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As the number of electronic control units (ECUs) in vehicles continues to grow,
exchanging physical components between original equipment manufacturers
(OEMs) and ECU suppliers presents logistical challenges, impeding the pace of
development and leading to accumulation of costs. In this work, we introduce a
conceptual framework that enables remote testing of geographically dispersed
ECUs over the Internet. Pertinent to the Internet of Things (IoT) sphere, where
interconnection of distributed components is hampered by the inherent
challenges of latency, we propose a hybrid synchronous methodology that
combines asynchronous test management with time synchronization
mechanisms to mitigate the delay impact within the distributed environment.
Additionally, we discuss challenges and prospects associated with this approach.
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1 Introduction

As technological advancements continually reshape the industry’s landscape European
Parliament et al. (2021), automotive development, characterized by a globalized nature,
necessitates alliances between original equipment manufacturers (OEMs) and external
suppliers. Collaborations and outsourcing agreements are vital to keeping abreast of
evolving trends, sharing the burden of research, and matching turnaround times Ciravegna
and Pilkington (2013). An example of a field that intrinsically relies on collaborative efforts is
ECU development, with electronic control units (ECUs) being embedded devices regulating
multiple vehicle functions, including engine performance, transmission control, safety systems,
etc. Here, OEMs commonly rely on external suppliers to undertake their manufacturing,
engineering, and optimization in alignment with the desired specifications. Throughout the
development process, ECUs are subjected to testing, either in standalone or group
configurations. The latter involves assessing their interdependent operation, a testing phase
known as integration testing Sobotka and Novák (2013).

To date, integration testing has been conducted at the premises of the automotive OEM,
necessitating that all external ECU suppliers ship their devices to a centralized location.
From the OEM’s perspective, this poses a challenge due to the combination of multiple
suppliers and their dispersed geographical regions. This logistical complexity results in
increased costs and time pressure, compounding the challenges of meeting the next vehicle
release schedule.
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In our previous work Tziampazis et al. (2023), we detailed a
refined ECU development V-model while discussing how
integration testing of physical ECUs between automotive OEMs
and their suppliers over the Internet could enhance agility in
outsourced development. From a synergistic viewpoint, utilizing
distributed physical resources as opposed to a single, centralized
testing facility—which would otherwise necessitate co-locating all
components—proves advantageous in managing the development
schedule and strategically planning costs. In the present article, we
build on our previous theoretical research by emphasizing practical
considerations, specifically targeting the challenge of long-distance
latency, caused by geographic spans between interconnected
resources, as well as issues of timeliness. The limitation of latency
impacts the feasibility of remote testing across a wide range of
applications, especially in dynamic scenarios with temporal
constraints or scheduling requirements.

In view of this restriction, we present a hybrid framework for
remote ECU testing that combines asynchronous test management,
where events are processed independently by the testing authority
subsequent to their occurrence, with synchronous timestamping
techniques for time referencing. Latency introduced in the
distributed links is calculated and corrected post-event through
the exchange of timestamps across the distributed nodes. This
expands the spectrum of test cases that can be evaluated
remotely, in that it allows for the assessment of temporal
characteristics (e.g., signal response times) in addition to purely
functional attributes (e.g., signal occurrences). In the context of this
paper, we define framework as a structured approach that
encompasses the architecture of a distributed setup of
components (e.g., ECUs, gateways, interconnection links), the
communication protocols or entities (e.g., messages, data
exchange formats, synchronization methods), and the
methodological components (e.g., algorithms, processes) that
facilitate distributed communication and testing.

We envisage that this work provides new insights into
integrating the realms of the Internet of Things (IoT) and
automotive ECU testing. By conceptualizing automotive ECUs as
IoT components and framing remote ECU testing as a distributed
IoT process, key challenges such as latency, timeliness, and
synchronization emerge as common issues in both domains. Our
proposed method to ameliorate the impact of latency through a
hybrid approach of synchronicity and asynchronicity could hold
potential for application in a range of distributed IoT testing
processes that are not bound by strict real-time requirements.

The remainder of the article is structured as follows: Section 2
explores typical synchronization principles and mechanisms,
Section 3 covers related work, Section 4 presents the proposed
hybrid framework, alongside an exemplary test scenario,
represented by the corresponding mathematical model, Section 5
discusses further considerations and practical constraints, and
finally, Section 6 concludes and outlines future directions.

2 Time synchronization background

This section examines the principles of time
synchronization and its implementation across three
protocols: Network Time Protocol (NTP), Precision Time

Protocol (PTP), and Controller Area Network (CAN). These
protocols are deployed in multiple applications with varying
precision requirements, each offering distinct approaches to
time synchronization.

