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The Autonomous Internet of Things (A-loT) represents a major advancement in
interconnected systems, enabling self-governing smart devices to operate
collaboratively across domains such as smart cities, industrial automation,
healthcare, and autonomous vehicles. However, the complexity, scale, and
heterogeneity of A-loT environments introduce severe cybersecurity
challenges, including expanded attack surfaces, real-time data processing
demands, sophisticated adversarial threats, and privacy risks. Traditional
security measures are not always adequate to address these emerging threats,
and this is why intelligent adaptive defence systems are required. This narrative
review offers an extensive and systematic presentation of Al-based cybersecurity
strategies that are specific to the peculiarities of A-loT ecosystems. It examines
fundamental methods, including machine learning, deep learning, federated
learning, and swarm intelligence, as well as the latest paradigms, such as
explainable Al, generative adversarial networks, and digital twins. The
approaches are discussed within the scope of the most important security
tasks, such as intrusion detection, anomaly detection, malware analysis,
secure authentication, and autonomous threat response. The review also
locates crucial issues related to data quality, model interpretability, adversarial
vulnerabilities and ethical limitations of the application of Al in security-critical
applications. Moreover, it describes future research directions using hybrid Al-
blockchain frameworks, self-healing autonomous agents, and trust-aware Al
systems.

KEYWORDS

autonomous internet of things (A-loT), Al-driven cybersecurity, intrusion detection
systems, federated learning, explainable artificial intelligence (XAl), and autonomous
self-healing security

1 Introduction

The rapid development of the Internet of Things (IoT) has ushered in a new era of
transformation, with billions of devices, including wearables and sensors, industrial
equipment, and so on, being linked to execute automated, data-driven activities (Alaba,
2024). The Autonomous Internet of Things (A-IoT) is the current stage of the IoT
ecosystem’s growth, which is growing increasingly autonomous, intelligent, and
decentralized (Vermesan et al,, 2022). A-IoT combines standard IoT with machine
intelligence to allow systems to observe, assess, and respond with minimal human
interaction. Applications such as autonomous automobiles, smart manufacturing,
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remote healthcare, and intelligent energy grids demonstrate A-IoT’s
expanding importance in commercial and critical infrastructure
(Chataut et al, 2023). Nonetheless, such high levels of
automation and interconnection create a dynamic and complex
cyber threat environment. Because of their numerous components,
limited resources, and real-time operations, A-IoT setups are prone
to complex security concerns, in contrast to traditional systems
(Goudarzi et al,, 2022). These systems are typically located at the
network’s edge, where it is more difficult to control everything from
a single location, increasing the risk of sophisticated cyberattacks
such as adversarial machine learning, data poisoning, spoofing,
botnet propagation, and 0-day vulnerabilities (Zhukabayeva et al.,
2025). As A-IoT devices gain more autonomous control over safety-
critical operations, cybersecurity becomes a technological and
operational need (Kabir et al., 2022).

To address these problems, there has been a boom in the use of
Artificial Intelligence (AI) in cybersecurity systems. Al may enhance
security systems by learning from data, detecting anomalous
activity, and adapting to new sorts of threats, allowing it to
surpass the limitations of traditional rule-based and signature-
based systems (Ahmad et al, 2024). Machine learning can
predict possible attacks, deep learning may reveal hidden patterns
in network behaviour, and reinforcement learning can enable
autonomous threat response strategies (Sewak et al, 2023).
Furthermore, the rise of federated learning, comprehensible Al,
and self-healing systems suggests that Al has greater potential for
securing decentralised and privacy-sensitive A-IoT systems (Ding
et al.,, 2023). Recent reviews on IoT security and design strategies,
such as those by Hassan et al. (2024) and Hassan et al. (2025),
provide valuable frameworks for presenting insights into security
antenna architectures,

features, and Al-enabled protection

mechanisms.
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This analysis presents a critical and extensive synthesis of
current achievements in Al-based cybersecurity that are relevant
to the autonomous IoT ecosystem. It especially examines techniques
for building and applying Al methodology to secure A-IoT systems
against a wide range of cyber threats, focusing not only on
underlying technology but also on emerging paradigms. It also
exposes basic problems in present practice and suggests future
research directions to increase scalability, interpretability, and
resilience in hostile environments. The review is grounded in
literature sourced from IEEE Xplore, SpringerLink, Scopus, and
the ACM Digital Library, covering studies published between
2020 and 2025, selected based on relevance to Al-enabled
cybersecurity in A-IoT contexts. The remainder of this work is
structured as follows: Section 2 addresses the development and
technological environment of A-IoT systems, as well as their
important characteristics and cyber-risk profiles. Section 3 of the
paper outlines the cybersecurity problems that autonomous IoT
infrastructures provide. Section 4 discusses the ideas and
taxonomies of Al in cybersecurity, while Section 5 delves into
specific Al-driven techniques and defence mechanisms in A-IoT
environments. Section 6 covers new and emerging Al approaches,
whereas Section 7 includes real-world instances. Section 8 outlines
evaluation measures, whereas Section 9 identifies existing gaps and
unsolved difficulties. Section 10 discusses possible future study
directions. Section 11 concludes with major facts and perspectives.

2 Evolution of loT and
autonomous systems

The IoT has undergone a rapid transformation from basic sensor-
based networks to complex, intelligent, and autonomous ecosystems,
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FIGURE 1
Evolution of 10T systems toward autonomy.

as illustrated in Figure 1. This evolution can be categorized into three
generations (Choudhary, 2024). The first generation of IoT was
characterized by passive and static data collection. Devices in this
phase, including sensors and actuators, functioned primarily as data
acquisition tools connected to centralized monitoring and control
units (Abduljawwad et al., 2023). These systems lacked cognitive
capabilities and real-time flexibility, limiting their use to basic tasks
such as environmental sensing and inventory management (Kabir
etal, 2022). Decision-making was entirely human-driven, and system
behavior remained rigid and predictable.

The second generation, often termed Smart IoT, introduced
context awareness and basic intelligence. With the integration of
cloud platforms, edge computing, and more capable embedded
systems, [oT devices gained the ability to process data locally and
make limited decisions based on environmental inputs (Bablu and
Rashid, 2025; Khriji et al., 2022). This era saw the rise of smart
homes, connected vehicles, and industrial automation systems,
where devices could dynamically respond to certain events.
However, intelligence and coordination were still heavily
dependent on centralized infrastructure (Chataut et al., 2023).

The emergence of the third generation, known as the
Autonomous IoT (A-IoT), marks a paradigm shift in the design
and function of connected systems. A-IoT systems are not only
intelligent but also self-governing, adaptive, and capable of
autonomous decision-making (Sewak et al., 2023; Valsalan et al,
2024). The convergence of IoT with artificial intelligence, distributed
edge computing, and high-speed communication technologies like
5G and 6G enables this shift. Designed to learn from data, make
predictions, and execute real-time actions, A-IoT devices operate
with minimal human input. For example, in precision agriculture,
autonomous drones can analyze crop health and initiate spraying
without human intervention. Similarly, self-driving vehicles can
communicate with roadside infrastructure to adapt to changing
traffic conditions (Hossain M. S. et al., 2025).

Key characteristics of A-IoT systems include contextual
intelligence, decentralized decision-making, continuous learning,
and multi-agent collaboration (Vermesan et al, 2022; Anjosi
et al., 2023). These capabilities enable real-time responsiveness in
critical applications such as intelligent transport systems, robotic
surgery, industrial automation, smart grids, and emergency
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response. However, the same features that empower autonomy
also introduce new system requirements, particularly the need for
dependable, scalable, and secure performance in dynamic,
heterogeneous environments (Santoso and Surya, 2024).

