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The rise of the IoT and Industry 4.0 has increased the complexity of

collaborating business processes, i. e., choreographies, as more partners and

assets are involved. However, maintaining and executing business

choreographies are complex tasks. Moreover, enabling robust and reliable

execution is important, as failures or delays cause high costs among

partners. For example, manufacturing companies usually depend on

different suppliers, and it is crucial to be up-to-date about possible delays in

shipments as this leads to delays in the manufacturing of their products. In this

case, a choreography needs to be designed and operated in a way that it can

adapt to cope with such problems. This requires i) timely recognition and

tamper-resistent logging of problems that occur at each involved partner,

which are referred to as situations in the scope of this article, and ii) an

approach for a timely adaptation of choreographies based on occurring

situations. Therefore, in this article, we introduce DiStOPT, an approach to i)

model and recognize situations in a distributed and timelymanner, and ii) model

and execute situation-aware choreographies based on the recognized

situations. The contributions are evaluated in a manufacturing scenario and

validated by a prototypical implementation.
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1 Introduction

These days, business processes must often be integrated with other processes to

coordinate complex interactions between each other, which results in choreographies.

Currently, these choreographies need to cope with the emergence of new paradigms, such

as the Internet of Things Machorro-Cano et al. (2020) and Industry 4.0 Sanchez et al.

(2020), and therefore, require choreographies to be able to react to changes that occur in

real environments, sometimes anticipated, and sometimes unanticipated and suddenly.

For example, when an IoT device or a production machine in Industry 4.0 fails to execute

a task (i.e., a failure situation), all dependent processes should be able to adapt themselves

to this situation by using alternative activities and resources. In case of a failed embedded
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device, an IoT monitoring process must be able to switch over to

another spare device. Failures in a production choreography may

lead to failures not feasible for partner processes, e.g., waiting for

a product to be shipped, therefore, adapted behavior should be

enabled in a timely manner. Thus, as a result, the timely i)

situation recognition and the ii) adaptation of choreographies is

important in contextual and distributed systems.

In this paper, we present the DiStOPT approach, which

extends existing work by distributed situation recognition,

storage and choreography concepts to enable the development

of distributed and situation-aware choreography-based

applications. We evaluate our approach based on a scenario,

described in Section 2, which serves as a running example

throughout the paper. Afterwards, we describe fundamentals

and previous work in Section 3. Our concepts are described in

Section 4, Section 5 and Section 6, followed by a description of the

system architecture in Section 7. In Section 8, we describe related

work. In Section 9, we validate our approach based on a

prototype. Finally, we give a summary in Section 10.

2 Motivation and problem statement

In the following, we describe an Industry 4.0 scenario (see

Figure 1) consisting of ordering, manufacturing, and delivering

of products which must interact with each other. In this scenario,

monitoring data is used to derive the state of machines and

possible machine failures that may influence the whole ordering

process as it may introduce delays. In such dynamic scenarios, all

involved machinery and infrastructure must be monitored and

the current situations must be shared with other partners and

processes so that they can react to changes.

In more detail, the scenario depicts three parties: ordering,

manufacturing, and delivery. At the beginning, the ordering task

specifies which products the manufacturer should produce

within their facilities. After manufacturing, the products are

sent via a delivery service to the location demanded by the

order. Note that in this scenario, we have three simplified

processes that together form a choreography, i.e., processes

without a single centralized process controlling the others. In

such a scenario, failures at one of the partners may lead to

problems within the overall choreography. For example, if the

manufacturer has failures with one of the machines that produce

the ordered products (see lower left in Figure 1), it can lead to

delays. However, detecting these failures early enough allows the

manufacturer to adapt the running process and still deliver

without significant delays. The same issue can arise with the

delivery, as sudden failures in one delivery vehicle may interrupt

the proper execution of the business processes. Again, timely

detection of such issues can enable the adaptation of the running

process by exchanging the delivery vehicle (see lower right of

Figure 1). Overall, the whole choreography between the partners

must be able to adapt itself to current situations. This is not an

easy task, as automating in this case requires to monitor the

current prevailing situations and context of a heterogeneous set

of resources, e.g., people, production machines, vehicles and

software processes. Modeling processes and choreographies

that are situation-aware and context-aware is a complex task,

especially when every detail of the monitored resources are

regarded, e.g., current location, target location, and current

condition. Reducing the complexity of modeling situations

and context is necessary to enable situation-awareness in

complex scenarios with fewer errors in the models, and

therefore, also at runtime.

FIGURE 1
Our motivating scenario describing an Industry 4.0 scenario (ordering, manufacturing, and delivering of products).
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In summary, to enable the described scenario in which

partners create a choreography of processes that is able to

adapt itself to the current situation and context of resources,

we need a system that is able to collect context data from

distributed and heterogeneous resources, integrate their

possible states within the processes and enable them to handle

issues at runtime in case the current situation requires it. We

tackle this with the DiStOPT approach by using i) Situation

Templates and ii) Situational Scopes in combination with a

distributed data collection and aggregation system, the

Situation Recognition, to detect the current state of the

environment, and by modeling the application logic in

Situation-Aware Choreographies. By doing so, we are able to

improve choreographies by reacting timely on occurring issues.

In the following, we will describe the fundamentals of

Situation Templates, Situational Scopes, as well as the work we

build on called SitOPT Wieland et al. (2015).

3 Foundations and previous work

This section introduces previous work regarding Situation

Templates and Choreographies as well as other foundations

required for understanding the concepts presented in this paper.

