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Mice, especially A/J mice, have been widely employed to elucidate the underlying

mechanisms of lung tumor formation and progression and to derive human-relevant

modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but,

non-exposed A/J mice will also develop lung tumors spontaneously with age, which

raises the question of discriminating CS-related lung tumors from spontaneous ones.

However, the challenge is that spontaneous tumors are histologically indistinguishable

from the tumors occurring in CS-exposed mice. We conducted an 18-month inhalation

study in A/J mice to assess the impact of lifetime exposure to Tobacco Heating System

(THS) 2.2 aerosol relative to exposure to 3R4F cigarette smoke (CS) on toxicity and

carcinogenicity endpoints. To tackle the above challenge, a 13-gene gene signature

was developed based on an independent A/J mouse CS exposure study, following

by a one-class classifier development based on the current study. Identifying gene

signature in one data set and building classifier in another data set addresses the

feature/gene selection bias which is a well-known problem in literature. Applied to data

from this study, this gene signature classifier distinguished tumors in CS-exposed animals

from spontaneous tumors. Lung tumors from THS 2.2 aerosol-exposed mice were

significantly different from those of CS-exposed mice but not from spontaneous tumors.

The signature was also applied to human lung adenocarcinoma gene expression data

(from The Cancer Genome Atlas) and discriminated cancers in never-smokers from

those in ever-smokers, suggesting translatability of our signature genes from mice to

humans. A possible application of this gene signature is to discriminate lung cancer

patients who may benefit from specific treatments (i.e., EGFR tyrosine kinase inhibitors).

Mutational spectra from a subset of samples were also utilized for tumor classification,

yielding similar results. “Landscaping” the molecular features of A/J mouse lung tumors

highlighted, for the first time, a number of events that are also known to play a role in

human lung tumorigenesis,

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://doi.org/10.3389/ftox.2021.634035
http://crossmark.crossref.org/dialog/?doi=10.3389/ftox.2021.634035&domain=pdf&date_stamp=2021-03-16
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Florian.Martin@pmi.com
https://doi.org/10.3389/ftox.2021.634035
https://www.frontiersin.org/articles/10.3389/ftox.2021.634035/full


Xiang et al. A/J Mouse Lung Tumor Signature

such as Lrp1b mutation and Ros1 overexpression. This study shows that omics and

computational tools provide useful means of tumor classification where histopathological

evaluation alonemay be unsatisfactory to distinguish between age- and exposure-related

lung tumors.

Keywords: cigarette smoke, heated tobacco product, mouse, lung tumor, gene signature, tumor classification

INTRODUCTION

The carcinogenic risk of a chemical is traditionally assessed in 2-
year rodent carcinogenicity assays selecting the relevant route of
administration for the compound to be tested. Despite concerns
regarding the use of large numbers of animals, exposures that are
not relevant to humans, and the sometimes poor translatability
to human outcomes, not to mention prohibitive costs and time
needed (Cohen, 2010; Osimitz et al., 2013), the 2-year bioassay
remains a standard for the identification of human cancer
hazards. Mice have been employed to elucidate the underlying
mechanisms of lung tumor formation and progression and
to derive human-relevant modes of action (Meuwissen and
Berns, 2005). Different strains of mice display markedly varied
sensitivity to lung tumor development (Gordon and Bosland,
2009). For example, mice of the C57Bl/6 strain are quite
resistant to tumor induction, while Balb/c mice are considered
intermediate in susceptibility. In contrast, the A/J mouse is highly
susceptible to lung tumor induction and has been widely used
as a screening system in carcinogenicity testing. In this inbred
strain, K-ras oncogene activation is associated with an enhanced
risk for lung tumor susceptibility (Lin et al., 1998), illustrated by
the development of pulmonary adenoma. This suggests that the
model, at least in part, reflects molecular events during human
lung tumorigenesis. Our previous studies with mainstream
cigarette smoke (CS) from the 3R4F reference cigarette showed
that chronic exposure was sufficient to elicit a concentration-
dependent lung tumor response (Stinn et al., 2013a,b), in line
with earlier findings (Curtin, 2004;Witschi et al., 2006). However,
the A/J mouse model also has the disadvantage that spontaneous
lung tumors arise as the animals age and that these spontaneous
tumors are histologically indistinguishable from the tumors
occurring in CS-exposed mice (Gordon and Bosland, 2009).
We previously explored the molecular characteristics of these
2 tumor types using gene and microRNA (miRNA) expression
analysis (Luettich et al., 2014). A 50-gene expression signature
was extracted, which separates lung tumors into 2 groups−1
reflecting the gene signature profiles of all tumors in the sham
and low total particulate matter (TPM) exposure groups, and 1
comprising the medium and high TPM exposure group tumors.
Changes in gene and miRNA expression profiles suggested
that tumors from CS-exposed mice were equipped to escape
from immune surveillance by dysregulation of humoral immune
responses and glycosphingolipid metabolism. Together, these
molecular features indicated that lung tumors in exposed mice
diverged from those spontaneously arising in aging A/J mice.
This resembles observations in lung cancer patients with or
without prior smoking history, in whom chronic CS exposure

leads to distinct molecular features in lung tumors that are
absent in lung tumors from non-smokers [reviewed by Smolle
and Pichler (2019)]. The existence of distinct molecular features
mentioned above motivated us to develop a gene signature
to tackle the challenge, distinguishing tumors in CS-exposed
animals from spontaneous tumors, which cannot be handled by
histopathological evaluation alone.

We wanted to further explore the molecular differences
in proliferative lung lesions from another chronic
toxicity/carcinogenicity study in A/J mice, in which animals
were not only exposed to CS but also to an aerosol from the
Tobacco Heating System (THS) 2.2. Because THS 2.2 aerosol
contains significantly lower levels of harmful and potentially
harmful constituents than CS (Schaller et al., 2016), including
those with known carcinogenic properties [e.g., 1,3-butadiene,
benzene, benzo(a)pyrene, 4-(N-nitrosomethylamino)-1-(3-
pyridyl)-1-butanone [NNK]], we expected that chronic exposure
of animals would result in different lung tumor incidence and
multiplicity than CS exposure. We also expected the 2 types of
aerosols—CS vs. THS 2.2 aerosol—to have differential effects on
the molecular makeup of proliferative lung lesions that could
be indicative of their divergence from spontaneous lesions in
the lungs of air-exposed A/J mice. There were three types of
lung tumors: Spontaneous tumors, 3R4F CS-related tumors,
and tumors from THS 2.2 aerosol-exposed mice, as shown in
Supplementary Table 1.

METHODS

Inhalation Study
We conducted a chronic toxicity/carcinogenicity study
with the candidate modified risk tobacco product THS 2.2
based on the OECD Test Guideline 453: Combined Chronic
Toxicity/Carcinogenicity Studies (OECD, 2018) in A/J mice
(Jackson Laboratory, Bar Harbor, ME, USA). The focus of the
study was on the OECD endpoints (i.e., the toxicity due to
lifetime inhalation of mainstream THS 2.2 aerosol and tumor
endpoints relative to the toxicity inherent in the inhalation
of mainstream CS from the 3R4F reference cigarette). We
also sought to examine the extent of lung inflammation and
emphysematous changes and characterize molecular changes
in the respiratory tract using a systems toxicology approach.
The study design, analytical characterization of selected aerosol
constituents in the test atmospheres, biomarkers of exposure
in the blood and urine samples of exposed mice, general health
conditions of the mice, and histopathological findings, including
non-proliferative and proliferative respiratory tract findings,
are described in another publication (Wong et al., 2020).
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Additionally, we report the results of extensive omics
analyses of nasal and laryngeal epithelia and the whole
lung (Titz et al., 2020).