As A-ToT systems grow in complexity and autonomy, they also
become increasingly vulnerable to advanced cybersecurity threats
(Zhukabayeva et al., 2025). Unlike traditional IoT systems with
predefined communication flows and perimeter-based defenses,
A-IoT networks are highly adaptive, open-ended, and often ad
hoc in structure. Mechanisms that enable autonomy, such as self-
learning models, continuous interdevice communication, and
expose these systems to
sophisticated attack surfaces (Roy, 2023). For instance, by

collaborative  behaviour, also
manipulating training data or injecting malicious inputs during
inference, adversarial machine learning can corrupt AI models. In
addition, threats such as firmware tampering, data spoofing, botnet
propagation, and insider compromise are amplified by the
decentralized nature and heterogeneity of A-IoT devices (Asadi
et al., 2024).

The lack of centralized control and a unified security policy in
the majority of A-IoT deployments is another critical issue
because it makes real-time threat detection and coordinated
mitigation activities challenging. The traditional cybersecurity
paradigm is not sufficient in this new era, and thus there is a
need to develop an Al-based, context-aware, and autonomous
cybersecurity paradigm that can evolve along with the systems
that it defends (Tallam, 2025). Machine learning, encryption, edge
analytics, and adaptive system design are becoming not only a
requirement to enable autonomy but also to protect it. Finally,
A-IoT presents not only a technological revolution but also a new
cybersecurity frontier, which needs interdisciplinary innovation
to ensure the dependability of operations in A-IoT cybersecurity
(Alfahaid et al., 2025).

3 Cybersecurity challenges in
autonomous 0T (A-loT) ecosystems

The increased usage of A-IoT systems across society’s most vital
sectors, such as healthcare, transportation, manufacturing, and

energy, the complexity and scale of the cybersecurity
environment have grown tremendously (Kabir et al., 2022). Such
systems differ significantly from traditional information
infrastructures because to their distributed intelligence,

autonomy, mobility, and real-time operation, which together
provide a novel and complex set of security issues (Narayanan
et al,, 2022). The heterogeneity and scalability of the ecosystem is
one of the most pressing issues in A-IoT cybersecurity. A-IoT
environments consist of a large number of devices with varying
hardware architectures, communication protocols, software stacks,
and functional functions (Bouzidi et al., 2022). This variability
complicates not just the application of standard security
principles, but also the authentication of devices, firmware
integrity, and secure data transit throughout the system
(Catuogno and Galdi, 2023). Furthermore, there might be billions
of autonomous nodes scattered throughout the world, and typical
centralised security systems’ latency, bandwidth, and control
overhead are untenable, necessitating decentralised, adaptive, and
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scalable defence systems. Aside from heterogeneity, resource
restrictions and real-time processing present another significant
obstacle to A-IoT system security. Most edge devices, such as
sensors, actuators, and embedded controllers, have limited
computational, memory, and energy resources (Cardoso et al,
2023). These limits typically prevent the use of traditional
encryption techniques and machine learning models, which
might be computationally intensive or need regular
communication with cloud resources. Furthermore, A-IoT is real-
time, which means that choices must be made autonomously within
milliseconds, necessitating lightweight and latency-aware security
techniques (Mondal et al., 2024). Intrusion detection systems (IDS)
and anomaly detection models must be rapid and have a low false
positive rate to avoid interfering with time-sensitive operations such
as autonomous driving, remote surgery, or industrial automation.
One of the research challenges is developing real-time, low-
overhead, distributed Al-based security solutions (Arulmurugan
et al., 2024).

Another critical concern in A-IoT cybersecurity is the risk of
data leakage and integrity breaches. Autonomous devices are used to
continually collect, process, and communicate sensitive data, such as
personal health information, user behaviour, geolocation, and
environmental measurements, without the user’s knowledge or
consent (Alam, 2024). A-IoT is decentralised and frequently
mobile, increasing the likelihood of data interception, alteration,
or exfiltration during transmission or storage (Asadi et al., 2024). In
the case of edge device learning combined with federated learning or
swarm intelligence, the confidentiality and integrity of raw data and
model updates are crucial (Lazaros et al., 2024). Unless A-IoT
systems have robust encryption, data routing, and tamper-
resistant storage, they might become a source of significant
This difficulty is
exacerbated by the fact that in constrained edge settings,
traditional Public Key Infrastructure (PKI) and blockchain-based

solutions may not be feasible due to resource limits (Ni et al., 2024).

privacy breaches and disinformation.

New and highly intelligent risks to A-IoT systems are also
developing as a result of Al-powered cyber threat development.
Artificial intelligence attacks, such as deepfake command injection,
synthetic data poisoning, and generative adversarial examples, can
modify sensor inputs, confuse AI classifiers, and circumvent
traditional IDS systems (Ghiurdu and Popescu, 2024). Enemies
might use AI model flaws in A-IoT devices to launch adversarial
assaults that silently change inputs, resulting in misclassification or
faulty decision-making, which can cause bodily harm in safety-
sensitive circumstances (Camerota, 2025). Such attack vectors are
especial concerning for A-IoT systems that rely heavily on
perception and decision-making, such as self-driving cars or
intelligent surveillance drones. What makes the situation worse is
that such assaults are difficult to detect and can appear innocent to
human users and traditional signature-based security measures
(Asiri et al, 2023). Defending AI itself, through adversarial
training, robust learning, and explainability, has become a critical
frontier in A-IoT cybersecurity.

To further complicate the security picture, the number of 0-day
vulnerabilities in decentralised A-IoT systems is increasing (Chataut
etal, 2023; Hossain S. et al., 2025). They are security flaws that have yet
to be found and can be exploited by attackers until developers learn
about them or provide patches. Zero-day vulnerabilities can propagate
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fast and remain unpatched for lengthy periods of time in decentralised
systems where firmware and software updates are not centrally
managed or devices are not always connected (Zengeni and fadli
Zolkipli, 2024). This offers up opportunities for large-scale botnet
formation, backdoor implants, and firmware takeovers (Chen et al.,
2024). The most major issue is that most A-IoT devices lack safe over-
the-air update methods, and the range of manufacturers and platforms
makes it difficult to distribute fixes on time as shown in Table 1.

Furthermore, peer authentication and consensus, which are
widely utilised in decentralised trust models, are subject to Sybil,
spoofing, and insider attacks (AlMarshoud et al, 2024). The
protection of A-IoT ecosystems requires a paradigm shift, with
static, reactive security techniques being replaced by dynamic,
proactive, and Al-enhanced approaches that can manage
heterogeneity, resource constraints, privacy issues, and ever-
changing threats (Commey et al, 2024). These difficulties
highlight the significance of doing multidisciplinary research in
artificial intelligence, embedded systems, cryptography, and real-
time systems engineering to create the next-generation of robust
A-ToT security systems (Allioui and Mourdi, 2023).