3.1 Foundations of situation recognition

Zweigle et al. (2009) and Häussermann et al. (2010)

introduced Situation Templates as a way to model situations

based on context data, which, for instance, may originate from

sensors producing signal outputs. Situation Templates are based

on so-called Situation Aggregation Trees and follow a tree

structure with a single root node, which represents the

situation. The leaf nodes are so-called Context Nodes

describing the context data involved to recognize a situation.

For example, an increasing temperature measured by a sensor of

a production machine could indicate that there is an issue. These

context nodes are connected to Condition Nodes that are able to

filter the context data. Next, the output of multiple condition

nodes can be aggregated byOperator Nodes using operators, such

as AND, OR, XOR, etc. Thus, context data is processed from the

bottom to the top of the Situation Templates in order to

determine the situation.

Figure 2 shows an example of a situation template monitoring

a production machine. The situation “Machine stopped” occurs if

one of the two modeled conditions is evaluated to true, i.e., either

the machine has a tool decay over 90% or the available material is

below 10. In a similar manner, situations can be modeled for

different kinds of entities, ranging from virtual machines in the IT

environment to production machines on the shop floor. In

previous work, we developed different approaches to map

Situation Templates onto executable representations, for

example, using Complex Event Processing Hirmer et al. (2015,

2016); Franco da Silva et al. (2016). In this paper, we use the

Situation Templates as a foundation to enable distributed situation

recognition. In the following, we use the latest version of Situation

Templates introduced in Hirmer et al. (2015).

3.2 Foundations of orchestration and
choreography

To enable the composition of services, many approaches have

been presented in research Nikoo et al. (2020). These can be

categorized into orchestration and choreography (Figure 3),

where the first coordinates multiple services from a single

central entity, while the latter is decentralized and different

partners coordinate themselves Peltz (2003).

Both categories can be modeled with so-called Activities that

represent a single unit of work within an application, which in turn

are then connected and ordered via edges between them. The

difference regarding orchestration and choreography is that

within an orchestration, a single partner is executing the activities

that, e.g., use services or applications from another partner. In regard

to a choreography, multiple partners interact with each other via

message exchanges and coordinate their own activities, e.g., the first

activity in a choreographymight send an order from a customer to a

seller while this is followed by an activity which sends a production

order from the seller to a manufacturer. Additionally, note that a

choreography does not have a single owner of the application, since it

is a collaboration between multiple partners.

Relevant for the remainder of the paper are adaption

methods of a composition in the style of a choreography Leite

FIGURE 2
Example of a situation template Hirmer et al. (2015)
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et al. (2013). One of the more popular approaches is model-based

adaptation where the choreography model is changed to fit new

(non-)functional requirements by exchanging single or complete

subsets of activities and edges. Some of these approaches also use

so-called Variation Points that specify that a planned adaptation

should be performed at that place of choreography. These and

other approaches can be applied at modeling, deployment and

runtime to enable different kinds of adaptation strategies, such as

selecting proper activities, services or whole partner processes.

3.3 Situation adaptive workflows

In the previous work SitOPT Wieland et al. (2015), we i)

enabled the dynamic and autonomous adaptation of workflows

to situations and ii) developed optimization methods for efficient

situation recognition and provisioning.

SitRS Hirmer et al. (2015), a part of SitOPT, is a centralized,

cloud-based middleware implementing concepts to process data

from sensors in order to recognize situations, which are instances

of Situation Templates (cf. Section 3.1). This was the basis for the

modeling and situation recognition at runtime for the previous

approaches used within centralized processes. Applications

observe their situations and adapt behavior if necessary via the

SitOPT system. The adaption is done on orchestrated processes,

which additionally could use process fragments, a set of process

activities, based on the current state of situations presented in

Képes et al. (2016). Depending on the situations, the Situation

Handler, a situation-aware service bus, is responsible for executing

the corresponding, situation-dependent process fragment. Also,

process activities can be grouped into a so-called Situational Scope

so that the execution of a workflow depends on whether situations

are present or absent while starting to execute the activities within

the scope. Both concepts allowed processes to react to changing

situations through the use of alternative activities.

In this paper, we extend the previous work by enabling a

distribution of the situation recognition and, furthermore,

adaptation of choreographies, which involve multiple partners

in a distributed environment.

4 Overview of the DiStOPT approach

In this section, we give an overview of theDiStOPT approach.

The details are then described in the next sections: i) the

distributed situation recognition and ii) adaptation of

choreographies based on situations.

The main concepts are depicted in Figure 4. The basic elements

are 1 context data, 2 Situations, modeled with 3 Situation Templates,

and 4 Situational Scopes. Context is the basic data which can be

retrieved by monitoring the relevant resources, such as people,

FIGURE 3
Example of an orchestration and choreography.

1 https://www.espertech.com.

2 https://www.hyperledger.org/use/fabric.

3 https://reactjs.org.

4 https://redux.js.org.
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manufacturing processes or products, see in 1 Figure 4. However, as

this is plain information of a resource, it is often too fine-grained and

must be combined with other sources of data to be effectively used.