Frequently, synchronization refers to imparting a reference from
one entity to another with the former typically referred to as the
master and the latter as the slave. It is classified into three distinct
types Lévesque and Tipper (2016): 1) time synchronization, which
involves aligning the clocks of different devices to a common time
reference, 2) frequency synchronization, which focuses on aligning
the oscillations of devices to maintain the same frequency, and 3)
phase synchronization, which relates to aligning the phase angles of
signals or waveforms. In certain protocols or processes, it is typical
for the last two, i.e., frequency and phase synchronization, to be
incorporated within the time synchronizationmechanism. The sense
of time reference to be shared can take two forms: absolute or
relative. In the first case, clocks are aligned to a global time reference,
such as UTC (Coordinated Universal Time) or GPS (Global
Positioning System). In the second case, the alignment is based
on specific events that may not be directly related to the true
perception time, e.g., the time elapsed since the power-up of an ECU.

Achieving precise time synchronization entails calculating and
compensating for the time offset between the reference master and
the non-synchronized slave. This can be applied iteratively to multiple
nodes that seek synchronization with the same reference.
Compensation is essential, as transmitting the reference time from
the master to the slave inherently consumes time, which, if left
unaccounted for, could lead to the slave drifting out of
synchronization by the time it receives it. Fundamentally, for
synchronization with the master, the slave adjusts its timing as
depicted in Equation 1:

τslave ← τslave − ϑ + γ (1)
where ϑ represents the time deviation between the master and slave
clocks and γ the propagation delay in transmitting the reference time
instance from the master to the slave. The left arrow operator ←,
commonly used in computer science to denote an assignment,
indicates that the right-side expression is evaluated and assigned
to the left-side variable. Here, τslave on the right side represents the
time base of the slave before synchronization, while τslave on the left
side denotes the updated time after successful synchronization;
Hence, the value does not change directly; rather, it is computed
using the expression and then reassigned, effectively updating it.

By assigning τoffset � ϑ − γ, Equation 2 can be expressed
as follows:

τslave ← τslave − τoffset (2)

Figure 1 demonstrates the process of time synchronization in NTP,
PTP, and CAN, along with typical and worst-case synchronization
errors based on the distance between the engaged nodes. Local values
apply to nodes situated close together, such as those on a local Ethernet
subnet, whereas global values apply to nodes communicating over
longer distances. While these values provide a general idea of the
differences between the protocols, the actual error depends significantly
on various factors, including system implementation, network
congestion, clock precision, etc. Next, we provide a concise overview
of these protocols.
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2.1 Network Time Protocol (NTP)

NTP Mills (1991) is one of the oldest protocols for time
synchronization and operates on a hierarchical, stratum-based
structure, where certain nodes act as time-servers at different levels
or strata, based on their precision. The stratum level, ranging from 0 to
15, represents the proximity of a device to the reference clock. The
protocol relies on a bidirectional handshake initiated by a slave to a
master node. Through timestamps t1 to t4, two captured from each
node, the slave adjusts its clock in line with the following Equations 3–5:

ϑNTP � t2 − t1 (3)

γNTP � t2 − t1( ) + t4 − t3( )
2

(4)

τslaveNTP ← τslaveNTP −
t2 − t1( ) − t4 − t3( )

2︸��������︷︷��������︸
τoffsetNTP

(5)

The delay γNTP is computed as the average of the two bilateral
timestamp differences (t2 − t1), (t4 − t3), assuming symmetrical
stream links. This assumption is critical and often invalid in real-
life scenarios due to potential queuing delays and various forms of
asymmetry. Taking these factors into account, NTP is suitable in
cases where precision on the millisecond scale is desirable.

2.2 Precision Time Protocol (PTP)

Introduced in 2002 under the IEEE 1588 standard IEEE (2002),
PTP relies on a pairwise exchange for time synchronization. Offering
significant advancements overNTP, PTP achieves aminimumaccuracy
of 1 microsecond for up to seven hops, making it valuable in various
applications, such as Ethernet Audio Video Bridging (AVB) IEEE

(2023), where audio and video synchronization are crucial. Its latest
revision is the generalized Precision Time Protocol (gPTP), also known
as IEEE (2020), which is one of the standards within the Time-Sensitive
Networking (TSN) framework Fedullo et al. (2022). Notable
improvements include the introduction of the peer delay
mechanism, a transition to a layer two architecture from the original
multicast IPv4 setup, and the implementation of Boundary Clocks (BC)
and Transparent Clocks (TC). The latter enable adjusting time packets
as they traverse the network, a useful feature in the context of
automotive gateways. Additionally, the introduction of asymmetry
correction within the standard frame structure allows compensation
for various asymmetries along the synchronization links.