4 Role of artificial intelligence in
cybersecurity

As the complexity and dynamism of cyber threats in A-IoT
settings have grown, the shortcomings of traditional cybersecurity
procedures have become increasingly obvious (Tariq et al., 2023).
Traditional defence solutions, such as signature-based intrusion
detection, rule-based access control, and periodic patching, are
struggling to keep up with the latest cyberattacks, which are
adaptable, polymorphic, and stealthy. These outdated techniques
are often based on pre-defined threat signatures or set rules, and thus
are ineffective against new or 0-day threats, particularly in
resource-constrained, and high-velocity A-IoT
ecosystems (Sadhu et al, 2022). they lack
situational awareness and on-the-fly flexibility to respond to

decentralised,
Furthermore,

challenges that occur when the cyber and physical worlds
intersect, such as spoofing sensor readings or adversarial
manipulation of AI models (Guesmi et al, 2023). AI has
data-driven,

revolutionized  cybersecurity by

autonomous, and adaptive threat identification and response.

allowing for

Machine Learning (ML) is one of the most popular Al
applications because it allows you to learn from data patterns
and generate predictions without using explicit programming
(Taye, 2023). Supervised learning is commonly used in
cybersecurity contexts to perform tasks such as malware
classification and intrusion detection, where labelled datasets of
known threats exist (Allioui and Mourdi, 2023). Unsupervised
learning, in turn, is important for anomaly detection, which is
the identification of unexpected behaviour or departures from
prior patterns that might indicate an ongoing assault (Usmani
et al, 2022). Reinforcement learning (RL) (Shehzadi, 2024),
which may be used to tune automated firewalls or manage
adaptive honeypots, is less mature in deployment but promise for
autonomous defence systems that can learn optimal techniques by
trial and error in dynamic threat situations. In addition to classical
ML, Deep Learning (DL) has the potential to model complicated
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TABLE 1 Key cybersecurity challenges in A-loT ecosystems.
Challenge Description

Expanded Attack
Surface

High number and diversity of
autonomous devices increase the
potential entry points for attackers.

Example scenario

Smart cities with massive
sensor and edge networks.

Cross-vendor autonomous

10.3389/friot.2025.1658273

Implications References

Increases susceptibility to lateral
movement, DDoS attacks, and
firmware hijacks.

Tariq et al. (2023), Sadhu et al. (2022),
Kabir et al. (2022)

Heterogeneity and
Scalability

Devices vary in architecture, OS,
protocols, and roles; system must
support billions of devices.

logistics networks.

Limits interoperability;
complicates authentication,
updates, and data protection.

Catuogno and Galdi (2023), Bouzidi
et al. (2022)

Resource Constraints

Limited computation, memory, and

battery make traditional security and Al

methods unsuitable.

Remote battery-powered

environmental sensors.

Hinders the use of heavy
encryption or deep learning; needs
lightweight security.

Cardoso et al. (2023), Hudda and
Haribabu (2025), Tayyab et al. (2023)

Real-Time Processing
Requirements

Data Privacy and
Integrity

Adversarial Threats

Autonomous decisions must be made

within strict timeframes to ensure safety

and continuity.

Continuous sensing and data exchange

raise privacy and integrity concerns
during storage or transmission.

Attackers can manipulate inputs to
deceive Al-based security systems
through synthetic or poisoned data.

Millisecond reactions in

autonomous vehicles or
robots.

Federated learning for
personalized medical

diagnostics.

Deepfake commands in

voice-controlled industrial

systems.

Delayed detection can result in
physical harm or operational
failures.

Violations of regulations like
GDPR; risk of surveillance and
tampering.

Al models make incorrect or
unsafe decisions; lowers system
trust.

Reddy et al. (2024), Shehzadi (2024),
Mondal et al. (2024)

Chang et al. (2023), Asadi et al,, 2024,
Alam (2024), Rao and Deebak (2023)

Shayea et al. (2025), Ghiurdu and
Popescu (2024), Camerota (2025)

Zero-Day
Vulnerabilities

Unknown flaws in firmware/software are
exploited before patches are available or

applied.

Botnet propagation in IoT-

enabled smart factories.

Hard to detect or patch across
decentralized devices; long-term
persistence.

Chataut et al. (2023), Zengeni and
fadli Zolkipli (2024), Hossain S. et al.
(2025), Chen et al. (2024)

Authentication and
Trust Issues

Peer devices and updates are vulnerable
to spoofing, Sybil, and insider attacks in

decentralized networks.

Drone-to-drone
authentication in a
surveillance swarm.

Trust breakdown leads to false
decisions, data leaks, or control
hijacking.

AlMarshoud et al. (2024), Commey
et al. (2024)

high-dimensional data as shown in Figure 2 and Table 2.
Convolutional and recurrent deep neural networks have been
utilized for network traffic analysis, encrypted malware detection,
and behavioural profiling of IoT nodes. DL models can learn
hierarchical features from raw inputs, allowing them to be very
accurate even in noisy or encrypted contexts (Tayyab et al., 2023).
They require significant amounts of labelled data and computer
power, which may be challenging to deliver in A-IoT devices with
limited storage and processing capacity. Federated Learning (FL)
presents a novel paradigm that preserves privacy (Chang et al,
2023). In FL, several A-IoT devices collaborate to train a global
model, providing only local model updates rather than raw data. The
strategy is more privacy and data locality friendly, as well as
communication overhead efficient, making it ideal for sensitive
applications such as smart healthcare or industrial IoT systems
(Rao and Deebak, 2023).

Swarm Intelligence (SI) is another emerging AI paradigm in
cybersecurity that is inspired by the collective activities of biological
species like ants and birds. SI may be used to create distributed,
cooperative, and adaptive security solutions in A-IoT ecosystems, in
which autonomous agents communicate intelligence and respond to
threats in a coordinated manner. A swarm-based intrusion detection
system, for example, allows devices to communicate anomaly scores
and coordinate responses in a decentralised fashion, making the
system more robust to local failures or assaults (Reddy et al., 2024).
Swarm-based defence tactics are especially useful in highly mobile or
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FIGURE 2
Al-powered cybersecurity architecture for A-loT ecosystems.
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TABLE 2 Comparison of traditional vs. Al-driven security methods in A-loT.

10.3389/friot.2025.1658273

Criteria Traditional security Al-driven security References

Adaptability Rule-based; static configurations often require = Continuously adapts to evolving threats via learning Tariq et al. (2023), Sadhu et al. (2022), Shayea
manual updates. from new data. et al. (2025)

Detection Often limited to known threats and signatures; =~ High accuracy in identifying known and unknown Allioui and Mourdi, 2023, Usmani et al.

Accuracy prone to false negatives. threats through data-driven modeling. (2022), Tayyab et al. (2023)

Latency May introduce delays due to rigid processing = Can offer real-time threat detection and fast mitigation, | Muppalaneni et al. (2024), Islam et al. (2024)
and lack of parallelism. especially at the edge.

Scalability Difficult to scale in highly distributed A-IoT  Easily scalable via cloud-edge integration and Chang et al. (2023), Rao and Deebak, 2023,
environments. distributed learning (e.g., federated). Hudda and Haribabu, 2025

Real-Time Reactive; slow to respond to emerging attacks. = Proactive and autonomous response mechanisms using | Shehzadi (2024), Reddy et al. (2024), Seo et al.

Response reinforcement and online learning. (2023)

mission-critical A-IoT systems, such as autonomous drone swarms,
battlefield networks, or disaster recovery systems (Seo et al., 2023).
Al offers significant benefits in cybersecurity. To begin, AI will
enable real-time and autonomous threat identification that can be
tailored to changing assault patterns without the continual
participation of humans (Muppalaneni et al, 2024). Second, it
enhances scalability and generalization, allowing models to be
utilised on a variety of devices and protocols (Islam et al., 2024).
Third, AI models can improve threat intelligence correlation by
combining data from diverse sources to identify multi-vector threats
(Alhakami, 2024). Furthermore, privacy-sensitive approaches such
as federated learning can help with data protection rules, which is
critical in sensitive industries like as healthcare and banking.

However, Al-based security is not without flaws and risks. One of
the significant challenges is the vulnerability of AI models to
adversarial assaults, which use malicious inputs to trick the system
(Shayea et al., 2025). An attacker can utilize model biases to avoid or
misclassify training data, or he can modify it. Furthermore, the
majority of AI models, particularly deep learning systems, are
neither interpretable nor explainable, and human operators cannot
trust or confirm their judgements (Sahin et al, 2025). Data
dependence is also an issue: in order to train effective models,
high-quality, labelled datasets are typically required, which might
be a hurdle in the event of emerging threats when labelled data is not
yet accessible. Finally, the computational overhead and energy needs
of Al models are realistic constraints to implementing AI models on
lightweight A-IoT devices (Hudda and Haribabu, 2025).