To enable this, we combine the fine-grained and low-level data into

situations by using so-called Situation Templates, enabling to

aggregate context data for various states within the application

context, e.g., 3 in Figure 4. As many scenarios are not in a single

location, e.g., a company owning multiple manufacturing sites, we

introduce local and global Situations that distributes the information

gathering. Local situations 5 can now be aggregated into global

situations 6 and conceptually build a distributed system of data

gathering and aggregation. On top of the distributed situation

detection, we use so-called Situational Scopes, 4 which facilitate

the modeling of situation-aware choreographies. A Situational

Scope describes which activities can be executed when certain

situations in the context of a process are present, e.g., deliver the

ordered items with an alternative means in case of a transport delay

of one of the delivery trucks. InDiStOPT, we apply these concepts to

choreographies, that need a distributed and decentralized runtime

system underneath, allowing the reading of situations, and therefore,

situation-awareness of multiple cooperating and distributed

processes.

5 Distributed situation recognition

The first contribution of our work refers to i) a distributed,

decentralized recognition of occurring situations in order to

timely adapt the affected choreographies and ii) the tamper-

resistant long-term historical storage for recognized situations

using the blockchain technology. As described in Section 3.1,

situations are the result of a processed Situation Template, which

uses context data from different distributed sources as input to

calculate if the situation occurs. In other words, a Situation

Template is instantiated using context data to determine

situations. In our scenario, for example, context data sources

could be production machines or delivery trucks and a situation

could be, for example, “Machine Stopped” or “Transport

Delayed”.

5.1 Extended situation templates

To enable a distributed situation recognition, first, an

extension of the previously introduced Situation Templates is

required (cf. Section 3). This includes the ability i) to model

context data from different distributed objects in a single

Situation Template and ii) to use situations calculated by

other Situation Templates as input, which enables modeling

situation hierarchies.

To address the increasing modeling complexity, which comes

with the distribution, we introduce a layer-based modeling

approach. The goal is to use already modeled Situation

Templates as input for further Situation Templates. Hence,

Situation Templates can also serve as context data sources for

a next layer of Situation Templates.

With these hierarchical Situation Templates, it is possible to

model situations of a closed space (e.g., a production line) within

a single Situation Template and then aggregate multiple of these

Situation Templates into a larger one to describe situations of a

larger scope (e.g., a whole factory). This hierarchical approach

allows to keep the modeling complexity low, since situations are

modeled for a smaller scope, so-called Local Situations, and are

only then aggregated in an additional step. In this step, local

situations are used as context data sources of a larger scope

FIGURE 4
Overview of our DiStOPT approach based on an exemplary scenario.

5 https://spring.io.

6 https://grafana.com.
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Situation Template, whichmodels a so-calledGlobal Situation. In

the following, we use the term Local Situation for a situation

which is valid within a specific scope and the term Global

Situation for a globally valid situation, possibly consisting of

many local situations.

A more detailed example showing such hierarchies of local

and global situations is depicted in Figure 5. In this example,

instead of modeling one complex Situation Template involving

all context, condition, operator, and situation nodes for the whole

scenario, it makes sense to split it into two Local Situations, one

for eachmachine and oneGlobal Situation “Production Stopped”

to aggregate the local situations. This ensures reusability,

modularity, and a clear separation of concerns. As depicted in

this example, in the situation “Machine Stopped”, it is checked

for both production machines (Figure 5, bottom) if the tool decay

is higher than 90% or if the amount of materials is smaller than

10. If this is the case, these situations evaluate to true. In the

global situation “Production Stopped”, it is then only checked if

both local situations are evaluated to true and, if this is the case,

the global situation also evaluates to true, which could lead to a

delay in the production and, thus, to changes in the overlying

choreography. Modeling situations in this way, not only the

modeling effort can be reduced but also the efficiency of the

template evaluation, since the situations can be calculated near to

the context data sources instead of in a remote location, e.g., in a

cloud environment. This leads to a significant reduction in

network latency and load Mormul et al. (2020).

The concepts of local and global situations also offer the

advantage of reusability. Once a situation is modeled (e.g., a

failure of a production machine), it can be used as context data.

As can be seen in Figure 5, the two Situation Templates “Machine

Stopped” are reuses of the Situation Template given in Figure 2

and are applied to Machine 1 andMachine 2 as local situations to

build the global situation “Production Stopped”.

5.2 Situation recognition

After the situations have been modeled, their recognition

should be executed in a distributed, decentralized manner. For

example, to save costs, it usually makes sense to recognize

situations locally that are specific to a certain area, e.g., a

room, a production machine, a factory hall, and as close to the

involved objects as possible. If edge cloud environments are

available on the shop floor, they can be used to compute the

local situations. Otherwise, the computation of the situation

needs to be shipped to a farther location. Overlaying global

Situation Templates that involve multiple shop floors and

their local situations pre-computed in the edge cloud could

then, for example, be evaluated in a backend cloud

environment. Hence, it is only necessary to transfer

whether the local situations evaluate to true or false to the

backend cloud and not all the basic data that is necessary to

evaluate them, e.g., the sensor data of a production machine.

The aggregation of data potentially decreases the amount of

network traffic.

The evaluation of situations is conducted in our work using

Complex Event Processing (CEP). Franco da Silva et al. (2016)

developed an approach to transform Situation Templates into

Complex Event Processing queries that can be evaluated in a

corresponding CEP engine. CEP engines, such as Esper, are

lightweight and can be operated in edge and backend clouds,

thus, serving the purpose of the distribution strategies presented

in this paper. To enable the communication between the different

situation recognition events distributed among edge and backend

clouds, we developed a lightweight messaging engine Del Gaudio

and Hirmer (2020a), which serves the purpose to exchange

messages in decentralized architectures, in our case, the

exchange of situations. Since also the deployment and

configuration of CEP engines is a complex task, we automated

this using the OASIS standard TOSCA. This is another important

part to conquer the complexity of distributed situation

recognition. For more details of our approach, we refer to

Franco da Silva et al. (2018).