PTP utilizes a time synchronization process where the master
initiates synchronization by sending SYNC messages to the slave at
regular intervals. After sending SYNC, the master captures the
timestamp and sends it back the nodes using a follow-up FUP
message. To measure the delay of the link, they then exchange delay
request D_REQ and delay response D_FUP. To account for the
asymmetries introduced along the network links, the equations are
adjusted as shown in Equations 6–8:

ϑPTP � t2 − t1 (6)

γPTP � t2 − t1( ) + t4 − t3( )
2

− α + β

2
(7)

τslavePTP ← τslavePTP −
t2 − t1( ) − t4 − t3( )

2
− α − β

2︸�����������︷︷�����������︸
τoffsetPTP

(8)

where α and β, as shown in Figure 1, denote the cumulative
asymmetrical delays in the upstream and downstream links,
respectively. These delays commonly arise during packet routing,
queuing, or protocol translation, e.g., in the case of an Ethernet to
CAN gateway. The latter, which plays a central role in the proposed
framework, will be further explored in the upcoming sections.

FIGURE 1
Time synchronization mechanisms and estimated synchronization errors in NTP, PTP, and CAN.
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2.3 Controller area network (CAN)

The requirement for time synchronization among multiple
nodes remains significant for automotive networking, particularly
when safety takes precedence. Being no exception, CAN enables
ECUs to synchronize with each other, ensuring accurate
coordination and data exchange.

The time synchronization in CAN networks is described by the
AUTOSAR (AUTomotive Open System ARchitecture) standard
AUTOSAR (2021) and involves transferring the master’s time
reference to the slave and compensating for the propagation delay
during this transmission. The key distinction here is that the
synchronization handshake is unidirectional rather than bidirectional
as in NTP and PTP. Upon receiving the master’s reference, the slave
node updates its internal clock based on Equation 9:

τslaveCAN ← τref + γCAN (9)

where τref denotes the master’s reference and γCAN the total delay
until it is received by the slave.

A time reference (τref) typically consists of 48 bits for seconds
and 32 bits for nanoseconds. As a result, two CAN frames are
required for transmission. In the synchronization process, the first
frame SYNC carries the seconds’ portion of the time reference
sec(τref), while the second frame FUP carries the nanoseconds’
portion nsec(τref).

The delay γCAN is calculated as the sum of the SYNC and FUP
frame delays, denoted γ1CAN and γ2CAN, respectively. To calculate
γ1CAN and γ2CAN two 32-bit registers are utilized on both the master
and slave sides. The master counter mc captures two stamps: one at
the start of the SYNC frame τmc1 and one at the end τmc2 upon
acknowledgment of receipt. Similarly, the slave counter sc records
two stamps τsc1 and τsc2 upon receiving the SYNC and FUP
messages, respectively. Finally, the slave adjusts its timing based
on Equation 10:

τslaveCAN ← sec τref( ) + nsec τref( )︸���������︷︷���������︸
τref

+ γ1CAN + γ2CAN︸�����︷︷�����︸
γCAN

(10)

where γ1CAN � nsecτmc2−τmc1
and. γ2CAN � nsecτsc2−τsc1

3 Related work

3.1 ECU development and
automotive testing

At the outset of ECU development courses, hardware may not be
readily accessible. Consequently, engineers frequently resort to
virtual models and co-simulations to conduct initial testing and
analysis. Expounding upon the inefficiency of real-world vehicle
testing, Schmidt et al. (2015) propose a hardware-independent
platform where virtual ECUs and their software can be
seamlessly integrated, thereby advancing software maturity to
higher levels. Echoing this perspective, Morishima et al. (2018);
Phatak et al. (2016) propose the utilization of multi-virtual-ECU
environments for validation and experimentation purposes. Despite
the benefits of early virtual testing, physical testing remains critical
later on. In bridging physical and virtual testing, Dengler et al.

(2021) present a framework for testing virtual and physical ECUs
together remotely. However, a limitation is that physical ECUs are
still co-located and maintained by a central authority, leading to
logistical challenges in case of malfunctions. With a focus on final
real-vehicle testing, Johanson and Karlsson (2006) describe a
framework where real-time testing data from is transmitted to a
remote engineering lab. Despite networking limitations, the authors
stress the importance of remote testing to meet future demands.