The THS 2.2 HeatStick, the test item, has been described
previously (Smith et al., 2016). 3R4F cigarettes, which were used
as the reference, were obtained from the University of Kentucky
(2003). THS 2.2 HeatSticks and cigarettes were conditioned
in accordance with ISO standard 3402 (ISO3402, 1999) before
being used for aerosol generation. Mainstream smoke from 3R4F
cigarettes and aerosol from THS 2.2 HeatSticks were generated as
previously described (Wong et al., 2016).

In brief, female A/J mice (9–11 weeks old) were whole-
body exposed to aerosol from THS 2.2 at 3 test atmosphere
concentrations of nicotine [6.7 (Low, L), 13.4 (Medium, M),
and 26.8 (High, H) µg nicotine/L test atmosphere] or to 1
concentration of 3R4F CS (13.4 µg nicotine/L test atmosphere)
in whole-body inhalation chambers for 6 h per day, 5 days per
week. The nicotine concentration in THS (M) matched that in
CS; the CS concentration was chosen on the basis of prior data
indicating a robust lung tumor response in this mouse strain
(Stinn et al., 2013a,b). Necropsies were carried out after 1, 5, 10,
and 18 months of exposure. Male mice were exposed either to
fresh air (sham) or to the high THS 2.2 aerosol concentration
for 15 months. The group design for female mice was in
alignment with OECD TG453; two concurrent controls were
included (fresh air and cigarette smoke as negative and positive
controls, respectively), and the test item aerosol was supplied at
the maximum tolerated dose (MTD) based on nicotine toxicity
(THS2.2 High) and two additional lower doses at half (THS2.2
Medium) and one quarter (THS2.2 Low) the MTD, respectively.
The group design for male mice deviated from OECD TG453 in
that they were only exposed to fresh air or THS 2.2 aerosol at the
MTD. In line with the 3R principles, specifically the reduction
of animal use, the male CS exposure group was omitted, as
we previously observed that female mice (and rats) are more
sensitive to the toxicological effects of cigarette smoke than their
male counterparts and that CS exposure induces similar lung
tumor multiplicity in male and female A/J mice (Stinn et al.,
2013a,b).

Housing and all procedures involving animals were performed
in accordance with the approved Institutional Animal Care and
Use Committee (IACUC) protocol in a facility licensed by the
Agri-Food & Veterinary Authority of Singapore (AVA) and
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care International (AAALAC), where the
procedures for care and use of animals for scientific purposes
were in accordance with the NACLAR Guidelines (NACLAR
2004). Additional details about the study design, animal
husbandry, aerosol generation, animal exposure, and monitoring
are provided in the Supplementary Materials and Methods.

Lung Tissue Collection
Lung tumors in A/J mice begin to develop at around month 5
(Stinn et al., 2013a). Therefore, lungs were collected after 5, 10
and 18 months exposure from female animals (N = 8, 10–12,
and 10–13, respectively, per treatment group), and at terminal

dissection from male animals [N = 16 and 5 for the sham and
THS (H) groups, respectively].

Animals from each group were necropsied within 16–
24 h of the last exposure and subjected to gross pathology
examination. Lungs were perfused in situ with cold, sterile,
calcium- and magnesium-free phosphate-buffered saline (PBS;
MilliporeSigma, Singapore). The whole lung with trachea and
larynx was then removed from the animal, rinsed with sterile
PBS, blotted dry, and placed in a sterile petri dish. The
trachea was cannulated using an 18G catheter, and lungs
were inflated slowly with 50% (v/v) Tissue-Tek R© optimum
cutting temperature (OCT) compound (InLab Supplies Pte Ltd,
Singapore) in sterile PBS at a rate of ∼0.1mL per 10 s from a
syringe. The volume of 50% (v/v) OCT/PBS required to fully
inflate a lung was ∼1–1.5mL and dependent on the size of the
animal. When each lung lobe was fully inflated, the bronchus
leading to each lobe was clamped with forceps, and each lobe
was dissected and placed individually into a disposable Tissue-
Tek Cryomold R© (InLab Supplies Pte Ltd) prefilled with OCT
compound. The filled Cryomolds R© were placed into isopentane
precooled with liquid nitrogen, and frozen tissues were stored at
≤-70◦C until further processing.

Laser-Capture Microdissection
Laser-capture microdissection (LCM) was used to specifically
collect lung parenchymal tissue (“parenchyma”) or tissue
from each identified proliferative lung lesion (i.e., nodular
bronchioalveolar hyperplasia, bronchioalveolar adenoma, and
bronchioalveolar adenocarcinoma, collectively referred to here
as “lung tumors” for simplicity) under the guidance of the study
pathologist. To do so, serial lung cryosections at 20µm distance
were placed, 3 consecutive sections at a time, on sterilized, RNase-
free membrane slides (Carl Zeiss Microscopy LLC, Cambridge,
UK). Slides were transferred immediately for fixing and staining
with 1% (w/v) cresyl violet (Sigma-Aldrich, Buchs, Switzerland).
Stained, air-dried sections were then reviewed by the study
pathologist, who identified proliferative lung lesions in each
section. These lesions were subjected to LCM using the PALM
MicroBeam (Carl Zeiss Microscopy LLC). LCM tissue samples
were transferred to opaque AdhesiveCap 500 tubes (Carl Zeiss
Microscopy LLC) and stored at −80◦C until RNA and DNA
extraction (generally for<2 weeks). In total, 172 parenchyma and
101 tumor samples were collected for gene expression analysis,
and 172 parenchyma and 73 tumor samples were collected for
DNA sequencing (Supplementary Table 1).

Gene Expression Analysis
Sample randomization was performed prior to RNA extraction
as a complete block randomization, where the blocking factor was
defined by both the type of exposure (study/treatment group) and
the dissection time point. The purpose of block randomization
is to blind the analysts who conducted RNA extraction and
gene expression analysis, and to prevent potential confounding
batch effect.

Total RNA was isolated from the LCM tissues using the
RNeasy Micro Kit (QIAGEN, Hilden, Germany) following the
manufacturer’s instructions for QIAcube (QIAGEN) automated
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extraction. The isolated RNA was subjected to quality control
(QC) checks using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA), and the quantity of
the isolated RNA was determined using NanoDrop 1000
spectrophotometers (Thermo Fisher Scientific, Waltham, MA,
USA). Because a pre-study optimization phase indicated that
the RNA Integrity Number is not reliable in this particular
sample type, sample quality was evaluated based on BioAnalyzer
traces, and all RNA samples exhibiting typical ribosomal RNA
peaks (a sharp peak at 22.5 ± 2.5 s for the alignment, a
sharp peak at 42.5 ± 2.5 s corresponding to 18 s ribosomal
subunit and a sharp peak at 49.5 ± 2.5 s corresponding to
28 s ribosomal subunit) were processed for the downstream
microarray analysis.

Two ng total RNA were processed using the Affymetrix R©

HT 3
′
-IVT Pico kit (Thermo Fisher Scientific, Santa Clara,

CA, USA). The resulting double stranded cDNA was then
hybridized to GeneChip R© Mouse Genome 430 2.0 Arrays
(Thermo Fisher Scientific) in a GeneChip R© Hybridization
Oven 645 (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Arrays were rinsed and stained
on a GeneChip R© FS450 DX Fluidics Station (Thermo Fisher
Scientific) using the Affymetrix R© GeneChip R© Command
Console R© Software (AGCC v3.2, protocol FS450_0001).
Finally, microarrays were scanned using a GeneChip R©

Scanner 3000 7G (Thermo Fisher Scientific). Raw images
from the scanner were saved as DAT files, which were
automatically gridded by the AGCC software to give Affymetrix
CEL files.