FIGURE 5
Aggregation of situations via multiple Situation Templates.

Frontiers in The Internet of Things frontiersin.org06

Hirmer et al. 10.3389/friot.2022.1054963

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2022.1054963


5.3 Situation log

In our scenario, in case of failures, it is important to

determine which parts failed and why. Especially in safety-

critical applications, this information is essential, e.g., railway

signalling, nuclear power plants, or vaccine production or

transports, as recognized situations may become very

important and critical if accidents of any kind occur. In these

cases, audits of the recognized situations and succeeding actions

are needed. Hence, tampering with situations and actions has to

be avoided, i.e., it must be ensured that situations and their

involved context data cannot be changed after their recognition.

Therefore, it is necessary that recognized situations are stored in a

tamper-resistant way across all partners.

To enable this, we utilize the blockchain technology to

maintain a distributed and verifiable data store for storing

these situations for historical or investigational purposes. This

is depicted in Figure 6. A permissioned blockchain, serving as a

situation log, stores all occurred situations. A query engine

delivers read-only access to these situations by all partners for

historical analytics and reporting purposes.

Every recognized situation is reported to the other partners

and jointly written into a permissioned blockchain, i.e., an

immutable, tamper-resistant situation log. This is done by a

consensus mechanism in the blockchain. Depending on the

permissioned blockchain system, this consensus mechanism is

modular and customizable in a sense that the content of a

transaction is checked (i.e., the business semantics) before it

can be approved, and a consensus policy is implemented where

all or some partners must approve a transaction before it is

accepted (i.e., written into the blockchain). To ensure that the

recognized situations come from trustworthy sources in a sense

that the low-level context data have not been manipulated,

signatures can be used, which verify the data’s origin and its

authenticity. For IoT devices, attribute-based signatures offer the

required flexibility, including the use of these attributes to verify

properties during data collection (e.g., data accuracy). Gritti et al.

Gritti et al. (2019) introduce such a lightweight method. Previous

work Przytarski et al. (2021) shows how this method can be

combined with blockchain technology.

A permissioned blockchain includes an access control layer

so that only authorized users (e.g., the partners) have read and

write access to the blockchain. Thus, the data in permissioned

blockchains are inaccessible to the public but shared by the

partners. Therefore, it is practically impossible to manipulate

the stored situations from outside and in. This ensures that all

partners have a consistent, tamper-resistant, trustworthy and

historical view of the recognized situations.

Unlike in public blockchains where a consensus mechanism

must work on a global scale, a permissioned blockchain may

utilize a much simpler and more efficient consensus mechanism

with better characteristics in terms of speed and resource

consumption. Therefore, the consensus model is not

predefined, so that this can be freely decided as each

consensus model considers different challenges with respect to

forking, performance, and security. As the number of

participants in a permissioned blockchain network is

predefined, it is reasonable to use a consensus mechanism

that guarantees finality with some sort of fault tolerance

Cachin and Vukolic (2017).

Some permissioned blockchain systems utilize a database

system that provide a query engine to query the blockchain for

analytical or reporting purposes. The query engine computes the

result of a given query by using the local database instance that

stores, sometimes just parts of, the replicated blockchain. To also

support filtering with complex conditions, we are currently

working on a storage engine for blockchain technology that

utilizes the triple data model (entity-attribute-value)

FIGURE 6
Situation Log storing recognized local and global situations in a permissioned blockchain.
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Przytarski (2019) and provides a powerful query engine with a

familiar query language. This enables access to present and

historical situations even without extensive knowledge of the

blockchain system.

6 Situation-aware choreographies

In this section, we describe our contributions regarding the

modeling, deployment, and execution of so-called Situation-

Aware Choreographies. These choreographies coordinate the

interaction between multiple business partners and specify

situation-aware behavior to react to changing situations within

so-called Situational Scopes that specify whether a set of activities

can be executed or not under a set of recognized situations.

6.1 Modeling of situation-aware
choreographies

The modeling of Situation-Aware Choreographies is achieved

with the so-called SitChoMe method depicted in Figure 7. The

method builds on so-called SitChoMe Interaction or

Interconnection Models, both specifying the interactions

between multiple partners and their behavior according to

specified situations.

Modelers can start by modeling a SitChoMe Interaction

Model, which contains only activities that model the

interaction between partners, such as, message exchanges. In

addition, a SitChoMe Interaction Model specifies sets of activities

within so-called Situational Scopes (see dashed box around the

activities in Figure 7) within a choreography which should only

be executed when a specific set of situations is in a desired state at

runtime. For example, an alternative ordering of parts from a

specific partner should only be done if the forecasted delivery

time is not acceptable anymore, or, a choreography specifies to

execute an order activity only when a part is already available at

the partner. These activities are only executed when the specified

situations are active within the current applications’ context. In

addition, the SitChoMe method allows modelers to model the

desired Situation-Aware Choreographies as a so-called SitChoMe

Interconnection Model, that is used to model not only interaction

activities between partners but local and technical activities,

as well.

Our method allows to transform a SitChoMe Interaction

Model into a SitChoMe Interconnection Model in an automated

manner, therefore, partners can model the global and public

situation-aware interaction model together and afterwards add

additional partner specific activities within an interconnection

model. The main difference between these models is that partners

can have their specific process activities modeled in a more

detailed manner (see separate pools in Figure 7).