3.2 Intra-vehicular distribution and end-to-
end analysis

Distribution of numerous functionalities and applications
among various components within the local domain of a vehicle
is an already established practice. For instance, the Anti-lock
Braking System (ABS) requires the synergistic collaboration of
wheel sensors, brake actuators, control units, and additional
supporting components. Studying the temporal behavior of series
of causal events, commonly referred to as distributed transactions or
data chains, is a crucial part of end-to-end analysis, with a focus on
understanding the interactions and timing traits between
interconnected systems. This analysis is also pertinent in the
context of AUTOSAR, an initiative to create an open and
standardized software architecture for automotive systems, where
software components are locally distributed across various nodes
and communicate via a virtual function bus. Expanding on the end-
to-end semantics, Feiertag et al. (2008) distinguish between two key
semantics applicable to distributed register-based ECU
communication: data age and button-to-action delay. These
semantics are critical in different applications, ensuring timely
and accurate responses within the system. Building on this
foundation, Dürr et al. (2019) extend the analysis by considering
mixed periodic and sporadic signals in a distributed architecture,
operating under the pattern of locally time-triggered but globally
asynchronous communication. Rajeev et al. (2012) introduce two
additional semantics of delay, namely, the actuation and correlation
constraints, and model the behavior of a locally distributed
architecture using finite-state automata. Through the same lens
of distributed real-time embedded systems, Mubeen et al. (2014)
present a concept for communications-oriented development and
conduct an end-to-end analysis of an adaptive cruise control system
spanning locally distributed components. While the distribution of
functions and components is a fundamental aspect of existing
vehicular architectures and is well-supported by academic work,
transitioning from a local to a global distribution domain—where
ECUs are geographically dispersed rather than in close
proximity—introduces new challenges. This transition, which
involves overcoming issues such as latency, synchronization, and
timeliness over long distances, remains largely unexplored.

3.3 Hardware as a (remote) service

The practicality of remotely accessing hardware components
finds further applications. Domski (2022) introduces a remote
laboratory, enabling students to access resources remotely
through Raspberry Pi-based server architectures. Similarly,
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Scherer (2022) presents a virtual laboratory environment for model-
based development and Hardware-in-the-Loop testing, emphasizing
that tasks executed online require only 10% additional time. While
promising, the performance of both methods is constrained by real-
time networking limitations, deteriorating as resources become
more geographically dispersed.

3.4 Latency and timing

Considering the complexity of automotive distributed ECU
architectures, Davare et al. (2007) describe a method to optimize
periodic tasks and interactions. This involves asynchronous
communication between non-blocking input and output buffers,
along with hard bounds on latency and end-to-end delay, albeit, the
latter being challenging in long-distance settings. In a parallel effort
to minimize end-to-end delay in data transfer within smart cities,
Chin et al. (2017) leverages software-defined networking and
timestamp recording via NTP synchronization to monitor
message flows over time. Timestamping proves to outperform
traditional ping and packet probing methods. In general,
minimizing latency is a complicated endeavor that, according to
Briscoe et al. (2016), builds upon the following steps: identifying
latency sources, devising techniques to minimize it, and finding the
balance between deployment difficulty and benefit.

An effort to amalgamate these various aspects into a unified
approach for remotely testing distributed automotive ECUs while
addressing temporal constraints has, to the best of our knowledge,
not yet been undertaken.

4 Hybrid framework for remote
ecu testing

Expounding on our introductory definition of framework as a
structured approach that encompasses the architecture of a distributed
setup of components (e.g., ECUs, gateways, interconnection links), the
communication protocols or entities (e.g., messages, data exchange
formats, synchronization methods), and the methodological
components (e.g., algorithms, processes), in this section we explore
all three aspects in detail, with emphasis on the critical impediment of
latency in the remote testing context. To facilitate the analysis, we
introduce a mathematical model that describes the framework’s nodes,
encompassing the gateways, the ECUs, and the central OEM
management, along with all the message interactions involved.
Rajeev et al. (2012) employed a similar model to describe a
distributed system, representing messages and ECUs as objects and
resources respectively, characterized by tuples with seven elements:
resource allocation, priority, initial offset, period, execution time, and
input/output buffers. In our model, we abstract from the priority
characteristics and communication patterns, focusing instead on the
system’s synchronicity and temporal behavior. To demonstrate the
approach’s applicability, we apply the mathematical model in a remote
test scenario assessing the door-locking functionality.

The architecture of the framework’s distributed components is
depicted in Figure 2 and organized into three hierarchical levels. We
use the term level to distinguish from the networking term layer,
which is typically associated with the Open Systems Interconnection

(OSI) model Kumar et al. (2014) and respective network protocol
layers. At level 1, physical ECUs are housed locally by suppliers
across various geographical locations. For this study, and to align
with the previously discussed synchronization methods, our focus is
exclusively on ECUs operating on CAN, which remains integral to
the communication backbone of modern vehicles and underpins
numerous critical features.