The raw CEL files were background-corrected, normalized,
and summarized using the frozen robust multiarray analysis
(Bolstad et al., 2005; Dai et al., 2005). Quality checks,
including log-intensities, normalized-unscaled standard error,
relative log expression (RLE), median absolute value RLE, and
pseudo-images, were performed with the affyPLM package of
Bioconductor (Bolstad et al., 2003, 2005). This process led to the
exclusion of data from 10 parenchyma and 19 tumor samples
because of unsatisfactory quality (Supplementary Table 1). As
a consequence, there were only parenchyma but no tumor data
in the sham group for month 5 [N = 7, 8, 8, 7, and 8 for
sham, 3R4F, THS (L), THS (M) and THS (H), respectively, for
parenchyma tissue]. Month 10 data included those from 10 to 4
parenchyma and tumor samples from the sham group, 7 and 5
parenchyma and tumor samples from the 3R4F group, 12 and
5 parenchyma and tumor samples from the THS (L) group,
11 and 4 parenchyma and tumor samples from the THS (M)
group and 12 parenchyma samples from the THS (H) group.
Month 18 data derived from 10 to 5 parenchyma and tumor
samples from the sham group, 10 and 16 parenchyma and
tumor samples from the 3R4F group, 10 and 9 parenchyma and
tumor samples from the THS (L) group, 13 and 12 parenchyma
and tumor samples from the THS (M) group and 12 and
9 parenchyma and tumor samples from the THS (H) group.
The month 15 samples from the male animals included 16
and 8 parenchyma and tumor samples from the sham group
and 5 and 2 parenchyma and tumor samples from the THS
(H) group.

Interaction Analysis
Gene expression data from A/J mouse lung parenchyma (P)
and tumor (T) samples from a previous inhalation study
(accession number: E-MTAB-1871) were analyzed for interaction
effects between tissue type (T or P) and between air/sham
and CS exposure using a linear model (Luettich et al.,
2014). The RNA expression values of multiple samples were
averaged if these multiple samples from the same animal,
for parenchyma tissue and tumor tissue, respectively. The
genes with significant interaction are those whose levels
were differentially affected between the 2 tissue types upon
exposure (Supplementary Figure 1). As the tumor sample and
parenchyma sample from one animal may be not completely
independent, for this study, the interaction model was adapted
to consider tumor and parenchyma pairing information and
employed to identify interaction effects between tissue type (T
or P) and between exposures (CS or THS 2.2 aerosol vs. air). The
interaction model in Luettich et al. (2014) cannot be directly used
in this study because of this pairing information. The difference
of RNA expression values per gene between the tumor and
parenchyma samples for every animal, GxP, was computed, to
remove the possible dependence. Then a statistical model is fitted
based on the independent samples, as follows:

△GxP i,j = β0,i + β1,i × ExposureTypej + εi,j (1)

with i = 1, . . . , p and j = 1, . . . , n, where p denotes the total
number of genes, 17,473; n denotes the number of independent
samples (mice) in the above model; ExposureType is 3R4F
CS (13.4 ug/l nicotine), or THS 2.2 Low (6.7 µg/l nicotine),
or THS 2.2 Med (13.4 µg/l nicotine), or THS 2.2 High (26.8
µg/l nicotine), respectively; β1,i and β0,i denote the interaction
coefficient and the intercept, respectively, for gene i; εi,j is the
error term. This model was separately applied to the combination
of 4 different ExposureType aforementioned and the time points
(months 10, 15, and 18), as a single model may not fulfill
homoscedasticity conditions.

The interaction model was not fitted separately for every gene,
but was fitted by using the popular R package limma which is
widely used in gene expression analysis. limma uses moderated
t-statistic (t), which is the ratio of the M-value to its standard
error. The moderated t-statistic has the same interpretation as
an ordinary t-statistic except that the standard errors have been
moderated across genes, effectively borrowing information from
the ensemble of genes to aid with inference about each individual
gene (Ritchie et al., 2015). The number of independent samples
(mice), n, is shown together with the contrast name in Figure 1.
The raw p-values of the interaction coefficient were corrected
applying the false discovery rate (fdr) method, and adjusted p-
values below 0.05 were considered significant. Because there was
only 1 spontaneous tumor sample, which did not pass the QC,
from month 5, the interaction analysis was restricted to samples
from dissection months 10, 15, and 18. The resulting interaction
terms were displayed as volcano plots in Figure 1, in which the
x-axis represents the estimated effect (the interaction coefficient),
and the y-axis represents the –log10(fdr-corrected p-value of the
interaction coefficient) for each gene.
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FIGURE 1 | Volcano plots representing the expression profiles of significant interaction terms. The interaction term reflects the changes in gene expression (due to

exposure), which were different in tumors compared to the surrounding parenchyma tissues. The interaction value for each gene, denoted as log2 fold change, is

plotted on the x-axis, and the statistical significance, proportional to the –log10 of the fdr-adjusted p-value, is plotted on the y-axis. Yellow and cyan dots indicate genes

that have positive and negative interaction values, respectively (right and left quadrants, respectively). The interactions are labeled according to the test item, nicotine

concentration (µg/L), sampling time point, gender [F(emale)/M(ale)], and the number of independent samples (mice). For example, “Inter 3R4F Med (13.4 µg/L) 18m F,

n = 13” represents the interaction term for group of 13 female A/J mice exposed to 3R4F CS at a nicotine concentration of 13.4 µg/L for the 18-month time point.

Gene Signature Generation
To identify a specific tumor gene signature that discriminates
between spontaneous tumors in sham animals and those that
were exposure-related, the above statistical model was applied
to group MS-300 for data in the previous A/J mouse study
(Luettich et al., 2014). Genes were ranked based on the absolute
values of the interaction coefficients β1,i. With only 17 available
spontaneous tumor samples in the current A/J mouse study, the
maximum number of genes with which a robust covariance could
be estimated in a 10-fold cross-validation was 13. The signature is
therefore composed of the top 13 genes identified in the previous
A/J mouse lung tumor analysis (absolute values of the interaction
coefficients >4.8). The size of the gene signature is denoted
by N. The probability distribution of the spontaneous tumor is
described as a multivariate Gaussian distribution, f, as follows:

f (xi) =
1

√

(2π)N |6|

e−
1
2 (xi−u)T6−1(xi−u) (2)

where i is the index of sample i, xi is the vector of gene
expression values, Σ is the covariance matrix, and u is the
mean of this multivariate Gaussian distribution. The term
D2
i = (xi − u)

T
6−1(xi − u) in the formula is called the squared

Mahalanobis distance (Mahalonobis, 1936). If the covariance
matrix is the identity matrix, the Mahalanobis distance reduces
to the Euclidean distance. For the purpose of brevity, we
refer to the squared Mahalanobis distance simply as the
Mahalanobis distance.

The Mahalanobis distance method was used as a 1-class
classifier. For any new sample j, the squared (“skewed”) distance
to the mean (u) of the sham group is evaluated by computing the
Mahalanobis distance:

D2
j = (xj − u)

T
6−1(xj − u) (3)

This distance thereby enables the classification of any sample xj
as a spontaneous tumor if the latter is sufficiently small (please
refer to the below classification rule).
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The model was trained only on data from the spontaneous
tumors of the current A/J mouse lung cancer study. The
Mahalanobis distance-based 1-class recall was evaluated by
10-fold cross-validation, iterated 10 times, leading to a 75%
recall. This indicates that the distribution is not over-fitted
with reasonable confidence. The data from the exposure-related
tumors were then used in the model to derive probability
estimates for the distance to the sham group tumors. Given the
mean and covariance matrix, the squared Mahalanobis distance
of all data points follows a χ2 distribution with N degrees
of freedom. The classification rule is defined as follow: If the
likelihood of a sample Mahalanobis distance according to the
aboveχ

2 distribution is smaller than 0.05, the tumor was believed
to belong to the non-spontaneous group, otherwise, the tumor
sample would be classified as spontaneous tumor. The distances
were estimated for all samples, and the mean distances were
displayed as a bar plot (Supplementary Table 2). We applied the
classification rule to 3R4F CS-related lung tumors and tumors
from THS 2.2 aerosol-exposed mice.

