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Predictive computational fluid dynamics (CFD) simulations of reacting flows in
energy conversion systems are accompanied by a major computational
bottleneck of solving a stiff system of coupled ordinary differential equations
(ODEs) associated with detailed fuel chemistry. This issue is exacerbated with the
complexity of fuel chemistry as the number of reactive scalars and chemical
reactions increase. In this work, a physics-constrained Autoencoder (AE)-
NeuralODE framework, termed as PhyChemNODE, is developed for data-
driven modeling and temporal emulation of stiff chemical kinetics for complex
hydrocarbon fuels, wherein a non-linear AE is employed for dimensionality
reduction of the thermochemical state and the NODE learns temporal
dynamics of the system in the low-dimensional latent space obtained from
the AE. Both the AE and NODE are trained together in an end-to-end
manner. We further enhance the approach by incorporating elemental mass
conservation constraints directly into the loss function duringmodel training. This
ensures that total mass as well as individual elemental species masses are
conserved in an a-posteriori manner. Demonstration studies are performed
for methane combustion kinetics (32 species, 266 chemical reactions) over a
wide thermodynamic and composition space at high pressure. Effects of various
model hyperparameters, such as relative weighting of different terms in the loss
function and dimensionality of the AE latent space, on the accuracy of Phy-
ChemNODE are assessed. The physics-based constraints are shown to improve
both training efficiency and physical consistency of the data-driven model.
Further, a-posteriori autoregressive inference tests demonstrate that Phy-
ChemNODE leads to reduced temporal stiffness in the latent space, and
achieves 1-3 orders of magnitude speedup relative to the detailed kinetic
mechanism depending on the type of ODE solver (implicit or explicit) used for
numerical integration, while ensuring prediction fidelity.
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1 Introduction

Computational fluid dynamics (CFD) modeling of reacting flows,
such as those encountered in gas turbine and internal combustion
engines, are computationally demanding owing to the complex
interactions among multiple physico-chemical phenomena and the
need to resolve a wide range of spatiotemporal scales governing the
evolution of a large number of reactive scalars (chemical species). In
particular, modeling of detailed chemical kinetics presents a major
bottleneck, which is governed by a stiff system of coupled ordinary
differential equations (ODEs) and characterized by high condition
number of the corresponding chemical Jacobian matrix (Shampine,
1993). In addition, as the complexity of fuel chemistry increases, the
dimensionality and stiffness of the ODE system also become more
prohibitive (Lu and Law, 2009). To address these computational
challenges, kinetic model reduction is typically performed (Lu and
Law, 2005; Jones and Rigopoulos, 2005; Valorani et al., 2006; Maas and
Pope, 1992), but it often leads to less reliable description of
chemical kinetics.

In this context, data-driven machine learning (ML) techniques
(Dana, 1987; Wold et al., 1987) have been extensively explored in an
effort to emulate chemical kinetics and accelerate detailed finite-rate
chemistry computations. Some of these approaches reduce the
dimensionality of the reaction system via linear projection onto
an appropriate basis typically identified through Principal
Component Analysis (PCA). Artificial neural network (ANNs)
are, then, employed for regression of the PC source terms and
transport coefficients (Owoyele et al., 2017; Kumar et al., 2023). On
the other hand, ANN-based approaches have also been used for
predicting chemical source terms directly from the thermochemical
state (Christo et al., 1996; Blasco et al., 1998; Sen et al., 2010; Ranade
et al., 2019; Wan et al., 2020). More recently, novel deep learning
architectures have been explored to capture the temporal evolution
of chemical kinetics and combustion simulations, such as Deep
Operator Network (DeepONet) (Kumar and Echekki, 2024) and
Fourier Neural Operator (FNO) (Zhang et al., 2024).