Level 2 consists of external gateways situated close to each ECU,
one provided to each supplier accordingly. Fundamentally, gateways
are devices that enable communication between heterogeneous
networks Kim et al. (2015). In the proposed framework, they
enable the interconnection between the low-level CAN bus and
the Internet. Similar to the transparent clocks in TSN Waldhauser
et al. (2020), the gateways modify and encapsulate CAN frames into
higher-layer packets or segments, and vice versa. In addition to this
transparency feature, we require that the gateways operate as
independent CAN nodes and interact with their adjacent ECUs,
establishing a dedicated local communication channel. This enables
the independent reproduction of specific events without requiring
coordination across all three levels simultaneously.

Level 3 involves test management, coordination, and result
evaluation by the automotive OEM. The selection of involved
ECUs depends on the specific functionality being tested and the
hardware availability. To ensure data security and address
intellectual property concerns during the exchange,
communication between the level 3 central node and level
2 gateway nodes is established through VPN traffic channels.

Synchronization within the framework is achieved through PTP
for communication between level 2 and level 3, and CAN
mechanisms between level 1 and level 2, as discussed previously.
A factor behind choosing PTP over NTP is its localized
synchronization capability, as it does not depend on external
systems like GPS, which are often inaccessible in most closed
laboratory setups. Moreover, PTP is utilized in multiple
automotive applications, and in conjunction with the TSN
framework, it is projected to play a pivotal role in the
advancement of Ethernet vehicular architectures Bandur et al.
(2021); Walrand et al. (2021).

In addition to functional testing, not bound by stringent time
constraints, the combination of asynchronous execution, alongside
the synchronous timestamping strategy, enables the evaluation of
more dynamic scenarios, in which the introduced latency in the links
between levels 2 and 3 would otherwise lead to test case failures.

4.1 Framework’s mathematical model

To explicate themethodological and algorithmic components of the
framework as defined earlier, we employ the following mathematical
model: the ordered couple 〈i, j〉: i, j ∈ {c, gw1, . . . , gwn, e1, . . . , en}
denotes a bilateral interaction in the form of a message, which is
initiated by node i to node j, where c is the central OEMnode in level 3,
gw1, . . . , gwn are the gateway nodes in level 2, and e1, . . . , en are the
ECU nodes in level 1. For instance, 〈c, gw1〉 represents a message sent
from the central test-management node (OEM) to the first gateway
node (Gateway 1), while 〈gw2, e2〉 represents a message sent from the
second gateway node (Gateway 2) to the second ECU node (ECU 2), as
depicted in Figure 2.

Frontiers in The Internet of Things frontiersin.org05

Tziampazis et al. 10.3389/friot.2024.1433903

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1433903


In keeping with networking nomenclature,
s〈i, j〉 ⊂ 〈i, j〉: i, j ∈ {c, gw1, . . . , gwn} denotes a segment—a unit
of data used at the Transport layer (Layer 4) of the OSI networking
model—whereas f〈i, j〉 ⊂ 〈i, j〉: i, j ∈ {gw1, . . . , gwn, e1, . . . , en}
denotes a CAN frame. For the sake of clarity, we use the term
segment to refer to the encapsulated data exchanged between level
1 and level 2 nodes, and frame to refer to the CAN data exchanged
between level 2 and level 3 nodes. The distinction lies in the involved
OSI levels for each exchange.

Regarding the subset symbol, the notation s〈i, j〉 ⊂ 〈i, j〉 is not
used in the conventional mathematical sense. Instead, it indicates
that s〈i, j〉 is a specific part of the overall communication event
represented by 〈i, j〉. Therefore, s〈i, j〉 (or f〈i, j〉) should be
understood as a distinct component within the broader
interaction between nodes i and j. In the interest of simplicity,
sync〈i, j〉 ⊂ 〈i, j〉: i, j ∈ {c, gw1, . . . , gwn, e1, . . . , en} represents
the sum of all pairwise interactions required to establish
synchronization between two nodes at adjacent levels.
Synchronization between level 2 and level 3 nodes relies on PTP,
while synchronization between level 1 and level 2 nodes relies on the
CAN mechanism, as described in the previous section.

After successful synchronization between two nodes, they both
share the same and consistent notion of time. Consequently,
timestamping before a message is sent and after it is received
enables the calculation of the respective duration, depicted as
|〈i, j〉| � t〈j〉 − t〈i〉: i, j ∈ {c, gw1, . . . , gwn, e1, ..., en}, where t〈i〉,
t〈j〉 are the timestamps taken by the sender and receiver node
successively. For example, |〈c, gw1〉| represents the time taken for a
message to travel from the central node (OEM) to the first gateway
node (Gateway 1). The link delay is calculated by subtracting the
timestamp taken by the central node from the timestamp taken by
the gateway node upon receiving the message.