Although artificial intelligence can provide an impressive toolkit
for improving cybersecurity in autonomous
should be
balanced with

systems, its
with
with
interpretability, and intelligence with ethical and privacy
protection (Singh et al., 2025). The hybrid AI framework, which
blends numerous learning paradigms with domain knowledge,

implementation approached holistically,

automation robustness, performance

ensures both technological efficacy and operational dependability
in A-IoT cybersecurity (Alfahaid et al., 2025).

5 Al-driven cybersecurity techniques
for A-loT

The A-IoT ecosystem is being extended to include smart cities,
self-driving cars, healthcare, and industrial automation, which
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necessitates the need to have more context-aware, intelligent, and
scalable cybersecurity (Alhakami, 2024). The scale, speed, and
sophistication of current cyber threats are proving to be more
than what can be handled by traditional rule-based defense
mechanisms. Artificial intelligence (Al) is a paradigm shift, and it
allows cybersecurity systems to shift into proactive and autonomous
defense instead of reactive positions (Mohamed, 2025). This part
focuses on the key Al-based cybersecurity methods that are specific
to A-ToT systems and their scientific basis, practical implementation,
and drawbacks.

5.1 Al-enhanced intrusion detection and
prevention systems (IDS/IPS)

The most critical A-IoT security applications of Al are intrusion
detection and prevention. Machine learning (ML) and deep learning
(DL) allow Al-based IDS/IPS to examine large volumes of real-time
traffic and device behaviour to detect known and novel attack
patterns (Albulayhi, 2022). To the extent that they can identify
behavioural anomalies that indicate 0-day threats, Al-enhanced IDS
systems can go beyond signature-based detection (Shaik and Shaik,
2024). Adaptive IPS systems surpass traditional methods by
implementing real-time prevention measures, such as blocking
malicious traffic or isolating compromised nodes. A-IoT is highly
decentralized, and lightweight IDS models can also be trained at the
edge, using federated learning to guarantee low latency and on-site
threat detection (Kanzouai et al., 2025). Although such systems are
very responsive and scalable, it is still difficult to adjust the detection
thresholds to reduce the number of false positives and ensure model
accuracy in heterogeneous environments.

5.2 Anomaly and threat detection using
unsupervised learning

Unsupervised learning techniques, such as k-means clustering,
autoencoders, and one-class Support Vector Machines (SVMs), are
increasingly used to identify anomalous behavior in A-IoT networks
without relying on labeled datasets (Kaliyaperumal et al., 2024).
Such techniques are especially useful in identifying new or evasive
threats in situations where normal behavior is situational. For
instance, a drone deviating unexpectedly from its flight path or
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altering its communication protocol may indicate a cyber-physical
attack (Pavithra et al., 2023). AI models trained on contextual and
temporal data can detect such anomalies in real time and initiate
pre-emptive countermeasures. More advanced implementations
introduce graph neural networks (GNNs) to be used to model
the inter-device interactions, thus offering system-wide visibility
of complex A-IoT infrastructures (Sha et al., 2025). Unsupervised
techniques can, however, be less precise and need close calibration to
achieve the trade-off between sensitivity and specificity.

5.3 Malware classification and
behavioral analysis

AI has changed the malware detection process, especially for
obfuscated or polymorphic malware that cannot be detected using
traditional static analysis (Chandran et al., 2025). Malware variants
can be classified with convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) by processing opcode sequences,
API call patterns and run-time behavior (Almaleh et al., 2023). Such
models are further enhanced with behavioral monitoring tools that
evaluate the interaction of a process with the system resources in
order to detect fileless or stealth attacks. Identification is possible
with the predictive capabilities of Al but so is prediction of the
probable behavior of new malware strains, which is critical in the
rapidly changing threat landscape of A-IoT (Jeffrey et al., 2023).
Although they are accurate, DL-based malware classifiers are
computationally demanding and need large labeled data which is
not always possible in all A-IoT devices.

5.4 Intelligent authentication and
access control

In A-IoT ecosystems, traditional authentication mechanisms,
such as pre-shared keys and static credentials, are ill-suited for
diverse, large-scale deployments (Hossain et al.,, 2024). With Al,
dynamic, behavior-based authentication is possible based on
biometric profiling, device fingerprinting, and ongoing user or
device activity monitoring. Methods such as decision trees and
reinforcement learning adjust access privileges on a real-time
basis depending on the level of risk (Usmani et al., 2022). These
systems enhance security by identifying insider threats or
unauthorized access and are still usable. But these methods also
present issues of user privacy and data protection in circumstances
where behavioral data is centrally gathered or insufficiently
anonymised.

5.5 Al-based encryption and lightweight
cryptography

Resource constraints in A-IoT environments necessitate
encryption techniques that are both secure and efficient. An
increasing trend in the application of AI has been the use of Al
to develop lightweight cryptographic algorithms that can
dynamically switch key sizes, cypher strength, and mode of

operation based on the degree of threat and available resources
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(Zafir et al., 2024). These security mechanisms allow tradeoffs
between security and latency and power. AI also supports
intelligent key management, enabling automatic key rotation,
breach detection, and secure key distribution across mesh or ad
hoc networks (Pothumarti et al., 2021). While promising, AI-based
encryption still requires further validation against advanced
cryptographic attacks and standardization for cross-vendor
compatibility as shown in Table 3.

5.6 Autonomous response systems and
swarm intelligence

Autonomous response is one of the most sophisticated ways of
utilizing AI in cybersecurity. Such systems powered by
reinforcement learning and swarm intelligence have the ability
to take immediate actions without human intervention. In a
particular case, it could become isolated when identifying a
compromise, reorganize the network association, or deploying
decoy services to confuse the attackers (Reddy et al., 2024).
Swarm-based solutions add robustness to the system as nodes
are able to behave in a defensive manner through coordination.
To facilitate transparency and trust, explainable AI (XAI)
frameworks are becoming increasingly embedded, which
enables human stakeholders to have an idea of the reasoning
behind the automated decisions (Mahto, 2025). Although these
systems are self-regulated, they have to be controlled to prevent
unintentional disturbances or self-reinforcing mistakes.

Cybersecurity approaches powered by Al provide disruptive
abilities throughout the A-IoT security stack, including threat
identification and categorization, authentication, and dynamic
response (Mohamed, 2025). They are critical in contemporary
defense systems due to their ability to learn and adapt to
threats, their their
scalability. Nevertheless, they should be deployed in harmony
ethical
management, and resistance to adversarial manipulation
(Albulayhi, 2022; Shaik and Shaik, 2024). There is no one
single method of AI that is always best. To take the example

emerging real-time processing, and

with resource-efficiency, compliance, false-positive

of malware analysis, deep learning is very effective in that task,
but it can be computationally infeasible at the edge, whereas
federated learning allows decentralization without sacrificing
privacy but has a harder time converging models on
heterogeneous data. As A-IoT networks are increasingly
autonomous and mission-critical, hybrid and explainable AI
methods, in with
frameworks, will become necessary in order to realize resilient

combination advanced evaluation

and trustworthy cybersecurity.

6 Emerging trends and novel Al
approaches

As the danger scenario for A-IoT ecosystems grows more
dynamic and sophisticated, classic AI methodologies, while
foundational, are being supplemented by a new generation of
advanced, and adaptable artificial

explainable, intelligence

paradigms (Zafir et al, 2024). These innovative ideas are not
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TABLE 3 Mapping of Al techniques to A-loT domains and cybersecurity functions.