Gene Ranking
The human orthologs of the mouse gene signature
were obtained using HGNC Comparison of Orthology
Predictions (HCOP) (https://www.genenames.org/tools/
hcop/). RNA-Seq data for human lung adenocarcinoma
samples were obtained from The Cancer Genome Atlas
Program (TCGA Research Network; https://www.cancer.
gov/tcga). Tumor samples in TCGA data were filtered
out if their diagnosis was not “Lung Adenocarcinoma,” if
the information from the “tobacco_smoking_history” and
“tobacco_smoking_history_indicator” fields were not consistent,
or if the content of column “tobacco_smoking_history” was
either empty or listed as “Current Reformed Smoker, Duration
Not Specified.” We thus retrieved data from 205 tumor
samples from 45 current smokers, 130 former smokers, and
30 never-smokers.

The ranks of signature genes in this A/J mouse study and
the TCGA human lung adenocarcinoma gene expression data
were computed as follows. The interaction terms for the A/J
3R4F group at month 18 were sorted in descending order
based on their absolute values. Comparisons of the signs of the
signature gene interaction terms in the current A/J mouse study
with those in the previous study confirmed that they are 100%
consistent. Then, the interaction terms in the TCGA dataset
were computed and sorted in descending order based on their
absolute values. The signs of the interaction terms of the signature
genes in the TCGA dataset were also compared with those in
the previous A/J mouse study, and they are 85% consistent.
Next, the median ranks of the signature genes in the current
A/J mouse study were calculated. To estimate their p-values,
a bootstrap approach was performed by randomly selecting N
genes 10,000 times, and the density of the resulting median ranks
was estimated. Similarly, the median ranks of signature genes in
the TCGA dataset were estimated, and a density was estimated
based on 10,000 times resampling. Additionally, the first quartile
(Q1) of the Mahalanobis distance of the 3R4F group/current
smoker group minus the third quartile (Q3) of the Mahalanobis

distance of the sham group/never-smoker group was estimated
for the current A/J mouse and TCGA datasets, respectively.
Again 10,000 random re-samplings were performed to obtain the
bootstrapped p-values.

Cancer Outlier Gene Analysis
The cancer outlier gene (COG) analysis reported by Seo et al.
(2012) was applied to all 17,473 genes on the GeneChip R©

Mouse Genome 430 2.0 Array across a total of 252 tumor
and parenchyma samples. First, all gene expression values
were subtracted by their median (location normalization).
All expression values were then divided by their 1.4826 ×

median absolute deviation (scale normalization). Given a set of
normalized expression values, Q75 + 3 × inter-quartile range
(IQR) is defined as an outlier cutoff, where Q75 is the 75th
percentile expression value, and the IQR is the absolute difference
between the 25th and the 75th percentile expression values. An
expression value was treated as an outlier when its normalized
expression value exceeded the outlier cutoff. Finally, genes that
exhibited an outlier pattern in at least 1 cancer sample were
chosen as candidate COGs.

DNA Sequencing Analysis
Sample randomization was performed prior to DNA extraction
as a complete block randomization, where the blocking factor
was defined by both the type of exposure (study group) and the
dissection time point.

DNAwas isolated from the LCM tissues following the addition
of 375 µL AMPure XP magnetic beads (Beckman Coulter Inc.,
Brea, CA, USA) to each sample and incubation for 15min on
a rotary shaker. The samples were then placed on a magnetic
rack for 5min. Two washes with 1,400 µL 70% ethanol were
performed before eluting the captured DNA with 22.5 µL AE
buffer (QIAamp DNA Mini Kit, QIAGEN). DNA quantity was
assessed on a Qubit R© 2.0 fluorimeter (Thermo Fisher Scientific).
Two tumor samples failed DNA QC and were therefore excluded
from further processing and analysis (Supplementary Table 5).

DNA sequencing libraries were prepared using the Nugen
Ovation R© Ultralow Library Systems (Tecan Genomics, Inc.,
Redwood City, CA, USA) following the manufacturer’s
instructions. The concentrations and sizes of the sequencing
libraries were verified on the Agilent 2100 Bioanalyzer.
Normalized libraries were pooled in multiplexes of libraries
and clustered on Illumina HiSeq 3000/4000 PE flow cells using
Illumina HiSeq 3000/4000 PE Cluster Kits (Illumina, San
Diego, CA, USA). Sequencing was performed on an Illumina
HiSeq 4000 system using Illumina HiSeq 3000/4000 SBS kits
(300 cycles).

Reads were cleaned of adapters and trimmed to a maximum
length of 150 bases using the bbduk tool version 37.99 (Bushnell,
2014). By using the FastqToSam command from the Genome
Analysis Toolkit (GATK) v4.0.1.1s (DePristo et al., 2011), reads
were annotated with metadata such as the read group name,
flowcell identifier, and lane number as a unique tag. Subsequently,
the annotated reads were converted to Fastq format with the
GATK SamToFastq tool. The tagged reads were aligned to
the mouse genome (m38, Ensembl release 78) by using the
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BWA MEM algorithm v0.7.17 (Li, 2013), and the mapping was
complemented with the GATK MergeBamAlignment tool. The
resulting alignment [Binary Sequence Alignment Map, (BAM)]
files were filtered for duplicates using the GATKMarkDuplicates
tool (DePristo et al., 2011). All individual BAM files for each
sample were merged into a single file.

A masking file was created to avoid single nucleotide
polymorphism (SNP) calling in areas of very high coverage.
For the most densely sequenced female and male parenchyma
tissue samples, the sequence coverage density distribution was
determined with the SAMtools suite mpileup program. The
following procedure was used to generate the mask for excluding
high coverage regions: for the autosomes and the X chromosome,
the 95th percentile of the read density distribution derived from
the female parenchyma sample was chosen as the cut-off; for
the Y-chromosome, the 95th percentile of the read distribution
from the male parenchyma sample was chosen. Sites in the
genome with more than the specified coverage were identified,
and contiguous sites were joined to segments. These segments
were filtered by a minimum length of 20 bp, extended on
either side by 50 bp, before merging adjacent elements closer
than 30 bp. The resulting exclusion list was inverted using the
bedtools complement function (Quinlan and Hall, 2010) to yield
a “whitelist.”

The merged BAM files were grouped by animal, whereby at
least 1 tumor sample and 1 parenchyma sample had to be present
in the group for the calling to be performed. These groups were
used as input for Freebayes v1.2.0 (Garrison and Marth, 2012),
which called variants based on the whitelist. This resulted in 1 file
(Variant Calling Format [VCF]) per group containing the joint
calls for all input BAM files. Initially, heterozygous SNPs were
selected from the VCF file if they had a minimum quality score
of QUAL>1. Subsequently, mutations were selected that were
specific to the tumor tissue (i.e., they occurred in the tumor tissue,
and there were no reads supporting the presence of this mutation
in the parenchyma tissue). If any of the parenchyma samples
had even a single read supporting the call, the mutation was
deemed pre-existing. The mutations were annotated using CAVA
v1.2.3 (Munz et al., 2015) to determine the genic effect of the
mutation. For point mutation analysis, heterozygous mutations
with a CIGAR string equal to 1X and an ODDS score > 10 were
selected. Allosomal mutations were excluded from the mutation
spectrum analysis to assure comparability between the samples.
For the functional analysis, all heterozygousmutations were used,
except for the allosomes inmales, in which case only homozygous
mutations were selected.