To promote simplicity, we make the following assumptions for
the model and the specific upcoming test scenario: 1) The

distributed system comprising the ECU nodes, the gateways, and
the testing authority (OEM) behaves in a manner that respects
serializability; concurrent messages and events occur as if they were
sequential, resulting in the same final effect. This holds true in
scenarios where the most recent command determines the system
state, making intermediate commands inconsequential. For
example, in climate control systems, the final temperature setting
command overrides any prior adjustments. 2) Time synchronization
across all three levels occurs only once at the beginning of the test
case, assuming that the total execution time of the test case is small
enough for the different nodes to maintain synchrony without the
clock skew increasing beyond the average event resolution. 3) The
fidelity of physical clocks is sufficient to ensure proper event
ordering without the need for logical clocks, e.g., Vector clocks
Kleppmann (2017). This can be achieved with robust, low-drift
hardware clocks, which maintain minimal clock skew over short
durations. 4) Messages are received if sent (reliable distribution
links), and nodes exhibit crash-stop behavior; in the event of a crash,
they cease execution, resulting in test case failure. This is made
possible by using protocols for guaranteed message delivery (e.g.,
TCP) and implementing fail-safe mechanisms (e.g., redundancy).
Some of these aspects will be further discussed in the next section.
More complex scenarios, where logical timing, causality, conflict
resolution, and end-to-end timing constraints are emphasized, are
part of our ongoing research and experimental activities and will be
presented in future work.

4.2 Scenario: Remote central locking test

To exemplify the relevance of our proposed framework, we
introduce a test scenario that evaluates the proper operation of the
central door locking functionality. The scenario involves the central
body control ECU, known as the body control module (BCM), and

FIGURE 2
Hybrid framework for remote ECU testing: Synchronous timestamping and asynchronous processing enable latency compensation in the links
between levels 2 and 3.
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two door ECUs provided by distinct suppliers at separate locations.
The assessment focuses on the dynamic interaction among these
ECUs in response to a vehicle locking command. Under normal
circumstances, remote testing of such dynamic interactions would
be challenging due to the time delays caused by the long-distance
distribution links and the intricate coordination required between
the ECUs to effectively exchange information. Accordingly, latency
compensation becomes necessary.

The involved nodes are described as follows: c, eBCM, eD1, eD2,
gwBCM, gwD1, gwD2 denote the central OEM node, the BCM ECU,
the two door ECUs, and their gateways, respectively. Following that,
the sequential steps for evaluating the scenario, along with the
exchanged messages, are described and depicted in Figure 3:

STEP 1: Time Synchronization: The central node initiates
synchronization across all three layers, ensuring time alignment
among all nodes. 8 Messages: sync〈c, gwBCM〉0 sync〈gwBCM,
eBCM〉, sync〈c, gwD1〉0 sync〈gwD1, eD1), sync〈c, gwD2〉 0

sync〈gwD2, eD2).

STEP 2: Locking Request to BCM: The central node c at level
3 timestamps and triggers the Body Control Module (BCM) ECU
with the input simulated signal for locking the vehicle. Upon
receiving the encapsulated segment, the BCM gateway
timestamps, unpacks, and injects the input frame into the CAN
bus. 8 Messages: t1〈c〉, s〈c, gwBCM〉, t1〈gwBCM〉,
f〈gwBCM, eBCM〉.

STEP 3: BCM Response: The BCM gateway captures the response
from the BCM ECU, generates a second timestamp, and
encapsulates both the response frame and the two timestamps in
the response segment. Upon arrival at the central node, the central
node timestamps, unpacks the segment, and calculates the link
delays using the four timestamps. 8 Messages: f〈eBCM, gwBCM〉,
t2〈gwBCM〉, s〈gwBCM, c〉, t2〈c〉.

STEP 4: Door ECUs’ Trigger: The central node timestamps and
triggers the door ECUs with the response received from the BCM
ECU. Upon receiving the encapsulated segment, the gateways
timestamp, unpack, and inject the frame into their respective
CAN bus. 8 Messages: t3〈c〉, s〈c, gwD1〉, s〈c, gwD2〉, t1〈gwD1〉,
t1〈gwD2〉, f〈gwD1, eD1〉, f〈gwD2, eD2〉.

STEP5: Door ECUs’ Response: Each of the ECU gateways captures the
response from the respective door ECU, generates a second
timestamp, and encapsulates both the frame and the two
timestamps in the response segment. Upon arrival at the central
node, the central node timestamps, unpacks each of the two
segments, and calculates the link delays. 8 Messages:
f〈eD1, gwD1〉, f〈eD2, gwD2〉, t2〈gwD1〉, t2〈gwD2〉, s〈gwD1, c〉,
s〈gwD2, c〉, t4〈c〉, t5〈c〉.