A-loT Domain(s)

Al technique

Cybersecurity
function

Advantages

10.3389/friot.2025.1658273

Limitations

References

Smart homes, wearables,
industrial IoT

Machine Learning Anomaly detection, malware

classification

Video surveillance,
smart cities

Deep Learning Intrusion detection, pattern

recognition

High accuracy with
sufficient data

Automatically extracts
complex features

Vulnerable to data drift,
adversarial input

Requires high
computation, black-box
nature

Albulayhi (2022), Shaik
and Shaik (2024)

Chandran et al. (2025),
Jeffrey et al. (2023)

Federated Learning Healthcare, finance, Privacy-preserving training

No raw data sharing,

Communication overhead,

Kanzouai et al. (2025),

smart grid across devices decentralized learning non-IID data challenges Tayyab et al. (2023)

Swarm Intelligence Environmental Distributed threat detection, Decentralized and adaptive | Sensitive to noisy Reddy et al. (2024),
monitoring, UAVs, routing defense environments Mahto (2025)
logistics

Explainable AT (XAI) Autonomous vehicles,

critical infrastructure

Transparent decision-making
in detection

Improves trust and
compliance

Trade-off between
explainability and accuracy

Mahto (2025), Usmani
et al. (2022)

Intrusion simulation,
data augmentation

Generative Adversarial
Networks (GANs)

Attack scenario modeling,
synthetic data generation

Digital Twins Smart manufacturing,

predictive maintenance

Simulated threat response,
system-level testing

only changing the way cyber defences are deployed, but they are also
solving long-standing issues with transparency, flexibility, and
scalability. This section looks at cutting-edge Al approaches that
are helping to build a more robust and intelligent cybersecurity
A-IoT (Mba, 2025). Explainable Artificial
Intelligence (XAI) is a significant invention that is gaining

framework for

popularity in cybersecurity. Unlike traditional AT models, which
frequently function as “black boxes,” XAI provides interpretability
and openness in decision-making processes (Chinnaraju, 2025).
Explainability is critical in A-IoT cybersecurity for verifying
security warnings, explaining automated mitigation measures,
and adhering to regulatory frameworks like General Data
Protection Regulation (GDPR) and National Institute of
Standards and Technology (NIST). For example, XAl-integrated
intrusion detection systems can identify abnormalities and explain
which parameters (e.g., packet frequency, device location, and
protocol behaviour) influenced the detection decision (Javed
et al,, 2023). This transparency builds confidence, makes human-
machine collaboration easier, and allows security analysts to better
understand, audit, and modify AI models over time (Van Hoang,
2023). Generative Al, particularly Generative Adversarial Networks
(GANSs) and diffusion models, is proving to be an effective tool for
threat simulation and defensive strategy development. GANs may be
used to model realistic adversarial attack patterns that resemble 0-
day vulnerabilities or polymorphic malware, allowing defensive
systems to be educated in a more diversified and realistic threat
environment (Peppes et al., 2023). This proactive exposure greatly
improves model generalisation and robustness. Furthermore,
generative models may be used to synthesise attack data
in situations when real-world datasets are limited, allowing for
the creation of more effective threat classifiers and automatic
red-teaming frameworks for penetration testing in A-IoT systems
(Ali and Ghanem, 2025).

Transfer Learning and Meta-Learning are gaining traction as
threat vectors continue to evolve, particularly those influencing
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Enhances model
robustness via simulated
threats

Risk-free testing of
cybersecurity measures

Training instability,
potential misuse

Requires accurate
modeling and real-time

Sha et al. (2025),
Chandran et al. (2025)

Pavithra et al. (2023),
Alfahaid et al. (2025)

syncing

previously undetected device behaviours or settings (Sha et al,
2025). Transfer learning allows pre-trained models to be rapidly
fine-tuned on tiny, domain-specific datasets, resulting in greatly
reduced training time and resource needs for edge-based security
applications. This is especially useful in A-IoT systems, when
labelled data is scarce or scattered. Meta-learning, often known
as “learning to learn,” goes one step further by creating models that
can swiftly adapt to new sorts of assaults while exposing as little data
as possible (Fadhilla et al., 2022). These skills are crucial for dealing
with rapidly changing malware, adaptive adversaries, and dynamic
device behaviours in diverse A-IoT contexts.

Digital Twins, a unique cybersecurity paradigm, are being used
to bridge the physical and digital domains of A-IoT (Salim et al,,
2024). A digital twin is a real-time virtual counterpart of a physical
object or system that enables predictive analytics, anomaly
detection, and cyber-physical simulations. When combined with
Al, digital twins can mimic the effects of hypothetical cyber
assaults on A-IoT infrastructures like self-driving cars or smart
manufacturing facilities. This not only improves threat prediction,
but it also enables scenario-based training, resilience testing, and
proactive risk management (Hossain et al., 2024). The dual-loop
interaction of the physical world and its digital doppelganger
cyber
integrity and optimize security postures (Singh et al., 2025).

enables defenders to dynamically monitor system

Furthermore, Federated and Distributed Learning approaches
are revolutionising the deployment of edge AI Traditional AI
training necessitates centralised data aggregation, which creates
privacy concerns and scalability challenges. Federated Learning
(FL) tackles this issue by training models locally on IoT devices
and selectively sharing model updates, protecting data privacy and
lowering connection cost (Shayea et al., 2025). In A-IoT systems, this
decentralised intelligence enables scalable, privacy-preserving, real-
time threat detection over a wide network of edge devices.
Distributed AI models, when reinforced with blockchain or

consensus methods, can enable trustless collaboration across
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FIGURE 3
Use case mapping of Al-driven cybersecurity across domains.

devices in hostile contexts, reducing the chance of single-point
failures and improving system resilience against distributed
denial-of-service (DDoS) assaults and insider threats (Albshaier
et al.,, 2024).

In conclusion, the integration of innovative AI technologies
such as XAI, generative models, transfer/meta-learning, digital
twins, and federated intelligence represents a paradigm change
in A-IoT cybersecurity (Chinnaraju, 2025). These solutions not
only address the increasing sophistication of cyber threats, but
they also take into account the operational limits and ethical
issues that autonomous, resource-constrained IoT systems
provide. Together, they open the way for the development of
transparent, adaptable, and scalable cybersecurity systems that
can learn, evolve, and defend in real time, ushering in a new age
of intelligent security for the autonomous digital frontier (Oliha
et al., 2024).

7 Case studies and real-world
applications

Cybersecurity and AI are not just theoretical concepts in
A-ToT ecosystems but are actively being used to shape critical
infrastructure in such areas as smart cities, autonomous mobility,
healthcare, industry, and energy as shown in Figure 3. Such
practical applications show the power of autonomous systems
and at the same time reveal substantial cybersecurity risks
(Vermesan et al., 2022).

The section presents the leading examples of case studies in
which Al-based cybersecurity methods are implemented to secure
A-ToT systems against emerging cyber threats (Allioui and Mourdi,
2023). Smart cities A-IoT technologies are part of intelligent traffic
systems, surveillance networks, connected infrastructure, and
environmental monitoring. Nonetheless, the complexity and
interconnectedness make these systems have many attack vectors
(Kanellopoulos et al., 2023). As an example, video surveillance
systems based on AI and able to recognize faces and analyze
behavior can be targeted by adversarial input attacks, which can
interfere with identity verification procedures (Albshaier et al., 2024;
Vermesan et al., 2022).
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Smart
Grids

Autonomous
Vehicles

Cities are implementing federated learning-based intrusion
detection systems that can process data in a more localized
manner at edge nodes to avoid centralizing sensitive data,
ensuring privacy and scalability (Hamid and Bawany, 2024). At
the same time, researchers are investigating swarm intelligence
approaches to conduct distributed anomaly detection across
geographically dispersed nodes within urban infrastructure,
enabling a coordinated response to threats in real-time across
large-scale environments (Chinnaraju, 2025).