Despite the potential benefits of employing ML methods, When
they are trained in an a-priori or offline setting and then coupled
with a numerical solver, predicted solutions may diverge or become
unstable. Due to the non-linearity of the combustion process, even
minor predictive errors can escalate into significant discrepancies in
the temporal evolution of thermochemical state due to error
accumulation. To handle this issue, an alternative and more
robust data-driven technique for chemical source term
computations based on neural ordinary differential equations
(NeuralODEs, NODEs) (Chen et al., 2018) was developed by the
authors, known as ChemNODE (Owoyele and Pal, 2021). It
combines the chemical source term predictions with ODE
integration in an a-posteriori learning paradigm, where the
source terms predicted by the neural network are passed to the
ODE solver for time integration, and the neural network weights are
optimized to minimize the loss computed between the predicted and
ground truth thermochemical states (comprised of species mass
fractions and thermodynamic variables). A key advantage of this
approach is that NODEs learn continuous-time dynamics which can
be integrated using existing ODE solvers. This ensures that the
predicted thermochemical state, even after a long-time horizon,
remains adherent to the ground truth solution trajectory. For

relatively large chemical kinetic mechanisms, the coupling of a
non-linear autoencoder (AE) to perform dimensionality
reduction and a NODE to evolve the dynamics in the lower-
dimensional latent space has shown promise (Vijayarangan et al.,
2024). A similar approach has also been pursued in the field of astro-
chemistry (Sun Tang and Turk, 2022; Maes et al., 2024).

Another major limitation of traditional black-box ML
techniques applied to the modeling of chemical kinetics is that
they do not inherently incorporate conservation laws, which can
adversely impact simulation accuracy and hinder the integration of
ML surrogate models with multidimensional CFD solvers. With the
advent of scientific machine learning, the practice of combining
domain science-specific constraints to embed physics into neural
network training has emerged lately (Raissi et al., 2019). This is
achieved through regularization of the loss function, in which
physical laws are embedded in the learning process as soft
constraints (Kumar Tadbhagya et al., 2023; Almeldein and Van
Dam, 2023; Kumar et al., 2025; Weng et al., 2025; Kercher and
Votsmeier, 2025). This has been shown to improve model accuracy
and generalization, especially in scenarios where traditional
methods struggle with noisy data and high-dimensional problems
governed by parameterized differential equations. Another way to
enforce conservation laws is by enforcing a hard constraint in the
neural network architecture through constraint layers (Sturm and
Wexler, 2022; Mohan et al., 2023).

In light of the above discussion, the overarching goal of the
present work is to demonstrate an end-to-end physics-constrained
AE-NODE framework called Phy-ChemNODE for data-driven
modeling and temporal emulation of stiff chemical kinetics for
hydrocarbon fuels. Unlike previous work (Vijayarangan et al.,
2024; Sun Tang and Turk, 2022; Maes et al., 2024), the present
study demonstrates that this integrated approach improves physical
consistency of the resulting data-driven model with mass
conservation laws and accelerates training convergence, while
simultaneously reducing temporal stiffness of the chemical
kinetic system. The remainder of the paper is organized as
follows: the Phy-ChemNODE framework is first outlined along
with details of the physics-constrained formulation and training
methodology in Sections 2, 3, respectively. Subsequently, results
from a-posteriori proof-of-concept studies are discussed in Section
4. Finally, the Conclusions section summarizes the major findings
and directions for future work.

2 Physics-constrained autoencoder-
NODE (Phy-ChemNODE) framework
for stiff chemical kinetics emulation

In combustion CFD simulations, it is a common numerical
approach to decouple finite-rate chemistry from transport using
operator splitting. Chemistry is solved (independently from
advective and diffusive transport) within each computational grid
cell considered as a homogeneous reactor, which is equivalent to
solving a system of stiff ODEs. The temporal evolution ofNs reactive
scalars (chemical species) can be defined by:

dYk

dt
� _ωk

ρ
, k � 1, 2, 3, . . . , Ns (1)
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where Yk is the mass fraction of kth species (Ns being the total
number of species), _ωk is the corresponding chemical source term
computed using law of mass action, and ρ refers to mixture density.
The temporal evolution of temperature (T) is governed by a similar
ODE defined as follows:

dT

dt
� −∑

Ns
k�1hk _ωk

ρcp
, k � 1, 2, 3, . . . , Ns (2)

where hk and cp refer to the enthalpy of kth species and mixture-
averaged constant pressure specific heat, respectively. To calculate
the source terms, one needs to account for several elementary
reactions involving production and consumption of multiple
species. As the chemical mechanism becomes larger, the number
of chemical species and elementary reactions also increase (Lu and
Law, 2009). This leads to prohibitive computational costs since all
chemical time scales must be fully resolved. In the NODE-based
data-driven framework (Owoyele and Pal, 2021), the expensive
physics-based computation of chemical source terms is replaced
by a neural network, which can be described as Equation 3 below:

dΦ
dt

� f Φ, t;Θ( ) (3)

where Φ � [T, Y1, Y2, . . . , YNs] is the vector of thermochemical
state (temperature and species mass fractions), and f(Φ, t;Θ) is
a feedforward neural network parameterized by weights Θ. For
larger chemical mechanisms, Φ increases in dimensionality and
stiffness. To address the high dimensionality, a non-linear AE is
coupled with the NODE for dimensionality reduction, so that the
NODE learns the temporal evolution of the dynamical system in a
reduced-order latent space obtained from the non-linear projection
of the AE. A schematic of the coupled AE-NODE data-driven
modeling framework is shown in Figure 1. The model training
process is posed as an optimization problem of determining the
optimal parameters of the encoder (φ), NODE (h(z)), and the

decoder (ψ) networks in an end-to-end manner, that minimizes the
loss function defined as:

LPhy−ChemNODE � λrecLrec + Ldata + λzLz +∑
Nel

j�1
λel−jLel−j (4)

where the reconstruction loss Lrec � L(Φ, ~Φ)measures the loss between
ground truth (Φ) and corresponding encoder-decoder mapping
(~Φ � ψ(φ(Φ)), the data loss Ldata � L(Φ, Φ̂) measures the loss
between ground truth and encoder + NODE + decoder prediction
(Φ̂), and the latent loss Lz � L(�z, z) measures the loss between
encoder mapping of ground truth (�z = φ(Φ)) and encoder + NODE
prediction. Each loss term is chosen to be in mean absolute error (MAE)
form. It is noted that the loss terms Lrec and Lz ensure that the encoder
and decoder mappings are bijective or unique. The loss function also
contains elemental mass conservation constraints (Kumar Tadbhagya
et al., 2023; Kumar et al., 2025), defined in Equation 5 below:

Lel−j � 1
N

∑
N

i�1
∑
Ns

k�1

Nk
jWj|Yk,i − Ŷk,i|

Wk
(5)

where Lel−j refers to the loss associated with mass conservation
of element j (in the chemical system with a total of Nel elements).
Ŷk,i and Yk,i correspond to the AE + NODE predicted and ground
truth mass fractions of kth species, respectively. Wj is the atomic
mass of element j, Nk

j is the number of atoms of element j in kth

species, Wk is the molecular weight of kth species, and N is the
number of training data points. Lastly, the weights λrec, λz, and λel−j in
Equation 4 balance the contributions from the different loss terms.

3 Proof-of-concept study

For proof-of-concept demonstration of Phy-ChemNODE, an
autoigniting methane-oxygen (CH4-O2) zero-dimensional (0D)

FIGURE 1
Schematic of the coupled AE-NODE framework.
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homogeneous reactor is considered, at a constant pressure of 20 atm
that corresponds to practical high-pressure isobaric operating
conditions for stationary gas turbine engines. The detailed
chemical mechanism (Gregory et al., 2016) consists of 32 species
and 266 chemical reactions. The ground truth data for model
training is generated using Cantera (Goodwin et al., 2009), which
solves the coupled ODE system (Equations 1, 2) with detailed
chemistry. The thermodynamic and composition space chosen
for data generation comprises 9 equispaced initial temperatures
in the range Ti = [1600 K, 2000 K] and 11 equivalence ratios within
ϕ � [1.0, 1.5] resulting in a total of 99 initial conditions. Each of
these initial conditions is integrated to chemical equilibrium.
Ground truth data is generated by selecting time instants such
that the change in any of the thermochemical scalars (species
mass fractions or temperature) between two successive time
instants is greater than 1% of their corresponding overall ranges
of variation, and then downsampling 200 points from the selected
time instants. A 70%, 20%, 10% random split (based on initial
conditions) is used to obtain the training, validation, and test