Mutations were processed in R (v3.2.2 for data processing,
v3.4.3 for visualization) using the VariantAnnotation (Obenchain
et al., 2014) and SomaticSignatures (Gehring et al., 2015)
packages. Mutation spectra were calculated by counting each of
the mutation types [following their conversion to the pyrimidine
first notation (C→ A, C→G, C→ T, T→A, T→ C, T→G)]
and converting them to percentages of the total per sample.
Analogous to the gene expression data, the Mahalanobis distance
of each sample to the centroid of the sham group was calculated,
but using the vector of mutation type frequency instead of
the vector of gene expression values; 1 column (arbitrarily,

the T > G mutation column was chosen) was excluded from
the analysis to avoid collinearity amongst the input variables
(Supplementary Table 3).

For clustering, distances between the samples based on the
mutation spectra were calculated using the dist function in R
(default Euclidian distance), and the distance matrix was used
as the input for hierarchical clustering, as implemented in the R
function hclust (the default complete linkage method was used).

Statistical Analysis
The comparisons between the means of Mahalanobis distances
in different groups for both gene expression data and mutational
spectra were performed by 2-sample Student’s t-test with
Welch modification to the degrees of freedom. Specifically,
the R function t-test was used (Ripley, 2001). P < 0.05 were
considered significant.

RESULTS

Gene Expression
To delineate the differences between lung tumors forming
spontaneously in air-exposed A/J mice and tumors present in
animals following exposure to 3R4F CS or THS 2.2 aerosol, we
employed an interaction analysis, taking into account the 2 tissue
types, tumor and parenchyma, and the exposure effects relative
to air exposure. This highlighted 7 significantly differentially
expressed genes (based on interaction terms) in the lung tumors
of animals exposed to 3R4F CS for 18 months compared to sham
animals (fdr-adjusted p < 0.05). Of these genes, 1 (Arsb) was
upregulated and 6 (Lcn2, Cxcl1, Rgs1, Lrg1, Lhfpl2, Msr1) were
downregulated in tumors from CS-exposed animals compared to
spontaneous tumors from sham animals (Figure 1).

The interaction analysis did not identify any differentially
expressed genes between the lung tumors in THS 2.2 aerosol-
exposed and sham-exposed mice (Figure 1).

Our previous analysis of A/J mouse lung tumor gene
expression profiles indicated a suppression of the humoral
immune response in tumors from 3R4F CS-exposed animals,
with an overall decrease in expression levels of genes
contributing to the humoral immune response network
and a predicted reduction in B cell function (Luettich et al.,
2014). At the same time, gene enrichment analysis suggested
enhanced accumulation of glycosphingolipids, glycosylceramide,
glycosaminoglycans, and lipids in CS exposure-related tumors
compared to spontaneous tumors, while processes contributing
to cellular homeostasis of lipid metabolites, such as transport,
efflux, and degradation, as well as the expression of multiple
lysosomal enzyme-encoding genes, appeared to be suppressed
following exposure. We suspected an intricate interlinking of
these processes resulting in perturbations of the anti-tumor
immune response, with insufficient antigen presentation
potentiating the ability of tumor cells to escape from immune
surveillance in CS-exposed A/J mice (Luettich et al., 2014).
In the current study, gene expression profiles of lung tumors
from CS-exposed mice exhibited similar features, including
suppressed immune response, decreased leukocyte activation,
migration, adhesion and infiltration (z-scores: −2.997 to
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−1.99), and increased lung inflammation (z-score: 1.311)
(Supplementary Table 4). However, an obvious decline in B cell
function based on gene expression analysis was not apparent,
although a number of genes implicated in B cell proliferation
(e.g., Ccl28, Ccr6, Cd44, Cd80, Cd86, Ctsb, Fcgr1b, Fcgr2b, etc.)
were downregulated in tumors from CS-exposed mice compared
to those from sham-exposed mice. Similarly, marked effects
on lipid or glycophospholipid metabolism pathways were not
observed. The absence of statistically significant changes in gene
expression levels in lung tumors from THS 2.2 aerosol-exposed
mice precluded a similar analysis of affected pathways and
biological processes.

Tumor Classification
To further investigate differences between lung tumors arising
in sham-exposed mice compared to those in 3R4F CS- or THS
2.2 aerosol-exposed A/J mice, a 1-class classifier was derived
from gene expression data of the previous A/J mouse lung
cancer study (Luettich et al., 2014). This classifier comprised the
highest ranked genes (absolute interaction value > 4.8): Scgb3a1,
Iglv1, Ighv1-14, Bex1, Ighg3, Chia1, Ighm, Ighg2b, Iglc1, Saa3,
Acoxl, Itih4, and Ighg1. These 13 genes were not indicative of
an exposure effect, because the interaction analysis accounts for
exposure effects. This gene signature was then used to calculate
distances and the associated probability estimates of similarity
between tumors in 3R4F CS- or THS 2.2 aerosol-exposed and
sham animals. Based on the 13-gene signature, the results showed
that lung tumors in 3R4F CS-exposed mice were significantly
different from those in air-exposed animals (p < 0.001). In
addition, based on this gene signature, lung tumors from female
THS 2.2 aerosol-exposed mice were not significantly different
from those in sham animals. They were, however, significantly
different from those in 3R4FCS-exposedmice [p< 0.001 for THS
2.2 L (6.7 µg nicotine/L) and THS 2.2M (13.4 µg nicotine/L);
p < 0.05 for THS 2.2H (26.8 µg nicotine/L)]. The lung tumors
from male A/J mice exposed to THS 2.2 aerosol also appeared to
exhibit dissimilarities to tumors in sham and 3R4F CS-exposed
mice. However, because the number of tumors in the male THS
2.2 aerosol-exposed mice was small (N = 2), the statistical test
was not as powerful as that for the corresponding female study
group (Figure 2).

To better visualize the differences between the 2 classes of
tumors on a tumor-by-tumor basis, the similarity measure was
also visualized as a box plot (Figure 3). This data view clearly
indicates that, based on the gene signature, the majority of lung
tumors in THS 2.2 aerosol-exposed mice were similar to the lung
tumors in sham animals but different from those in 3R4F CS-
exposed mice. In addition, 2 extreme values became apparent
among lung tumors from the sham group, which were collected
from 1 male and 1 female mouse at month 15 and month 18,
respectively (Figure 3).

Gene Signature Translatability
Because the gene signature was developed from mouse lung
tumor data, and the A/J mouse is a model of CS-related lung
cancer in humans, the question of translatability and applicability
of the signature to human lung tumors arose. Therefore, we

examined the ability of the gene signature, once orthologized,
to discriminate lung adenocarcinomas in smokers from those in
never-smokers using gene expression data from TCGA (Cancer
Genome Atlas Research Network, 2014).

First, we evaluated the enrichment of the signature genes in
the interaction term values from the current A/J mouse study and
the TCGA dataset. The gene signature ranked high in both the
current A/J study and human TCGA datasets, with p-values of
the median rank of 0 and 0.0008, respectively. Then, we evaluated
the specificity of the signature with respect to random sets
of 13 genes. P-values for 1Q1–Q3 (3R4F/smoker, sham/never-
smoker) were 0 and 0.002 in the current A/J mouse and TCGA
datasets, respectively (Figure 4).