Another vital use of A-IoT is autonomous vehicles (AVs) and
drones, particularly in mission- and adversarial-critical settings.
These systems are based on Al navigation, object recognition,
and decision-making but are susceptible to cyber-physical attacks,
including Global Positioning System (GPS) spoofing, Light
Detection and Ranging (LIDAR) manipulation, and adversarial
attacks on the AI model through malicious road signs (Pavithra
et al., 2023).

A prominent real-life application can be seen in an Al-based
security system in automobiles, which uses anomaly detection
algorithms to detect Controller Area Network (CAN) bus
operations and command injections that are not authorized.
Deep Reinforcement Learning (DRL) is applied to optimize flight
routes in threat scenarios and adapt to the communication protocols
depending on the aerial environment in drone ecosystems (Sarikaya
and Bahtiyar, 2024). Due to the continued development of AVs
towards full autonomy, digital twin simulation and threat
intelligence platforms are becoming more critical in their ability
to simulate and mitigate multimodal and complex cyber threats
(Allioui and Mourdi, 2023).

In the sphere of Industrial IoT (IIoT), Al-empowered
cybersecurity is a critical factor in the security of automated
production lines, robotics, and supply chain networks. Most ITIoT
infrastructures have yet to transition to modern systems with robust
in-built security, which means they are vulnerable to ransomware,
insider attacks, and 0-day attacks (Fadhilla et al., 2022). To counter
this,
Information and Event Management (SIEM) systems that use

organizations are implementing Al-enhanced Security
machine learning to identify anomalous patterns of behavior on

Industrial Control Systems (ICS) and Supervisory Control and Data
Acquisition (SCADA) systems.
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Remarkably, generative AI has been applied to modeling
Advanced Persistent Threats (APTs) so that security teams can
predictively model and test industrial security measures beforehand
(Zhuwankinyu et al, 2024). Moreover, edge AI is being
implemented on factory floors to monitor in real-time and
automatically mitigate threats, which means that the latency of
the attack detection and response is lower by far.

The A-IoT devices used in healthcare, like Al-equipped
wearables, pose a significant cybersecurity threat because of the
sensitivity of personal data that they process and due to the constant
connection to the network. Such devices can track vital signs and
send the information to cloud-based diagnostic systems, which
makes them the most viable targets of data manipulation and
privacy violation (Putra et al., 2024). To illustrate, manipulation
of Al models may lead to incorrect diagnoses or treatment delays.
Medical practitioners are adopting federated learning systems to
overcome these risks by training models in collaboration across
hospitals and preserving patient privacy. Another related trend is the
use of explainable AI (XAI), which aims to increase transparency in
diagnostic algorithms and promote trust and responsibility in
clinical decision-making (Hamid and Bawany, 2024; Pavithra
et al., 2023).

Energy and smart grid systems represent another critical A-IoT
application space, and the national security implications are enormous.
Such systems use AI to predict energy loads, identify faults, and
automatically control energy distribution but are also becoming the
subject of attack by adversaries aiming to deny energy continuity or
tamper with usage data. The use of Al-based anomaly detection is
common for tracking consumption trends from millions of smart
meters, and the application of distributed AI with blockchain
technology ensures tamper-resistance and data
(Jayavarma et al, 2025). European and North American case

provenance

studies demonstrate how deep learning is being successfully used to
identify and counter cyber threats in wind farms, solar installations,
and power substations. Furthermore, responsive Al-based demand-
response algorithms can enhance cyberattack resilience and maintain
grid stability (Deshpande, 2024).

To sum up, the days when cybersecurity by AI was a
speculative topic are over, and it is a realistic requirement in
various industries. The variety of real-world applications of
federated learning, digital twins, DRL, XAI, and generative AI
shows how essential context-aware, scalable, and interpreted
cybersecurity solutions are. The cases highlight the need to
urgently develop adaptive frameworks that can address the
dynamic threat environments in autonomous, decentralized,
and data-intensive environments.

8 Evaluation metrics and benchmarking

In order to guarantee the efficiency of the Al-based cybersecurity
approaches specialized in A-IoT environments, which are resource-
limited and face dynamic and complicated threat landscapes, a
rigorous, multidimensional analysis framework has to be used
(Mahto, 2025). This
measures and benchmarking parameters

about the fundamental
that define the
performance, efficiency, resiliency and deployability of AlI-based

section talks

security solutions in A-IoT environments.
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8.1 Detection performance and
classification accuracy

The foundation of any cybersecurity evaluation lies in the
assessment of detection capabilities. Metrics such as accuracy,
precision, recall, and Fl-score are crucial in evaluating how
effectively an AI model distinguishes malicious activities from
benign ones (Sharma et al., 2024). While detection accuracy
offers a general sense of correctness across predictions, it can be
misleading when datasets are imbalanced, as is typical in
cybersecurity, because it may overestimate model effectiveness
when benign instances dominate (Hamid and Bawany, 2024).
Therefore, precision and recall become more critical: precision
measures the proportion of true positives among all detected
positives, indicating the model’s reliability in reducing false

assesses the
that the model
representing its completeness (Bold et al., 2022). The F1-score

alarms, while recall proportion of actual

malicious activities successfully detects,
harmonizes these two, balancing the need for accuracy and
completeness, and is especially valuable in skewed datasets, as

summarized in Table 4.

8.2 Latency and real-time responsiveness

Latency is also important, considering that A-IoT systems are
in real-time when it comes to detecting and mitigating threats.
The detection accuracy of Al-based defences should not be the
only criterion of their effectiveness, but also their response time,
especially when they have to operate under real-time conditions
where such delays may result in catastrophic outcomes (Sharma
et al., 2024). The overall detection latency (data acquisition,
feature extraction, model inference, and mitigation response)
ought to be measured accurately (Jayavarma et al., 2025). Low-
latency and low-computational-overhead systems are more
appropriate to be deployed in edge environments, where there
is limited resource availability. In addition, benchmarking must
involve the simulated real- or near-real-time attack scenarios to
maintain operational continuity and flexibility (Allioui and
Mourdi, 2023).

8.3 Resource and energy efficiency

Resource usage is another crucial assessment criterion,
particularly given that a large portion of A-IoT devices runs on
batteries and has limited computational capabilities. Energy
efficiency metrics measure power used in training and inference
processes, which directly determines the longevity of the device and
the sustainability of the whole system (Bai et al., 2024). At the same
time, the computational efficiency is quantified regarding the
processor load, and bandwidth
consumption. These constraints should be benchmarked against

memory  consumption,
lightweight AI models, which are trained using model pruning,
quantization, or edge-friendly architectures. The energy/resource
efficiency/detection performance trade-off needs to be thoroughly
examined to achieve a balance between them in applied cases
(Desislavov et al., 2023; Zhukabayeva et al., 2025).
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TABLE 4 Evaluation metrics for Al-Driven cybersecurity in A-loT.