STEP 6: BCM Trigger: The central node timestamps and triggers the
BCM ECU with the door ECU responses. Upon receiving the
encapsulated frame, the gateway timestamps, unpacks, and injects

FIGURE 3
Central door locking: Stepwise procedure for remote evaluation. <_,_> denotes an interaction between any two adjacent nodes, involving
synchronization, frame exchange, encapsulated frame exchange (segment), and timestamping.
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the segments into the CAN bus. 8 Messages: t6〈c〉, s〈c, gwBCM〉,
t3〈gwBCM〉, fd1〈gwBCM, eBCM〉, fd2〈gwBCM, eBCM〉.

STEP 7: BCM Response: The BCM gateway captures the response
from the BCM ECU, generates a second timestamp, and
encapsulates both the response frame and the two timestamps in
the response segment. Upon arrival at the central node, the central
node unpacks the segment, timestamps, and calculates the link
delays using the four timestamps. 8 Messages: f〈eBCM, gwBCM〉,
t4〈gwBCM〉, s〈gwBCM,c〉, t6〈c〉.

STEP 8: Latency Correction and Verification: The central node
timestamps, calculates the total latency delay, and evaluates the
scenario’s outcome based on two conditions: 1) the final BCM
response matches the CAN frame indicating all doors are locked,
and 2) the corrected execution time of the scenario falls within the
predefined limit. 8 Messages: t7〈c〉.

The corrected execution time of the scenario is calculated as the
difference between the first and last timestamps recorded by the
central node, excluding the total duration of all latencies introduced
by the messages exchanged between levels 2 and 3:

tcorr � (t7〈c〉 − t1〈c〉) −∑ |s〈i, j〉|,

where. 〈i, j〉 ∈ {〈c, gwBCM〉, 〈c, gwD1〉, 〈c, gwD2〉, 〈gwBCM, c〉,
〈gwD1, c〉, 〈gwD2, c〉}

To clarify the latency compensation strategy, Figure 4 illustrates a
comparison among three different testing setups, all performing the same
test scenario: (1) a local testing setup, where all devices under test are co-
located and interconnected via a local communication bus, typical of
conventional testingmethods; (2) a global testing setup, where devices are
geographically distributed and interconnected through the Internet, but
no latency compensationmeasures are employed; and (3) a global testing

setup implementing the proposed hybrid synchronization approach. In
each scenario, the test involves ensuring the timely arrival of a sequence
ofmessages,m1 tomn, within a specified time interval, tREQ, marked by a
blue vertical line. The dotted lines, labeled texec and ttest, represent global
time and testing time, respectively. In the local setup (1), the final
message,mn, arrives within the tREQ interval, indicating a successful test.
However, in setup (2), latency-induced delays cause the final message to
arrive after tREQ, leading to a test failure. As discussed earlier, this latency
inherently limits the scope of remote testing to basic functional cases that
do not require strict timing adherence. In setup (3), where the proposed
hybrid approach is applied, messages are timestamped, allowing for post
hoc reconciliation and correction of latency-induced discrepancies. This
process decouples testing time from global time, enabling tREQ to be
shifted forward on the timeline. As a result, the test’s success is evaluated
relative to the decoupled ttest axis rather than the texec global time axis,
which would have otherwise led to failure. This approach to latency
compensation helps align the global testing setup more closely with the
local setup.

5 Further considerations

This section discusses three aspects surrounding the proposed
approach, including a consideration of potential impediments: 1)
distributed system traits 2) synchronization accuracy, and 3)
performance requirements.

5.1 Distributed system traits

The need to decouple ECU testing from very few, usually OEM-
operated locations, where all components are traditionally co-

FIGURE 4
Local vs. global testing: the proposed hybrid approach compensates for latency-induced delays in long-distance interconnections, aligning results
with local setups.
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located, proposes the notion of an inherently distributed system with
resources spanning across the globe. One challenge in the proposed
architecture is replicating the locally broadcast functionality of CAN
over the Internet, namely, at higher networking layers. Despite CAN
not offering absolute guarantees of timely message arrival, all nodes
must still actively engage in the exchange by receiving all messages
and responding accordingly. This concept of all or none underscores
the principle of atomic commitment, which denotes interactions or
message multicasts occurring in non-overlapping epochs, within a
certain group view—a perspective on the set of recipients the sender
engaged with at the time of multicast Kleppmann (2017). For
example, a group view may include the remote ECUs involved in
a test case. While atomicity typically requires bounded timings and
failure detectors, it is still feasible to apply it to asynchronous
environments Kragl et al. (2018). As such, our approach,
promotes iterative capturing and replaying of messages to all
nodes, following a piece-wise execution model. Derived from the
recovery concept in distributed systems, this approach is known as
the combination of checkpointing and message logging, enabling
nodes to progress from one state to another by replaying a set of
messages from a previous state. This, along with coordination from a
single leader node, leads to a globally-consistent distributed
checkpoint van Steen and Tanenbaum (2023). Acting as the
primary node, the OEM can gather the checkpoints, reassemble
all the events comprising the test case, and compensate for latency
through timestamp recording. Such techniques stem from the
necessity for fault tolerance and recovery in distributed settings.
However, our suggested approach can accommodate a less robust
form of both: should a node fail, manual failover mechanisms can be
used to restart the test case execution in a controlled manner.