Applying the orthologized gene signature, the current smoker
group separated well from the never-smoker group, and the
difference between these 2 groups was statistically significant (p
< 0.05, t-test). Former smokers exhibited similarities to both
never- and current smokers with respect to the gene signature,
with the median distance closer to the current smokers than to
the never-smokers (Figure 5).

Together, these data show that the gene signature derived
from the mouse lung tumor data is able to distinguish lung
adenocarcinomas in current smokers from those in never-
smokers. Of note, the distinction also appears to be technically
robust, considering that the gene signature was derived from
a microarray gene expression dataset and applied to an RNA-
Seq dataset.

Mutation Spectra
To identify mutations occurring in the mouse lung tumor
samples, the sequencing reads from all parenchyma-tumor pairs
were mapped to the mouse reference genome. Mutations unique
to the tumor samples (i.e., those not occurring in the matched
parenchyma tissue) were selected for downstream analysis of
the total number, the frequency of base substitution, and their
potential phenotypic effects.

Mutation counts per sample were below 2000 for all sham
and THS 2.2 and most 3R4F tumor samples. There were,
however, 2 samples from the 3R4F treatment group with point
mutation counts of 5,026 and 6,626 (Supplementary Figure 2).
Next, for each tumor, the frequencies of the 6 types of single-
point mutations (C→A, C→G, C→T, T→A, T→C, T→G)
were calculated, yielding a mutation spectrum. Other than a
small subgroup of 3R4F tumors with a higher proportion of
C→A mutations, there was no clear, systematic formation of
clusters, in that the tumors from animals of the various treatment
groups did not segregate clearly based on mutation spectrum
(Supplementary Figure 3). The mutational profile observed at
the trinucleotide level in a subset of tumors corresponds
with signatures typically associated with, amongst others, lung
cancer (Alexandrov, 2015; Supplementary Figure 4). The per-
tumor mutation spectrum was therefore used for calculating the
Mahalanobis distances between tumors in exposed and sham
animals. This analysis showed that the only exposure group that
had a significantly different (p < 0.05) as well as an increased
averageMahalanobis distance to the sham groupwas the 3R4F CS
exposure group (Figure 6). By contrast, the mutational spectra of
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FIGURE 2 | Estimates of similarity between lung tumors in A/J mice using gene signature data. As an estimate of similarity between lung tumors, the Mahalanobis

distance between lung tumors in sham animals and those in each exposure condition (indicated on the x-axis) was calculated based on a 13-gene signature derived

from the interaction analysis of gene expression data from a previous A/J mouse lung cancer study (E-MTAB-1871). Results are presented as mean ± standard error

of the mean (SEM). Significant differences between exposure and sham groups are represented by ***(p < 0.001); significant differences between THS 2.2 aerosol

and 3R4F CS exposure groups are represented by #(p < 0.05) and ###(p < 0.001). + Indicates that there were only 2 tumor samples in this study group. THS,

Tobacco Heating System. The number of QC-passed tumor CEL files, N, for different groups are given under the corresponding bars.

the tumor samples from THS 2.2 aerosol-exposed mice were not
statistically significantly different from those of the sham group
(Figure 6).

To better visualize the differences between the 2 classes of
tumors on a tumor-by-tumor basis, the similarity measure was
also visualized as a box-whisker plot (Figure 7). This data view
shows that, based on the mutation spectra data, the majority of
lung tumors in THS 2.2 aerosol-exposed mice were more similar
to the lung tumors in sham animals than to those from 3R4F CS-
exposed mice. A robust equivalence test based on the mutation
spectra data was performed to test if the lung tumors in THS 2.2
aerosol-exposed mice is significantly similar to the lung tumors
in sham animals, compared to the lung tumors from 3R4F CS-
exposed mice. The R function rtost in R package equivalence
fromCRANwas used (Robinson, 2016). Themagnitude of region
of similarity, epsilon, is chosen to be 5% of the distance between
the means of the lung tumors from 3R4F CS-exposed mice and
the lung tumors in sham animals. The p-value is 0.02, which
means that the lung tumors in THS 2.2 aerosol-exposed mice
is significantly similar to the lung tumors in sham animals,
compared to the lung tumors from 3R4F CS-exposed mice.

Subsequently, the location of the mutations was determined
relative to the genes, and a list of genes containing at least 1
mutation was generated. As the total number of exonic point

mutations was low, any mutation location (including intronic
mutations) was considered to affect genes. Surprisingly, Kras
point mutations were observed in only 6 lung tumors (3 sham, 1
3R4F, 1 THS 2.2 L, and 1 THS 2.2H tumor sample), suggesting
that point mutation is not the predominant cause for the
proposed oncogene activation in 3R4F CS- or THS 2.2 aerosol-
exposed mice. Lrp1b was the gene most frequently affected by
point mutations, followed by Csmd1, Fgfr2, Grm7, Dcc, Fhit, and
Csmd3. There was no obvious relationship between mutation
frequency and type of exposure.

Overall, very few genes had protein function-altering point
mutations in more than 1 of the tumor tissues sequenced here,
preventing further conclusions to the potential phenotypic effects
of these mutations. Therefore, the list of genes affected by
mutations was combined with the list of genes considered to
be gene expression outliers (COGs), and genes were filtered for
their previously reported role(s) in human cancers. This yielded
a transcriptional and mutation landscape, providing a unique
insight into the molecular makeup of age- and exposure-related
tumors in this mouse strain (Figure 8). Most noticeable in this
landscape view is that most genes exhibited either a mutation
or extreme upregulation, but very rarely both. In addition, Ros1
expression was frequently highly upregulated, independent of
exposure, whereas Ddx3y, Kdm5d, and Uty gene expression was
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FIGURE 3 | Mouse lung tumor classification. Mahalanobis distance of each individual tumor in 3R4F CS- or THS 2.2 aerosol-exposed mice from the center of the

sham group using the 1-class model based on the gene expression data. Exposure groups are indicated by color; sex and time point are indicated by different

symbols (see legend). The Mahalanobis distances between the gene signature for each tumor sample and those of the sham group are presented as box plots. The

centerline represents the median, and the box encloses the 1st and 3rd quartiles (“hinges”). The upper and lower whiskers represent the furthermost points from the

respective hinges, which are no more than 1.5 IQRs from the hinge. Data are shown as individual points. THS, Tobacco Heating System.

strongly increased in the same tumors from sham and THS 2.2
High aerosol-exposed mice.

DISCUSSION

The A/J mouse strain is susceptible to lung tumorigenesis
following chemical exposure, including exposure to CS (Coggins,
2010). As this mouse strain consistently shows a significant and
cigarette smoke total particulatematter concentration-dependent
increase in lung tumor incidence and multiplicity after 15 to 18
months of exposure (Stinn et al., 2013a,b), it has been historically
used in lung tumorigenesis studies. This body of work helped
us understand the temporal pattern of emphysema and tumor
development, as well as tumor progression in A/J mice, and led
us to consider the A/J mouse as an appropriate model for lung
tumorigenesis (Wong et al., 2020). Although CS exposure leads
to increased lung tumor incidence and multiplicity, non-exposed
A/J mice will also develop lung tumors spontaneously as they age
(Witschi, 2004). Themajority of murine lung lesions are classified
as hyperplasias and adenomas, which lack the histological
heterogeneity that is seen in human lung carcinomas (Nikitin
et al., 2004). Moreover, histologically, spontaneous tumors are
indistinguishable from chemical exposure-related tumors. This
raises the question whether the exposure-related tumors are of

a similar type to spontaneous tumors and whether molecular
characterization of these 2 tumor types could provide additional
insights in support of human hazard estimations. The distinction
becomes particularly important when the overall tumor response
is moderate and the dose-response is shallow, as is the case in
the A/J mouse model (Stinn et al., 2013a). Our previous study
indicated that gene andmiRNA expression analyses of A/J mouse
lung tumor tissues may be useful means to delineate potential
mechanisms that underpin the divergence of tumor progression
in CS-exposedmice from that in air-exposedmice (Luettich et al.,
2014).