datasets, respectively. The AE-NODE model is initialized with
the same initial conditions (during training) as the physics-based
simulations. The input to the encoder is the vector Φ containing the
temperature and species mass fractions, which is scaled using the
maximum and minimum of the training data, respectively, and the
output is a vector in the latent space (z). The decoder has the same
dense architecture as the encoder, with an input size equal to the latent
dimension (dim(z) � 4) (chosen based on a sensitivity study
discussed in Section 4) and the output size equal to the physical
space vector (dim(Φ) � 33). Both the encoder and decoder have
5 hidden layers with 64 neurons each and Exponential Linear Unit
(ELU) activation function. The NODE has the same input and
output dimensions as the latent space (dim(z) � 4), and a 4 hidden-
layer dense network with 64 neurons in each hidden layer and ELU
activation function, to model the chemical source terms in the
lower-dimensional latent space. The output layers for the
encoder, NODE, and the decoder are considered to be linear.
The above discussed AE-NODE architecture was finalized based
on multiple ablation studies, targeting a good balance between
dimensionality reduction and overall model accuracy. Although
more exhaustive hyperparameter optimization can be performed
to further optimize the number of latent variables, it is out of scope
of the current work.

The forward pass through the NODE requires time
integration, for which a 4th order explicit Runge-Kutta (RK)
solver is used. Once the time integration is completed, the

FIGURE 2
Comparison of loss terms (computed on validation set) across
hyperparameter experiments: (a) varying λz , (b) varying latent space
size (dim(z)), and (c) data loss (Ldata) evolution with (λel−j � 0.5) and
without (λel−j � 0) elemental mass constraints.

FIGURE 3
Temporal evolution of temperature (T) and mass fractions of
CH4, CO, CO2, OH, and O2 corresponding to initial conditions in (a)
training set (Ti � 1600K, ϕ � 1.0) and (b) test set (Ti � 1600K, ϕ � 1.1).
The mass fractions of CH4, CO2 and OH are scaled by 4, and that
of CO by 3 for ease of plotting. Solid lines denote ground truth and
markers denote Phy-ChemNODE predictions.
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temporal trajectories are mapped back to physical space and the
loss is computed using Equation 4. The gradients for updating the
neural network parameters are calculated using backward adjoint
automatic differentiation and ADAM optimizer with exponential
learning rate decay (every 200 epochs) is used. The model is

trained for 10000 epochs. To ensure that all the loss terms are of
similar magnitude, λrec � 5.0 is used. Further, λz � 0.05 and
λel−H � λel−C � λel−O � 0.5 are chosen based on a
hyperparameter sweep (discussed in Section 4). The training
framework was implemented in Julia programming language
using Flux.jl (Innes et al., 2018) library and the model was
trained on 2 AMD EPYC 7713 64-core processors for a
walltime of 96 h.

4 Results and discussion

To determine the optimal weighting of terms in the loss
function and the latent space dimensionality, hyperparameter
studies were carried out. Figure 2a compares the loss terms
computed on the validation set (post training) corresponding
to different λz values for λrec � 5, λel−j � 0.5, and fixed size of the
latent space (dim(z) � 4), and Figure 2b shows a similar
comparison for varying size of the latent space (dim(z))
with λrec � 5, λz � 0.05, and λel−j � 0.5. Moreover, to assess
the impact of adding elemental mass conservation
constraints to the training loss function, Figure 2c compares
the decay of data loss (during training) between the cases
trained with (λele−j � 0.5) and without elemental mass
constraints (λele−j � 0) on the validation set. It can be clearly
seen that incorporating the soft constraints in the loss function
results in lower loss for the same number of epochs, thereby
enabling more efficient model training and faster training
convergence.

The trained Phy-ChemNODE model is then deployed for
predicting the temporal evolution of thermochemical scalars in
a-posteriori autoregressive tests. Figure 3 plots the temporal
evolution of temperature and a subset of species mass fractions
(CH4, CO, CO2, OH, and O2) for an initial condition
(corresponding to T0 � 1600K) in the training set (ϕ � 1.0)
and test set (ϕ � 1.1), where ground truth data is indicated
by solid lines and the predicted Phy-ChemNODE solutions are
shown in markers. Overall, great agreement can be observed

FIGURE 4
Temporal evolution of intermediate species (CH3, CH2O and
C2H4) corresponding to initial conditions in (a) training set
(Ti � 1650K, ϕ � 1.0) and (b) test set (Ti � 1700K, ϕ � 1.05). Solid lines
denote ground truth and markers denote Phy-ChemNODE
predictions.