5.2 Synchronization accuracy

Synchronization is a pivotal component in our proposed framework,
as it enables time-tracking of interactions among nodes at different
hierarchy levels. This, in turn, facilitates the asynchronous processing of
messages and the correction of the overall latency at subsequent time
points. As previously discussed in the background section, PTP and its
revisions offer nanoseconds accuracy, ensuring effective coordination in
numerous applications. However, synchronization handshakes largely
assume symmetrical links and local proximity nodes, which are
challenging to meet in remote testing environments due to the
inherent delay and unpredictability of long-distance communication.
As our approach relies on a hierarchical structure, failing to achieve
precise synchronization between the central node and the gateways also
impacts the accuracy of the lower level synchronization between the
gateways and the ECUs.

The topic of asymmetry in PTP handshakes is discussed in a
growing body of literature. Several approaches, such as individual delay
link calculation Lee et al. (2012), buffered propagation delay Lv et al.
(2010), fixed delay ratios Du et al. (2011), block burst transmission Lee
(2008), and bias estimation Hajikhani et al. (2014), reported enhanced
accuracy and performance. Nevertheless, none of the synchronization
protocols, including PTP, intrinsically aligns with the long-distance
interconnection requirements, whereas in their work, Tan and Wu
(2021) argue that synchronization at long distances faces critical
challenges, making syntonization the preferred choice.

Notwithstanding, further research incentives should explore the
potential of long-distance synchronization and its practical
applicability within the context of remote testing.

5.3 Performance requirements

Integrating two heterogeneous networks while preserving their
distinct characteristics demands substantial computational efforts
and technical resources. To address the heterogeneity between a
lower-level communication bus and higher-level exchanges over the
Internet, our approach requires gateways to handle multiple tasks of
varying processing complexity. From the perspective of time
synchronization, the precision demands of PTP, especially in its
later revisions, necessitate specialized hardware capable of achieving
accuracy in the nanoseconds range. However, given the cost-
sensitive nature of the automotive industry, existing hardware
solutions, especially in the form of in-vehicle gateways, are
constrained by hardware limitations. As a result, concurrent
timestamping operations and message processing necessitate
additional computational resources. Moreover, the reliability of
the proposed framework can be impacted by inadequate software
algorithms for timestamping, especially in the context of the
CAN mechanism.

The increasing interest in advanced embedded systems and the
emergence of high-performance hardware platforms, such as
Advanced Field Programmable Gate Arrays (FPGAs), offer
potential solutions for meeting stringent performance demands.
As research and development efforts advance in the automotive
domain, the prospect of more accessible gateways with enhanced
capabilities that could align with the needs of remote testing
becomes feasible.

6 Conclusion

Transitioning from a local testing setup with co-located
components to a global testing framework with distributed
resources is inherently entwined with networking limitations
imposed by long-distance interconnections. Through the lens of
the Internet of Things (IoT), where ECUs can be perceived as
geographically dispersed IoT components and their remote
testing as an IoT distributed process, we introduced a testing
framework that enables the integration of physical ECUs over the
Internet among automotive suppliers and OEMs.

In response to a limitation prevalent in a range of distributed IoT
settings—latency—we presented a hybrid approach that leverages
synchronous timestamping techniques alongside asynchronous
event processing. By timestamping each event or message
exchange, the total latency introduced in the Internet-distributed
links is calculated, and the execution time of the test case is adjusted
accordingly, echoing the characteristics of local testing
environments. This proves advantageous in contexts where the
focus shifts from real-time evaluation, which would otherwise be
constrained by latency, to a deferred evaluation and post hoc
reconciliation of system operations and outcomes.

To demonstrate the approach’s applicability, we showcased a
scenario of remote evaluation for the door-locking functionality,
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supported by amathematical model describing node interactions, flows,
and messages. In addition, we discussed additional considerations and
impediments surrounding the proposed distributed framework. Future
endeavors will aim to formalize the notion of equivalence between local
and global testing environments through communication calculus and
to empirically validate the proposed framework via an end-to-end
latency analysis.
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