Metric Definition Relevance
Accuracy Percentage of correct predictions among total

samples performance
Precision/Recall/ Precision: ratio of true positives to all predicted
F1-Score positives. Recall: ratio of true positives to all actual

positives. F1: harmonic mean of the two. negatives

False Positive
Rate (FPR)

Proportion of benign actions incorrectly labeled
as malicious

Latency Time between attack onset and system response
applications

Energy Efficiency = Power consumed per prediction or detection

Basic measure of detection

Useful in class-imbalanced datasets
to minimize false positives or false

High FPR leads to alert fatigue,
reduces trust in system
Critical for real-time threat

detection in mission-critical

Vital for battery-operated and

10.3389/friot.2025.1658273

Use case example References

Intrusion detection system
classification

Sharma et al. (2024), Hamid and
Bawany (2024)

Malware detection in
smart grids

Bold et al. (2022), Sharma et al.
(2024)

IDS in smart homes

Sharma et al. (2024)

Allioui and Mourdi (2023),
Putra et al. (2024)

Vehicle-to-everything
(V2X) communication

Wearable health monitors = Zhukabayeva et al. (2025), Bai

cycle resource-constrained A-IoT devices et al. (2024)
Model Degree to which decision-making logic can be Important for debugging, Explainable AI in smart Desislavov et al. (2023), Akash
Interpretability understood transparency, and regulatory factories (2025)
compliance
Robustness Resilience of AI models to adversarial inputs and | Validates reliability under attack or | GAN-generated spoofing ~ Sharma et al. (2024), Allioui and
concept drift changing conditions in security cameras Mourdi (2023), Shyaa et al.
(2024)
Scalability Ability to maintain performance with increasing = Key for deployment across large- Smart city cybersecurity Allioui and Mourdi (2023),
devices or data scale and heterogeneous A-IoT framework Hazra et al. (2021)
environments
Deployment Readiness for integration with current IoT Determines real-world applicability | Federated model Akash, 2025; Hazra et al. (2021)
Readiness protocols and regulatory standards of Al-based cybersecurity deployment across

frameworks

8.4 Robustness against adversarial attacks

With the growing number of threat actors taking advantage of
the weaknesses of the AI systems, the resistance to adversarial
attacks has become one of the essential metrics. This means
testing the robustness of AI models in the presence of well-
designed malicious inputs that aim to deceive or detect (Sharma
et al,, 2024). Robustness testing involves the creation of adversarial
examples by following different attack strategies, e.g., evasion or
poisoning attacks, and quantifying the loss in detection
performance. A suitable model must achieve high accuracy and
recall when faced with adversarial perturbations, particularly in
security-focused A-IoT infrastructures (Allioui and Mourdi,
2023). The evaluation must also take concept drift into account,
the fact that changing patterns of attack require constant learning

and model flexibility (Shyaa et al., 2024).

8.5 Scalability and deployment readiness

Finally, we cannot ignore the metrics of operational scalability
and deployment readiness in Al-based defences. Scalability is the
degree to which AI models can be used under conditions of
increased connected devices, the volume of data streams, or
network complexity (Allioui and Mourdi, 2023). Alternatively,
deployment readiness assesses the simplicity of deployment with
available IoT infrastructures, compatibility with existing protocols,
and adherence to security and regulatory requirements (Hazra et al.,
2021). This involves the capacity of the system to accommodate
decentralized training methods like federated learning and the
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simplicity of updating models after deployment. Not only is a
solution of high deployment readiness theoretically sound, but it
is also scalable in practice (Akash, 2025).

In summary, the overall benchmarking scheme of assessing AI-
based cybersecurity in A-IoT systems should combine the
traditional measures of detection with the more recent factors
like latency, energy efficiency, robustness, and scalability. This
type of approach is holistic and makes the proposed solutions
not only correct and secure but also efficient, resilient, and
deployable in real-world autonomous IoT systems.

9 Challenges, gaps, and open issues

Despite the development of Al-based cybersecurity solutions for
A-IoT ecosystems, there remain many challenges and unaddressed
problems in securely and efficiently deploying them (Singh et al.,
2024). Addressing these gaps is crucial for building strong, reliable,
and scalable security models that meet the specific needs of
autonomous, distributed IoT networks.

One of the basic issues is the quality of data, its availability, and
labeling of the data on which AI models are trained. More
specifically, supervised and deep learning methods are based on
large amounts of quality-labelled data that depict both benign and
malicious actions (Hossain S. et al., 2025). Nevertheless, the
heterogeneity of data sources, the existence of proprietary
communication protocols, and the stringent privacy policies in
A-ToT settings are major impediments to the complete data
gathering process, which results in biased, incomplete, and even
fragmented datasets (Qudus, 2025). In addition, labelled attack data,
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particularly 0-day or very sophisticated attacks, are limited, which
hinders model training and validation (Hirsi et al., 2025). Such data
constraints highlight the necessity of creating powerful unsupervised
or semi-supervised learning algorithms and the creation of synthetic
datasets, such as through the use of generative adversarial networks
(GANs) (Peppes et al., 2023).

Tightly connected with data issues is the problem of AI model
explainability and reliability. Most existing AI systems, especially
deep neural network-based systems, are opaque black boxes that
make it unintelligible to human experts how they are making
decisions. Such a lack of transparency creates substantial
adoption barriers in cybersecurity, where automated decisions
may have operational and safety-relevant consequences (Hassija
et al., 2024). Explainable AI (XAI) approaches provide potential
solutions to explain model predictions and improve user confidence,
but these approaches are still in their early stages in real-time A-IoT
security applications, and they tend to have extreme computational
costs. Therefore, future research aims to come up with reliable Al
systems that are both complex and interpretable and formulate
uniform metrics to measure explainability, which is crucial to its
universal acceptance (Chander et al., 2025).

The resulting threat of adversarial machine learning compounds
the security picture. Malicious actors are becoming increasingly
skilled at identifying weaknesses in AI models and creating
adversarial inputs that can negatively impact the performance of
classifiers or reduce the effectiveness of detectors, potentially
nullifying cybersecurity protections. In addition, poisoning
attacks, which introduce contamination into training data, are a
long-term threat to model integrity (Tian et al., 2022). To combat
these new threats, there is a dire need to come up with a strong
method of hardening the models, continuous monitoring, and
dynamic retraining. Nevertheless, these approaches have not been
studied or tested at scale with large amounts of heterogeneous
A-ToT. Furthermore, there is a major deficiency in the creation
of systematic structures to track and counter adversarial threats
without compromising the speed and accuracy of detection
(McCarthy et al.,, 2022).

The second urgent problem is the trade-off between security and
performance of the system, particularly in A-IoT devices with
limited resources. Increased security is generally associated with
an increased computational burden, memory consumption, and
communication overhead, which may have a negative impact on
battery life, latency, and the experience (Bai et al., 2024). On the
other hand, efficiency could make systems susceptible to attacks or
limit the complexity of the threat detection algorithms (Shyaa et al.,
2024). The process of finding the optimal balance between them
requires security models that can dynamically adapt the level of
protection to the level of threat, the state of devices, and the priorities
of the work (Mallick and Nath, 2024). Nevertheless, in-depth
frameworks that combine such trade-offs into a variety of use
cases are limited, which points out a divide between theory and
practice (Qudus, 2025).

In addition to technical issues, legal and ethical and
standardization challenges are major impediments to the
mainstreaming of Al-powered cybersecurity in A-IoT systems.
The legal frameworks governing data privacy, data security
responsibility, and cross-border data transfer vary significantly
across different jurisdictions, and this makes the compliance of
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globally distributed IoT devices challenging (Allioui and Mourdi,
2023). Other ethical issues, including algorithm bias, responsibility
in AT decision-making, and user permission, are also impediments
to responsible Al in critical infrastructure. Additionally, there are no
universal AI model validation, cybersecurity, and interoperability
standards among heterogeneous IoT devices, which do not allow
building coherent defense strategies (Qudus, 2025). Collaboration
between policymakers, industry stakeholders, and academia is
necessary to create comprehensive regulations and standards that
promote innovation and protect societal values (Agrawalla and
Banerjee, 2025).