Given our prior experience with this lung cancer model,
we utilized gene expression profiles of LCM lung tissues to
develop a classification approach. Unlike previously, we argued
that as exposed mice may exhibit both exposure-related and
spontaneous tumors, distinguishing the 2 should be considered a
1-class rather than a 2-class problem, with the only unequivocally
defined class being the spontaneous tumors arising in sham
animals. One-class classification, which is also known as unary
classification or class-modeling, aims at identifying samples of a
specific group amongst all samples by learning from a training
set containing only the objects of that group (Désir et al., 2013;
Irigoien et al., 2014; Oliveri, 2017). Because in many cases
groups are not ambiguous, there are far fewer applications of
1-class classification than of 2- or multi-class classification in
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FIGURE 4 | Ranks and statistical characteristics of the gene signature in mouse and human lung tumor gene expression data. The rank of the 13 signature genes, the

density plot of 10,000 median ranks of 13 randomly selected genes, and the density plot of 1Q1–Q3 (3R4F/smoker, sham/never-smoker) based on 10,000 sampling

of 13 random genes in the dataset of the current A/J mouse lung cancer study (left panel) and the TCGA dataset (right panel) are displayed. Red lines indicate median

ranks of gene signature genes; green lines indicate 1Q1–Q3 (3R4F/smoker, sham/never-smoker).

biomedical studies (Yang et al., 2012; Ganesan et al., 2013).
Applying an interaction analysis to gene expression data, we
extracted a gene signature that can be used as a tumor classifier
surmising that, as only spontaneous tumors arising in sham-
exposed animals are unequivocally defined, a 1-class classification
can be applied. The methods for 1-class classification can be
divided into 3 groups: density estimation, boundary methods,
and reconstruction methods. The Mahalanobis distance method
is a density estimation, which is simpler and more robust for data
sets with different covariance structure and a more natural choice
for gene expression data. Bias in gene signatures (i.e., lower true
classification accuracy than the reported classification accuracy)
is a common challenge in gene signature generation. A review of
111 high-impact manuscripts involving classification analysis of
gene expression data found that 58 (53%) drew their conclusions
based on a statistically invalid method, which can lead to bias in
a statistical sense (Barbash and Soreq, 2013). In our approach,
gene signature bias was addressed by leveraging gene expression
data from an independent A/J mouse study to develop a tumor
gene signature (Luettich et al., 2014). Of note, the gene signature

and the 1-class classifier successfully discriminated spontaneous
tumors in sham animals from exposure-related tumors in this A/J
mouse lung cancer study with 75% recall in a 10-times 10-fold
cross-validation. In addition, the classification also indicated that
tumors fromTHS 2.2 aerosol-exposedmice were not significantly
different from those of sham animals, suggesting a lack of
carcinogen-driven divergence in those tumors, which could be
a direct consequence of the significant reductions in carcinogen
levels in THS 2.2 aerosol. To examine the translatability of these
findings, the gene signature (orthologized based on gene symbol)
was then tested on human lung adenocarcinoma gene expression
data from the TCGA database (https://www.cancer.gov/tcga).
This analysis showed that lung tumors in never-smokers could be
discriminated from lung tumors in former and current smokers,
indicating that both gene signature and classifier are robust and
translatable from mice to humans.

There are major clinical differences between lung cancers
arising in never-smokers and smokers and their response to
targeted therapies. Non-smoking status is actually the strongest
clinical predictor of benefit from EGFR tyrosine kinase inhibitors
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FIGURE 5 | Human lung adenocarcinoma classification using the orthologs of the mouse lung tumor gene signature. The Mahalanobis distances between the gene

signatures for each tumor sample are presented as individual data points in box plots for each of the groups indicated on the x-axis (current, former, and

never-smoker). The centerline represents the median, and the box encloses the 1st and 3rd quartiles (“hinges”). The upper and lower whiskers represent the

furthermost points from the respective hinges, which are no more than 1.5 IQRs from the hinge. Data are shown as individual points.

(Sun et al., 2007). Even though our signature discriminated
cancers in never-smokers from the majority of cancers in ever-
smokers, there were some tumors in ever-smokers which are
similar in gene expression profile to tumors in never-smokers,
as demonstrated by the Mahalanobis distances (Figure 5). There
is a possibility that these patients, even though they are ever-
smokers, may also benefit from treatment with EGFR tyrosine
kinase inhibitors. This 13-gene gene signature could enable

the development of a cost efficient PCR kit for identifying
these patients.

In addition to gene expression profiling, we also explored
DNA mutation profiles of spontaneous and exposure-related
lung tumors in this mouse model. Mutation data were used
for classification tasks in the past (Alexandrov et al., 2013;
Alexandrov et al., 2016b; Phillips, 2018). With recent advances
in cancer genome sequencing characteristic mutation signatures
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FIGURE 6 | Estimates of similarity between lung tumors in A/J mice using mutation spectra data. As an estimate of similarity between lung tumors, the Mahalanobis

distance between lung tumors in sham animals and those in each exposure condition (indicated on the x-axis) was calculated based on mutation spectra. Results are

presented as mean ± SEM. Significant differences between exposure and sham groups are represented by *(p < 0.05); significant differences between THS 2.2

aerosol and 3R4F CS exposure groups are represented by #(p < 0.05). + indicates that there were only 2 tumor samples in this study group. THS, Tobacco Heating

System. The number of analyzed samples that could be combined with the transcriptomics samples, N, for different groups are given under the corresponding bars.

can be derived from different cancer types. For example,
sequencing of a small cell lung cancer cell line yielded
characteristic CS exposure-related mutation patterns (Pleasance
et al., 2010). A subsequent large-scale sequencing effort showed
that these exposure effects were indeed consistent across multiple
cancer genomes, leading to the identification of a CS-specific
mutational signature (Alexandrov et al., 2016a), which is thought
to recapitulate the processes involved in mutagenesis (Nik-Zainal
et al., 2015). Therefore, we extended tumor classification to
include mutation spectra using a similar 1-class approach to
the one applied to gene expression data. This approach showed
that mutation spectra were also different between lung tumors
from 3R4F CS-exposed mice and those in sham animals, and
again, tumors from THS 2.2 aerosol-exposed mice resembled
those from air-exposed mice. This is an important finding
considering that the number of A/J lung tumor mutations was
relatively small compared to the high frequency of mutations
seen in human non-small cell lung cancers (Cancer Genome
Atlas Research Network., 2012, Cancer Genome Atlas Research
Network, 2014). Moreover, the current findings also indicated
that K-ras activation, postulated to predispose A/J mice to lung
tumor formation (Lin et al., 1998), may not occur via point
mutation. This contrasts with human lung adenocarcinomas, in

which mutant K-ras is thought of as oncogenic driver and of
which between 19 and 33% were shown to harbor oncogenic
KRASmutations (Cancer GenomeAtlas ResearchNetwork, 2014;
Wu et al., 2015). It is possible that the small sample size in this
study comprising all proliferative lesions rather than only lung
tumors masked a potential effect on Kras.

