival of spikes from different 
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