In summary, while AI-driven cybersecurity holds transformative
potential for A-IoT ecosystems, it confronts significant challenges
related to data management, model explainability, adversarial
robustness, performance-security trade-offs, and governance.
Addressing these open issues will require multidisciplinary
research, cross-sector cooperation, and ethically grounded
innovation to realize autonomous IoT networks that are secure,

resilient, and socially responsible.

10 Future directions and research
opportunities

The ever-changing nature of A-IoT ecosystems, combined with
the ongoing sophistication of cyber threats, necessitates future-
oriented research and new frameworks to advance Al-based
cybersecurity capabilities, close existing gaps, and make
autonomous networks truly resilient (Kumar et al., 2025). This
section discusses the important future research paths and
prospective research possibilities that will revolutionise the
security paradigm of A-IoT systems, with an emphasis on the
use of emerging technologies, new Al techniques, and adaptive
frameworks.

One of the most promising directions is the development of
hybrid AlI-blockchain security systems that can leverage the
synergistic potential of artificial intelligence and decentralised
ledger technologies to address the underlying issues of trust, data
integrity, and secure device authentication in A-IoT networks
(Bhumichai et al, 2024). Blockchain’s immutable, distributed,
and decentralized nature can serve as a solid foundation for
secure data sharing and provenance, lowering the risk of data
tampering and unauthorised access, while AI can be used to
improve anomaly detection and adaptive threat response through
intelligent analytics (McCarthy et al., 2022). Future work should
developing  lightweight, blockchain

implementations that fit within the resource constraints of IoT

focus  on scalable
devices and are readily integrated with Al-based intrusion
detection and trust management systems. It will be critical to
investigate consensus techniques that are optimised for real-time
security operations and evaluate their impact on latency and energy
usage (Al-awamy et al, 2025). The next disruptive frontier is the
development of self-healing security systems capable of monitoring,
analysing, and resolving cyber threats in real time without requiring
human interaction (Allioui and Mourdi, 2023). These systems would
employ high-level AI algorithms to continually monitor network
health, detect vulnerabilities or assaults, and automatically take
defensive or recovery actions, therefore decreasing downtime and
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operating risks in mission-critical A-IoT applications (Johnphill
et al., 2023). The study should focus on reinforcement learning
and meta-learning approaches that allow these systems to
dynamically adapt to the changing threat landscape and system
configurations. The challenge is to strike a balance between
autonomy and control, so that self-healing operations do not
unintentionally interfere with lawful activities, and compliance
and confidence may be gained through openness and auditability
(Tyagi and Seranmadevi, 2024). Another potential research area is
the development of Al-powered cyber threat intelligence systems,
which use big data, natural language processing, and predictive
analytics to collect, process, and exchange actionable threat
intelligence in diverse A-IoT contexts (Fuentes-Penailillo et al,
2024). Early warning systems may be installed on these platforms
to correlate data from a range of sources, including device logs,
network traffic, and external threat feeds, enabling for proactive
defence actions (Aminu et al., 2024). In the future, it is critical to
focus on the use of federated learning to retain privacy and security
in collaborative intelligence sharing, as well as the development of
real-time inference models that can scale with the rising amount and
speed of threat data. Explaining and human-in-the-loop strategies
will be researched to improve the use and credibility of such
platforms among security operators (Azeri et al., 2024).

The nature of risks to A-IoT systems necessitates study into
cross-domain Al adaptability, such as multi-modal threat detection
systems, which incorporate data from several sources, such as
network signals, sensor readings, audio-visual inputs, and user
2024). This
complete technique enables deeper contextual awareness and

behaviour analytics (Fuentes-Penailillo et al,
improved detection, particularly against modern multi-vector
threats that evade unimodal systems (Alhakami, 2024). Research
questions include how to create unified feature representations,
scalable fusion systems, and adaptive learning algorithms that
can transfer knowledge across domains and modalities. This type
of cross-domain information is required for total situational
awareness and strong security postures in autonomous systems
that operate in complex and dynamic contexts (Zou et al.,, 2025).

Finally, the ideal of fully autonomous cybersecurity agents
capable of operating autonomously on scattered A-IoT networks
summarises future research objectives (Tyagi and Seranmadevi,
2024). These bots would use advanced AI characteristics like
continuous learning, reasoning, decision-making, and teamwork
to automatically detect, forecast, and neutralise emerging cyber
threats on a large scale. This ambitious goal necessitates
advancements in multi-agent systems, trust management, ethical
Al and durable real-time communication protocols (Chaffer et al.,
2024). The study must address concerns such as coordination
among autonomous agents, dispute resolution, policy
enforcement across the system, and robustness against targeted
attacks 2025).

Furthermore, when these agents assume critical security tasks,

on the agents themselves (Huang et al,
ethical considerations must be addressed and aligned with
human supervision systems to assure control and responsibility
(Vaseashta, 2022).

To summarize, the next-generation of Al-based cybersecurity in
Autonomous IoT ecosystems will rely on synergistic technologies
and adaptive intelligence paradigms that go beyond detection and
provide proactive, and

self-sustaining  defence intelligence
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capabilities. The mix of multidisciplinary effort, spanning Al,
blockchain, network security, and systems engineering, and
real-world validation through real-world A-IoT deployments
will be critical in shaping the next-generation of robust,
autonomous cyber defence systems capable of protecting the
increasingly linked globe.

11 Conclusion

This review has illuminated the critical convergence of artificial
intelligence and cybersecurity within the rapidly growing A-IoT
ecosystem, underscoring both its transformative potential and the
complex challenges involved in securing such large-scale,
heterogeneous, and dynamic networks. We explored the evolution of
IoT towards autonomy, demonstrating how increased device
intelligence and interconnectivity significantly expand the attack
surface and intensify security concerns, thereby necessitating novel,
adaptive defense mechanisms. Our analysis revealed the limitations of
traditional security paradigms in addressing the scale, diversity, and
real-time demands of A-IoT systems and established AlI-driven
cybersecurity as a pivotal paradigm shift that enables proactive,
context-aware, and self-adaptive protection.

In a comprehensive study of AI methods such as machine
deep federated

intelligence, we were able to isolate their distinctive advantages in

learning, learning, learning, and swarm
intrusion detection, anomaly recognition, malware classification,
and orchestration of autonomous responses, and also note enduring
challenges of explainability, limited data availability, and
susceptibility to adversarial attacks. We also noted emerging
innovations of explainable AI, generative adversarial models to
simulate threats, transfer learning, and digital twins, which have
the potential to improve the transparency, robustness, and
simulation quality of cyber defense. The practical use of Al-
powered security solutions is evident in smart cities, autonomous
cars, industrial ToT, healthcare, and smart grids, and this is an
indication of the wide applicability and practicality of Al-enhanced
security solutions.

Important gaps still exist in data quality, model reliability,
adversarial robustness, and ethical and regulatory frameworks,
highlighting the necessity for multidisciplinary collaboration and
responsible development of AI. In perspective, some of the
potentially fruitful research avenues can be found in hybrid AI-
blockchain systems, self-healing security systems, Al-based threat
intelligence systems, cross-domain multi-modal detection, and fully
autonomous cybersecurity agents. These are likely to propel the
next-generation of innovation in securing autonomous IoT
ecosystems.

In summary, the future of Al-powered cybersecurity for
autonomous IoT depends on the seamless integration of
adaptive intelligence with decentralized trust architectures,
resulting in autonomous, resilient, and transparent defenses
capable of safeguarding increasingly complex and mission-
critical cyber-physical systems. To attain such a vision, long-
term research, standardization, and ethical governance will be
needed to make sure that the integration of AI and IoT yields
secure, trustworthy, and sustainable autonomous networks that

will support the digital future.
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