After the SitChoMe Interconnection Model is generated and

optionally refined, e.g., by adding partner-specific activities, the

Situational Scopes within the model are replaced with activities

that technically implement the needed situation-aware logic. For

example, if a set of activities should only be executed if a set of

situations is valid at runtime, a set of activities is generated that

evaluates the state of the specified situations before execution.

These activities are interacting with a new process (see middle

pool in Figure 7 at the interconnection model part) with the goal

of retrieving the current state of a situation. The encapsulation of

this logic into its own process allows partners to decide whether

they share the same process to retrieve the state of situations or

each implementing their own, e. g., when the situation is only

needed by a single partner.

After the generation of the standard-conform (i.e., BPMN

2.0) interconnection model, the partners implement their part of

the overall choreography independently according to the

generated SitChoMe model. Therefore, each partner has

information what message must be sent at what time inside

the process, and additionally, each one can implement their logic

FIGURE 7
Overview of the SitChoMe modeling method.
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according to the specified situations. When the partners

implemented their parts, each process of the choreography is

deployed in their own systems and bound against the partners

they communicate with (see Section 6.2 for details).

6.2 Deployment of choreography partner
processes

The individual deployment of situation-aware processes that

are part of a situation-aware choreography is a challenge, as it is

necessary to configure the process to be able to communicate

with the services called by its activities and with the situation

recognition systems. Based on Weder et al. (2020), users are able

to tackle the described problems with Self-Contained Workflows

and the method depicted in Figure 8.

The concept of our deployment method is the annotation of

activities within a process model with so-called deployment

models of services which are used by the activities (see 1 in

Figure 8). For example, if a local process of a partner needs

additional services, they can attach the deployment model that

specifies all components which are needed to deploy the service.

On the other hand, if an activity uses an already available service,

e.g., a service which is used to retrieve the state of situations, only

its endpoint information is attached at deployment time. After

the workflow model is annotated with the necessary service

information, it is packaged into a single archive and is given

to the deployment orchestrator (see 2 in Figure 8). The

deployment orchestrator is responsible for deploying the

services (see 3 in Figure 8) and binding of the workflow to

these services for execution at runtime (see 4 and 5 in Figure 8).

In context of the DiStOPT approach, the deployment allows

each partner of a choreography to implement their own local

processes with the help of already available or yet to be deployed

services which can then be attached to the activities of the

processes, thus, reducing the development and deployment

effort.

As we have scenarios which are highly distributed and there

is no central control, we based the deployment of our

choreographies on previous work on distributed deployment

Képes et al. (2019) and extended it for decentralized control

Wild et al. (2020). Both approaches together achieve the

deployment of the situation-aware partner workflows and

situation recognition components. It builds on top of a

message bus in each deployment orchestrator that is used to

communicate with other message busses via messaging. For

example, one orchestrator can send a message to another to

deploy a component in a specific environment unavailable to the

other. For decentralized deployment, i.e., there is no single

orchestrator managing all local deployment on the partners’

side, we use an approach based on Deployment

Choreographies. Multiple partners participate in a deployment

choreography, each with their own automatically generated local

deployment processes, that deploy only the components in their

respective environments. In addition, each partner can start the

deployment, by starting the local deployment process and with

the help of the message bus notify the other partners to start their

deployment processes, and in case of choreographies, make

everything available.

6.3 Execution of choreography partner
processes

The execution environment for the created and deployed

situation-aware partner workflows which together form a

situation-aware choreography consists of a Workflow Engine,

Situation-Aware Message Bus and the Situation Recognition

FIGURE 8
Overview of the deployment approach based on our work in Weder et al. (2020).
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components for each partner (see Figure 9). These components

support retrieval of the current state of situations, and, therefore,

can be used to start choreographies when selected situations are

available. As our modeling method uses situations to execute

specific activities, some messages must be queued by the message

bus in case a message can only be given to a partner workflow

when a certain situation is available.

The first interaction between the workflows and the

execution environment is the initiation of the overall

choreography by instantiating each local partner process. This

has to be managed by the system, as multiple partners in a

choreography may start a choreography instance, i.e., the

choreography could be modeled in such a way that each

partner may start the overall choreography. Therefore, the

other partners have to be informed that a new instance has

started, and each partner must start an instance of its part of the

choreography in its local environment (see edges with Notify

Partners and Notify Partner in Figure 9).

To implement situation-aware behavior, the situation-aware

workflows, generated initially by our method and then

implemented in the last step of the method, retrieve the

current state of situations (Get Situation in Figure 9) and,

based on the received state, wait, abort or continue with

execution, following the specification of the Situational Scope

it originates from. When messages need to be shared, the

Message Bus is used to pass these to the respective partners

(send and receive messages in Figure 9). To keep execution

consistent between the partners, e.g., that a partner is further

ahead in the execution as the other, not only situations are used

to synchronize each other but message queuing is used as well. If

a partner expects to receive a message which was already sent by

another partner, the message bus must be able to queue the

message and pass it to the workflow instance when appropriate.

Appropriate in this case means that messages must fit the

running instance of the choreography by checking the

Choreography Instance Identifier, and it must fit the current

state of situations, i.e., the active Situational Scopes by

evaluating the active Situational Scope Identifiers of the

message. In case it fits, the message can be passed to the

process. Otherwise, the state between partners differs at that

point in time, which can happen due to inconsistencies between

the situation’s state between partners. However, the state of the

situations eventually gets consistent over time and the right

message can be received from the message bus via the

identifiers in the message as one of the partners will adapt by

actively switching to the modeled alternative defined in the

Situational Scope.