Based on the molecular tumor landscaping attempted here,
it is tempting to speculate that other known cancer genes are
involved in driving lung tumorigenesis in this mouse strain. For
example, Lrp1b, a putative tumor suppressor, was identified as
the gene most frequently affected by point mutations, without
an obvious link to the type of exposure. LRP1B mutations were
also described in atypical adenomatous hyperplasias, which are
precursors of human lung adenocarcinomas (Park et al., 2018).
Moreover, LRP1B mutations were found to be overrepresented
in lung adenocarcinomas in chronic obstructive pulmonary
disease patients, independent of smoking status (Xiao et al.,
2017). Similarly, FGFR2 mutations residing in the gene’s kinase
domain are a frequent observation in human non-small cell lung
cancers, even in the absence of prior CS exposure, and led to
lung adenocarcinoma formation in conditional knock-in mice
(Tchaicha et al., 2014). Together, these findings suggest that Lrp1b
and/or Fgfr2may be linked to the propensity of tumor formation
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FIGURE 7 | Mouse lung tumor classification. Mahalanobis distance of each individual tumor in 3R4F CS- or THS 2.2 aerosol-exposed mice from the center of the

sham group using the 1-class model based on the mutation spectra. Exposure groups are indicated by color; sex and time point are indicated by different symbols

(see legend). The Mahalanobis distances between the mutational spectra for each tumor sample and those of the sham group are presented as box-whisker plots.

The centerline represents the median, and the box encloses the 1st and 3rd quartiles (“hinges”). The upper and lower whiskers represent the furthermost points from

the respective hinges, which are no more than 1.5 IQRs from the hinge. Data are shown as individual points. THS, Tobacco Heating System.

in the A/J mouse model of lung cancer. Other genes, such as Dcc,
Csmd1, Csmd3, and Fhit, were also frequently affected in lung
tumors from sham and CS- or THS 2.2 aerosol-exposed mice.
While mutations in Dcc, Csmd3, and Fhit are rather uncommon
in human lung adenocarcinomas, deletions or allelic imbalances
occur frequently and are considered early events in human lung
tumorigenesis (Sozzi et al., 1998; Kohno et al., 2000; Ma et al.,
2009; Ahn et al., 2014; Cancer Genome Atlas Research Network,
2014). Little is known about the role of the CSMD genes in the
context of lung cancers. Previous studies suggested, however,
that neither Fhit nor Dcc genetic alterations confer increased
susceptibility to lung tumor formation in mice (Fazeli et al., 1997;
De Flora et al., 2007), pointing to a potentially novel mechanism
thatmay be specific to themouse strain used in this study. Finally,
Ros1 overexpression was more frequently seen in lung tumors
of A/J mice than mutations. ROS1 gene rearrangements occur
in 1–2% of human non-small cell lung cancers and confer a
distinct clinical phenotype (Bergethon et al., 2012; Gainor and
Shaw, 2013). While ROS1 expression was reportedly increased
in absence of translocation events (Lee et al., 2013), fusions of
ROS1 with other genes may also give rise to increased transcript
levels (Li et al., 2011; Kalla et al., 2016). It is therefore possible
that rearrangements involving Ros1 occurred in our sample set
of murine lung tumors. Additional tests (e.g., with fusion-specific
probes) will be necessary to further elucidate this observation.

It is worth noting here that this study has some limitations.
The inhalation study design was aligned with the OECD test
guideline 453 (OECD, 2018) to meet the minimum animal
numbers required for cancer endpoints at terminal dissection
(N = 50 per group). However, it was not possible (for both
ethical and technical/logistical reasons) to include additional
animal groups of that size to accommodate omics investigations.
Since lung tumor incidence and multiplicity in THS 2.2
aerosol-exposed animals were not different from those in sham
animals (Wong et al., 2020), the resulting sample set was
small. Therefore, samples were not further divided into groups
comprising nodular hyperplasia and true lung tumors (i.e.,
adenomas and adenocarcinomas), but rather were summarily
examined as “lung tumors.”With adequate numbers of biological
replicates, sample stratification based on histology may result
in an even more comprehensive analysis of A/J mouse lung
tumors, with the potential to substantiate progression from
hyperplasia to adenoma to adenocarcinoma. In addition, we
realize that applying an interaction term to the gene expression
data eliminated many of the exposure effects that are typically
described in CS studies. In consequence, subsequent enrichment
analyses that may give rise to mechanistic interpretations were
not possible. Similarly, the number of putative protein-altering
point mutations was too small to make substantive comments
on the functional causes of the tumors, and no clear differences
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FIGURE 8 | The transcriptional and mutation landscape of A/J mouse lung tumors. An overview of genes affected by mutation (green) or upregulation (red) or both

(blue) is presented in a tile plot. The top panel displays the number of affected genes per tumor sample, whereas the panel on the right illustrates the number of

affected samples for a given gene; the height and color scheme of the bars indicate the number of events observed per exposure type. GEX, gene expression.

between the exposure groups could be inferred using protein
function alterations alone. This makes drawing conclusions
with respect to translatability from mice to humans difficult.
The molecular landscape of the A/J lung tumors studies here
(Figure 6) provides an alternative view of the data that may,
at least in part, counterbalance these drawbacks. Our prior
studies were unable to verify the reported involvement of K-ras
mutations in lung tumor progression (Belinsky et al., 1992;
Kawano et al., 1996), even though gene expression enrichment
analysis suggested activated ras signaling in lung tumors of
cigarette smoke-exposed A/J mice, as previously reported (Stinn
et al., 2013a). In the current study, and in addition to the
classification efforts using the gene signature, we attempted
“molecular landscaping” to gain more insights into the make-
up of the observed lung tumors. This type of analysis has, to

our knowledge, not been done before and highlighted some
interesting parallels to lung cancers in smokers. Nevertheless,
owing to the limitations of the current study, further independent
verifications of our findings are necessary before conclusive
statements regarding how appropriate the A/J mouse model is
for lung tumorigenesis.

In conclusion, although CS exposure induces tumors in
the lungs, air-exposed A/J mice will also develop lung tumors
spontaneously as they age. This raises the question whether the
CS exposure-induced tumors are of a similar type to spontaneous
tumors, irrespective of the overall exposure effect. The challenge
is that spontaneous tumors are histologically indistinguishable
from the tumors occurring in CS-exposed mice. To tackle the
above challenge, a 13-gene gene signature was developed based
on an independent A/J mouse CS exposure study, following by
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a one-class classifier development based on the current study.
Identifying gene signature in one data set and building classifier
in another data set addresses the feature/gene selection bias
which is a well-known problem in literature. We used this
1-class classifier to examine the potential differences between
tumors developing in exposed vs. unexposed A/J mice. Tumor
classification using this gene signature demonstrated a significant
dissimilarity between lung tumors from 3R4F CS-exposed and
sham mice. The same signature also highlighted a significant
dissimilarity between lung tumors from THS 2.2 aerosol- and
3R4F CS-exposed mice, suggesting a different effect for the
2 exposures. This finding could be confirmed using a similar
classification approach with mutational spectra of a subset of
the same tumors. Additionally, we provide a unique insight into
the molecular landscape of murine lung tumors in the context
of this inhalation exposure study. The gene signature was also
applied to human lung adenocarcinoma gene expression data
(from TCGA) and discriminated cancers in never-smokers from
those in ever-smokers, suggesting translatability of our signature
genes from mice to humans. This study shows that omics and
computational tools provide useful means of tumor classification
where histopathological evaluation alone is unsatisfactory to
distinguish between age- and exposure-related lung tumors. The
results of this study are promising and highlight not only the
value of 1-class classifiers when tumor types cannot be easily
characterized but also how omics and computational tools can
be used to corroborate the relevance of the animal model to
exposure effects in humans.
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