FIGURE 5
Scaled test set MAEs for prediction of temperature (T) and a few species mass fractions.
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between the predictions and ground truth data. Figure 4 shows
the temporal evolution of a few intermediate species for another
set of initial conditions in the training set (T0 � 1650K, ϕ � 1.0)
and the test set (T0 � 1700K, ϕ � 1.05), again demonstrating
high accuracy. As further quantification of the accuracy of
Phy-ChemNODE framework, Figure 5 shows the test set
MAEs for a subset of the thermochemical scalars including
both major and minor species, scaled by their corresponding
data ranges, indicating that Phy-ChemNODE performs
extremely well in capturing the temporal dynamics.

Based on inference on an Intel i7-1165G7 workstation with
16 cores, Phy-ChemNODE yields speedups of 6x and 860x over the
full chemical mechanism in terms of overall simulation walltime,
when deployed with implicit (backward differentiation formula
(BDF)) and explicit (RK45) solvers, respectively. Figure 6 plots
the latent space temporal dynamics corresponding to the initial
conditions of T0 � 1650K, ϕ � 1.0. It is evident that the evolution of
latent variables is much smoother than that of thermochemical
scalars in the physical space earlier shown in Figure 4a. This
indicates that the coupled AE-NODE approach significantly
reduces the temporal stiffness of the chemical kinetic system.
Similar stiffness reduction in the latent space was also observed
by Nair et al. (2025) in case of AE-NODE models of advection-
dominated dynamical systems. Lastly, Figure 7 shows the predicted
temporal evolution of C, H, and O mass fractions from
autoregressive tests corresponding to certain initial conditions
from the training and test sets. Evidently, the model trained with
elemental mass constraints in the loss function (Phy-ChemNODE/
PCNODE) conserves the elemental mass fractions during
deployment much better than the MAE-trained case without
constraints.

In future studies, multiple avenues for further extension of the
Phy-ChemNODE framework will be pursued. These include: (a)
efficient scaling of the training workflow to wider ranges of
thermodynamic conditions (including multiple pressures), larger
kinetic mechanisms, and multicomponent fuels; (b) integration of
Phy-ChemNODE with CFD solvers and demonstration of
accelerated multidimensional reacting flow simulations on
modern high-performance computing (HPC) platforms; (c)
demonstration for constant-volume combustion; (d)
incorporation of uncertainty quantification; and (e) exploration
of training methodologies to enhance model out-of-distribution
generalizability.

5 Conclusion

In this work, an end-to-end physics-constrained AE-NODE
framework (PhyChemNODE) was introduced for accelerated
temporal emulation of stiff chemical kinetics targeting complex
hydrocarbon fuel combustion. The deep learning approach
employed a non-linear AE for dimensionality reduction of the
thermochemical state and utilized a NODE to learn temporal
dynamics of the kinetic system in the low-dimensional latent space
obtained from the AE. In addition, elemental mass conservation
constraints were included in the loss function during training of the
data-drivenmodel to ensure that total mass andmass of each elemental
species are conserved. Proof-of-concept studies were performed for
homogeneous autoignition of a methane-oxygen mixture over a range
of composition and thermodynamic conditions at high pressure. The

FIGURE 6
Temporal evoluiton of latent space variables corresponding to
Ti � 1650K, ϕ � 1.0.

FIGURE 7
Temporal evolution of mass fractions of: (a) C, (b) H, and (c) O
elements corresponding to initial conditions in the training
(T0 � 1600K, ϕ � 1.0) and test (T0 � 1600K, ϕ � 1.1) sets.
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results showed that the physics-based constraints not only improve
physical consistency of the resulting data-driven model, but also
enhance training efficiency. In addition, Phy-ChemNODE achieved
6–860× speedup relative to the detailed chemical mechanism
depending on the type of ODE solver (implicit or explicit) used for
numerical integration during autoregressive inference tests. Temporal
evolution of the latent variables was visualized and it was found that the
coupled AE-NODE approach leads to reduced temporal stiffness of the
chemical kinetic system. In future work, Phy-ChemNODE will be
further scaled to larger kinetic mechanisms and wider ranges of
thermodynamic conditions (including pressure), and demonstrated
for multidimensional combustion CFD simulations. In addition,
uncertainty quantification techniques will be incorporated and
training methodologies will be explored to enhance out-of-
distribution generalizability.
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