7 Implementation architecture of the
DiStOPT system

The system architecture of the DiStOPT system consists of a

set of distributed components which enable gathering and

aggregation of context data, the evaluation of situations at

runtime, and their use within a Situation-aware Choreograpy.

7.1 Architecture

The system is divided into modeling time and runtime (see

Figure 10).

Situation Templates (cf. Section 5.1) are modeled with the

Situation Modeler (see upper left in Figure 10). The Situation

Modeler is browser-based and can be operated either stand-alone

on a local machine or as a cloud service. Modeled Situation

Templates are transformed into executable processing models as

described in Del Gaudio and Hirmer (2020a) and Section 5.2. In

this step, Complex Event Processing (CEP) queries are generated

from Situation Templates. The processing model consists of

abstract operations and directed links between them, based on

the Pipes-and-Filters pattern. After transformation, the Situation

Template is passed to the Situation Manager, which deploys all

necessary software on the involved devices. This includes, for

FIGURE 9
Overview of the Execution Approach based on Képes et al. (2021)
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example, the CEP engine to evaluate the CEP queries. Running

the situation recognition locally enables early filtering and, thus,

less communication overhead. The CEP queries are shipped to

the CEP engine for evaluation. Whenever a situation is

recognized, the information is stored on the situation log(cf.

Section 5.3) and the Situation Manager is notified. Situations

stored in the situation log can be visualized and inspected in a

dashboard, which can be individualized for each partner.

The modeling of a Situation-aware Choreography Model (cf.

Section 6.1) is done within the Choreography Modeler (see upper

left in Figure 10), which allows modeling choreographies as

SitChoMe Interaction and Interconnection Models with

Situational Scopes. After modeling, the choreography is

transformed within the same component in a SitChoMe

Interconnection Model, if needed, which replaces the Situational

Scopes into language-compliant logic that is used to interact with

the runtime system and to control the execution of the activities

within the modeled Situational Scopes. These models are then

implemented with internal and technical activities that use, e.g.,

services needed for each partner to achieve the overall business

goal. The final processes are then deployed in the runtime

environment (cf. Section 6.2) with the Workflow Deployer (see

upper left in Figure 10), which not just deploys the process on a

Workflow Engine (see middle in Figure 10), it also binds and

optionally deploys the needed services for the process to run

properly. Next, the process is executed (cf. Section 6.3). At

runtime, the deployed processes communicate with the

Situations API via the Situation-Aware Message Bus (see middle

in Figure 10). Both components use the underlying Situation

Recognition component to retrieve the current state of

situations. The Situation Recognition component aggregates the

low-level context data, executes the Situation Template and then

determines the current state (cf. Section 5.2). Data retrieval can be

achieved in a pull and push-based fashion, i.e., the data retrieved is

either send to the Situation Manager or it is fetched from the

resources via adapters running on them directly.

8 Related work

This section describes related work in the areas of distributed

situation recognition in Section 8.1 and context-aware

choreography adaptation in Section 8.2.

8.1 Related work on distributed situation
recognition

In related work, approaches exist for distributed situation

recognition using ontologies, e.g., Fang et al. Fang et al. (2008).

These approaches do not achieve the latency required in real-

time critical scenarios, such as Industry 4.0 Sanchez et al. (2020),

due to time-consuming reasoning. The goal of our approach is to

achieve distributed situation recognition times in the range of

milliseconds, as we showed in Franco da Silva et al. (2016). Many

approaches using ontologies are in the range of seconds to

minutes, even without distribution Wang et al. (2004); Dargie

et al. (2013). Using machine learning leads to similar limitations

regarding latency Attard et al. (2013). In the area of distributed

Complex Event Processing (CEP), Schilling et al. Schilling et al.

(2010) aim at integrating different CEP systems using a common

meta language. This could be beneficial for our distribution

because we would not be limited to one type of execution

engine. However, in the work of Schilling et al. Schilling et al.

FIGURE 10
Implementation architecture of the DiStOPT system.
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(2010), the queries have to be hand-written and distributed. This

is difficult for domain experts, e.g., in Industry 4.0, who do not

have extensive computer science knowledge. In our approach, we

provide an abstraction by Situation Templates that can be

modeled using a graphical user interface, as for example, the

Situation Modeler from Section 5 and Section 7. Other

approaches in distributed CEP, e.g., by Schultz-Moller et al.

Schultz-Møller et al. (2009), follow the concept of automatic

query rewriting. Here, CEP queries are split up using automated

rewriting and are distributed on different operators based on a

cost model, which is mostly based on CPU usage in the different

nodes. Since there are many aspects, such as data protection or

security, that play a role in distributing the CEP queries, this only

can be known by an expert user. Furthermore, approaches exist

that enable a massive distribution of sensors, e.g., by Laerhoven

and Gellersen Van Laerhoven and Gellersen (2004) in cloths, to

detect activities of the person wearing the cloth. This is similar to

detecting the situation in the edge, but there is no concept

presented in Van Laerhoven and Gellersen (2004) to integrate

the activities with other activities from different edges or create a

global situation involving different locations.

Overall, related work in the area of distributed situation

recognition focuses mostly on very specific concepts and

technologies, such as CEP. In contrast, we base our approach on

the more abstract and generic Situation Templates, which we extend

to achieve the desired distribution of the situation recognition.

8.2 Related work on context-aware
choreography

In related work, it is identified that the increased usage of

paradigms such as Industry 4.0 or IoT need further coordination

Machorro-Cano et al. (2020); Belkeziz and Jarir (2020) and should

be context-aware Perera et al. (2014). As already mentioned in the

fundamentals section (see Section 3.1 and Section 3.2) to create

context-aware applicationswe need to be able to adapt applications

to the current context. According to a systematic literature review

by Leite et al. Leite et al. (2013) adaptation of a choreography can

be categorized according to the properties time, i.e., design time or

runtime, and the amount of needed human intervention,

i.e., automated or manual. Model-based methods are related to

Model-Driven Development (MDD) and emphasize the

adaptation view from a higher-level. Alternatively, adaptation is

needed when certain thresholds are not met, hence, measurement-

based methods are valid as they trigger the re-composition of a

choreography. According to Leite et al. a multi-agent system

(MAS) is based on individual agents that together try to

achieve goals or execute tasks, however, each agent has its own

autonomy to solve its local problem. The formal-methods-based

approaches build on formalmodels such as finite statemachines or

process calculus, such as, π-calculus to describe the behavior of a

choreography application. As another category Leite et al. present

the semantic-reasoning-based approaches which use ontologies to

describe the services between partners and try to improve the

interoperability between these by reasoning over the

communication. The last category are proxy-layer approaches

which use the Proxy pattern, a software layer, which intercepts

messages and handles adaptation behind it. For example, by

selecting the recipient or adjusting the message itself.

Our approach is based on design time models using

situation-awareness at runtime. The proposed solution builds

on the context modeled to support the modeling and execution of

adaptable choreography applications with the use of the

presented situational scopes.

Autili et al. Autili et al. (2017); Filippone et al. (2020); Filippone

et al. (2022) present a method for context-aware choreographies.

The general idea is to model choreography models with so-called

variation points which are later implemented via fitting services

(orchestrated via coordination delegates) according to the needs of

the choreography and the context of it. In contrast, our approach is

based on modeling alternative logic which must be modeled to fit

the situations and context.

Bucchiarone et al. Bucchiarone et al. (2017) present a

context-aware and adaptable orchestration method which uses

different workflow fragments and goals. By using the available

fragments and goals their system is able to generate the needed

workflow achieving the overall business goal. The context is used

to constrain which fragments can be used and how the goal can

be achieved. Although, the proposed concept allows for the

context-aware adaptation of application logic, it is only

supporting it from a centralized and orchestrated perspective

not considering multiple partners and therefore choreographies.

Chand et al. (2011) achieve context-aware choreography and

their adaption via a context-aware service bus. The bus routes

messages between different services while monitoring the current

context and adapts the message routing accordingly. Our

approach uses a service bus as well to coordinate different

partners, however, DiStOPT uses a distributed system which

enables each partner to exploit local and global Situation

Templates and to communicate in a decentralized manner.

Cao et al. (2015) propose a framework for context-aware

service orchestration. The framework orchestrates services based

on policies and context, which in turn leads to exchange of

services used at runtime, and therefore, a simple form of

adaptation. Although the proposed framework enables

adaption according to context, it only allows to adapt the

selection of the services for each task in a choreography. This

disregards context to be a main part of the choreography itself,

e.g., using alternative paths within a choreography when context

changes occur, and therefore using different activities on a logical

level, allowing fine-grained situation-awareness.

Cheng et al. (2017) introduce an approach for “Situation-

Aware Dynamic Service Coordination in an IoT Environment”. In

their paper, the authors introduce an event-driven, service-

oriented IoT service coordination platform architecture as well
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as a situational event pattern to enable automaton-based

situational event detection. In contrast to their work, we use

Situation Templates to enable situation modeling for non-

technical users. Furthermore, our focus lies not only on single

processes but rather on the situation-aware adaptation of

choreographies that are involving multiple partner processes.

9 Validation of the DistOPT prototype

To validate our approach, we implemented a prototype based

on our motivating scenario (cf. Section 2), the implementation

architecture as shown in Figure 10, and based on previous work

of Del Gaudio and Hirmer (2020a,b); Képes et al. (2020, 2019);

Wild et al. (2020), which integrates the Situation Recognition and

Situation-Aware Choreography parts of DiStOPT.

For the prototype, we used the following technologies:

The Situation Recognition part is based on technologies such as

Esper 1,Hyperledger Fabric 2, React 3, Redux 4, Spring 5,Grafana 6,

and MongoDB 7. For the choreography modeling and execution,

we used Camunda BPMN 8, Apache ODE 9 and OpenTOSCA 10.

The architecture of the prototype is shown in Figure 11.

Situation Templates for our scenario can be modeled in a

user-friendly web interface, the Situation Modeler. Using this

tool, we created the Situation Templates “Transport Delayed” as

well as “Production Stopped” (cf. Section 5). To implement the

Situation Modeler, we use the libraries React for building

interactive UI elements and Redux for managing the UI state.

We implemented a REST API with Spring to store and retrieve

situation models into and from a MongoDB database. Also, we

implemented the Situation Modeler with multi-tenancy, so that

multiple partners can model without getting insight into each

other’s internals.

Our test environment consist of different IoT devices,

including Raspberry Pis (version 4) and Arduinos. These IoT

devices simulate the production machines and delivery trucks of

ourmotivating scenario and produce context data as input for the

modeled Situation Templates. The context data is generated

automatically using scripts. Next, we transform the modeled

Situation Templates into CEP queries and evaluate these queries

based on the context data using the CEP engine Esper. Situations

occur randomly based on the generated data and will then lead to

adaptations in the choreographies. For the situation log, the

tamper-resistant data store for recognized situations, we use the

blockchain technology Hyperledger Fabric from IBM. The

situations “Transport Delayed” and “Production Stopped” are

stored in the Situation Log once they occur. The situations can

then be displayed in the Grafana dashboard.

On the side of Situation-Aware Choreographies, we built our

prototype based on Camunda BPMN, Apache ODE and

OpenTOSCA. While the first is a modeling and runtime

FIGURE 11
Architecture of the Prototype and used Technologies.

7 https://www.mongodb.com.

8 https://camunda.com.

9 https://ode.apache.org.

10 https://www.opentosca.org.
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environment for BPMNOMG (2011) workflows, Apache ODE is

an engine for BPEL OASIS (2007) workflows. OpenTOSCA is a

TOSCA-based OASIS (2013) ecosystem for the modeling,

deployment and management of Cloud, IoT and Quantum

applications. To model the SitChoMe Interaction and

Interconnection Models for our scenario and to transform

these into standard-compliant models, we implemented an

extension for Camunda to model the desired choreography

with situational scopes and transform them afterwards. As we

used Camunda, the modeling within our approach is based on

BPMN and can be implemented and executed on the Camunda

engine. However, the implementation can also be achieved using

the workflow language BPEL, which can be used within the

OpenTOSCA ecosystem. The ecosystem implements the

presented self-contained workflow deployment approach,

enabling partners to package their workflows into a single

package and to deploy whenever needed. The execution

system is based on a Situation-Aware Service Bus, which is a

main component within the ecosystem. The bus allows different

partners to communicate with each other via HTTP messages

with JSON or SOAP. For communication within a choreography,

each service bus can communicate with another via HTTP and,

in case of IoT scenarios needing a small footprint for messaging,

also via MQTT.

9.1 Discussion

The previously described prototypical implementation

serves as validation of our approach. For the

implementation, our goal was to focus on efficiency and

lightweightness in order to apply it to scenarios with limited

resources, which is the case, for example, in the Internet of

Things or in Industry 4.0. Using the CEP engine Esper enables

recognition of situations even on resource-limited devices in a

timely manner, as we also evaluated in previous work Franco da

Silva et al. (2016). Furthermore, by providing graphical

modeling tools for situations and choreographies, we ease

using our approach and broaden the potential user group

also to non-technical domain experts. Especially the use of

Situation Templates, an established means for situation

modeling Häussermann et al. (2010); Zweigle et al. (2009),

helps in modeling situations more efficiently. For choreography

modeling and execution, we build on existing standards, such as

BPMN and BPEL, which allows for a more stable and future-

proof system. Furthermore, for deployment purposes, we use

the TOSCA standard, which allows creating reusable

deployment models, which can also be visualized in a

graphical manner to become human-readable.

Overall, our approach and its according implementation

aims at achieving usability by domain experts as well as

providing a lightweight system that can be applied even to

resource-limited environments. Using the described standards

and technologies, we were able to realize this in our prototypical

implementation. In the next section, we explain how we applied

our system in practical research projects.

9.2 Application in real-world scenarios

For validation purposes, we were able to apply our approach

in real-world scenarios in the scope of the research projects

“Optimization and adaptation of situation-aware applications

based on workflow fragments (SitOPT)” and “Industrial

Communication for Factories (IC4F),” respectively.

In SitOPT, the goal was to adapt production processes in

factories based on occurring situations. For example, if a

production machine were to fail, another machine could take

over until the issue is resolved. This requires the adaptation of

overlying processes. To do so, we integrated the situation

recognition and workflow adaptation approach of this paper.

As described in Franco da Silva et al. (2016), we were able to

recognize situations in near-real time. This is crucial since a

timely recognition of issues in production environments can

limit downtimes by timely adapting the processes and, thus,

decrease costs.

In IC4F, we applied the approach of situation recognition to

an autonomous transport scenario in a smart factory. In this

scenario, self-driving forklifts were in place that transport goods

between different shelves or load them onto trucks. In case of

issues with one of the forklifts, the product distribution and

delivery process needed to be adapted accordingly, e.g., so that

one forklift can replace another one based and adjust its delivery

priorities. Here, we were able to integrate and validate our

approach in a real scenario.

10 Summary and future work

In this article, we presented the DiStOPT approach and its

developed concepts used within scenarios like Industry 4.0. One

of the goals of the approach is to enable partners to collaborate

within a distributed situation-aware application that is able to

adapt itself according to current situations at a partner site.

DiStOPT consists of i) an extension of Situation Templates to

model local and global situations, ii) a distributed situation

recognition system, and iii) the SitChoMe method that allows

modeling, deployment and execution of situation-aware

choreographies.

Our approach builds on distributed recognition of situations

and their aggregation in a tree-based model, enabling partners to

observe the state of multiple distributed and heterogeneous

resources/entities. To prevent partners from manipulating the

state of situations, the logs of situations are stored in a tamper-

resistant blockchain for historical and analytical purposes. On

top of the situation recognition system, the DiStOPT approach
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provides the modeling and execution of situation-aware

choreography applications. These allow to model different

partner interactions and activities, and additionally, offer

situation-awareness via Situational Scopes. To validate our

approach, we developed the DiStOPT prototype using open-

source technologies and applied it to scenarios taken from

industry cooperations.

In future work, we plan to evaluate and extend our concepts

to automotive scenarios, for example, in software-defined

environments in cars and for driving.
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