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INTRODUCTION

We have come a long way since the first case reports of lifelong male infertility following
occupational exposure to dibromochloropropane, and the discovery of the debilitating
developmental toxicity of thalidomide, methyl mercury, and alcohol (Potashnik and Porath, 1995;
Kalter, 2003). The realization that chemicals can cross the placenta and inflict irreversible damage
to the fetus and reproductive organs triggered concern for human health and made scientists and
regulators strive for greater understanding of reproductive and developmental toxicity to protect
future parents and children.

Today, more than 20% of couples will experience infertility (Mascarenhas et al., 2012). In
Denmark, assisted reproduction helped in the conception of more than 10% of all children. Of
all children, 6% are born too early, 5% with malformations, and 6% weigh too little at birth.
In addition, children increasingly develop functional disorders such as asthma and attention
deficit disorders (Sundhedsstyrelsen, 1997; Nielsen and Javid, 2014; Kommunernes Landsforening,
2019; Sundhedsdatastyrelsen, 2020). However, we lack knowledge about the extent of the effect of
environmental chemicals in reproductive adversity. So much remains to be learned!

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Reproductive toxicity refers to effects on both fertility and development, but also refers to effects on
fertility alone. Developmental toxicity refers to chemicals’ interference with normal development
of the organism, originating from exposure of either parent prior to conception, or exposure of the
developing organism (ECHA, 2017). Early research focused onmalformations and fetal death. Now
it is broadly accepted that the gestational environment might also determine the developmental
trajectories of the fetus and, hence, even health later in life, c.f. the concept of Developmental Origin
of Health and Disease (Schmitz-Felten et al., 2016; Heindel et al., 2017). Parental exposure prior to
birth has received less attention than gestational exposure, but the interest in e.g., male mediated
developmental toxicity seems to have increased with the emergence of epigenetic programming,
including sperm DNA and histone modifications and non-coding RNAs in spermatozoa (Bonde
et al., 2019; Marcho et al., 2020).

THE CHALLENGE(S)

The number of chemical substances falling under REACH (Registration, Evaluation, Authorisation,
and Restriction of Chemical substances in Europe) ranges from 70,000 to 100,000, to which
substances such as pharmaceutical compounds should be added. Testing for reproductive and
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developmental toxicity is governed by international guidelines,
primarily from the Organization for Economic Co-operation
and Development (OECD) and the International Council for
Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use (ICH) (Estevan et al., 2017;
European Medicines Agency, 2017; OECD, 2018).

Experimental toxicology has the advantage of control over
exposure, environment, and genetics, but high cost and
extensive use of experimental animals preclude a complete
assessment of reproductive and developmental toxicity for
all chemicals (Rovida and Hartung, 2009). REACH has
increased toxicity testing of industrial chemicals, but data on
reproductive and developmental toxicity is still very limited,
as only very high tonnage levels (>1,000 tons/year) triggers
extensive testing (ECHA, 2017). In addition, not even the most
extensive test protocols guarantee detection of all inherent
developmental and reproductive toxicity. Some outcomes are
too rare for detection of effect at the recommended group
sizes, and assessment of offspring organ function is limited.
The OECD Extended One-generation Reproductive Toxicity
Study evaluates offspring fertility and some indicators of
endocrine disruption and immune- and neurofunction (OECD,
2018), but not whether exposure elevates risks of the several
highly prevalent human health problems that occur later in
life, such as asthma, diabetes, cardiovascular disease, and
dementia. Developmental neurotoxicity has a separate and
extensive guideline, but it is rarely used (Makris et al., 2009).
Also for pharmaceuticals, a very limited range of functional
outcomes are assessed in the offspring (European Medicines
Agency, 2017). In this respect, maternal airway exposure to
nanomaterials presents an interesting case. Findings in several
studies indicate that gestational and litter parameters might
be less sensitive to maternal particle exposure than offspring
organ function in postnatal life (Hougaard et al., 2015; Larsen
et al., 2020). We ought to study whether this also applies to
“traditional” chemicals.

Furthermore, test requirements relate mainly to compounds
in production, and not to the myriad of compounds generated
by anthropogenic processes such as fumes from combustion,
welding, or e-cigarettes. Testing of such factors is largely in
the hands of dedicated university and governmental researchers
(Schmitz-Felten et al., 2016).

The emerging understanding that exposure from multiple
sources can interact adds to the complexity. Pioneer work on
endocrine disrupting chemicals made clear that chemicals, which
individually exert no or small effects, might induce marked
responses in concert (Hass et al., 2007). This was later confirmed
in several studies (Martin et al., 2020). Also, non-chemical
stressors might enhance developmental adversity of chemicals
(Hougaard and Hansen, 2007; Sobolewski et al., 2018). The EU
presently evaluates chemicals one by one, but now recognizes
risks from multiple chemical exposures must be taken into
account, e.g., in workers enduring chemicals in both private
and occupational life (European Commission, 2020), not to
forget pharmaceuticals. Overall, consumers and workers risk
using chemicals without or with limited knowledge on toxicity
to reproduction.

The Alternative Road(s)
Acknowledging the need for both toxicological testing and
reduced use of experimental animals, hazard prediction based
on limited or even no testing in biological systems is urgently
needed (Rovida and Hartung, 2009; Scialli et al., 2018; Clements
et al., 2020). This is challenged by the complex reproductive cycle:
gametogenesis, fertilization, implantation, and development
until sexual maturity, involving the precise coordination of
multiple processes in several organs, in parents and offspring, and
even the generation of a new organ, the placenta (Parks Saldutti
et al., 2013; Felter et al., 2015).

Refinement and Hypothesis Driven Testing
Rethinking reproductive and developmental toxicity testing takes
several paths. One involves refinement of existing protocols, by
increasing the accuracy of assessments and dose selection, testing
of metabolites rather than mother compounds, read across,
implementing critical windows of sensitivity, and humanization
of animal models (e.g., by CRISPR technology) etc. (Scialli et al.,
2018).

Another path applies hypothesis driven testing. Consensus
is growing that understanding of toxicological mechanisms
can feed into and accelerate development and applicability of
alternative test methods. A logical step is identification of key
events that predict adverse reproductive outcomes, e.g., based on
structure-activity relationships, high throughput screening, and
toxicogenomics (Scialli et al., 2018), to feed into adverse outcome
pathways (AOPs), as recently described for female reproductive
disorders (Draskau et al., 2020; Johansson et al., 2020) and
the role of retinoic acid in embryo development (Tonk et al.,
2015). AOPs sharing key events can combine into networks that
ultimately capture all events on the path to specific outcomes.
AOP networks are especially important in developmental toxicity
that rarely arises as a single, linear chain of events, but rather by
disturbances in the internal balance of a multitude of competing
factors and interacting cell types changing with time and location
(Tonk et al., 2015). When AOPs are established, chemicals can be
tested in vitro, in chemico, or in silico relative to the crucial events
rather than by standard (animal) protocols.

Non-animal Test Systems
Combining mechanisms of toxicity with knowledge of specific
compounds and their close analogs can then form the
basis for development and selection of targeted experimental
approaches, such as composition of organotypic models, as
testis-on-a-chip (Parks Saldutti et al., 2013; Baert et al.,
2020), and batteries of complementary in vitro assays. Some
batteries are directed toward one organ or outcome, e.g.,
developmental neurotoxicity (Bal-Price et al., 2018), while others
are more generalized. One included the CALUX transcriptional
activation assay (steroidogenic activity), ReProGlo assay (body
axis patterning and cell fate specification), embryonic stem
cell test (differentiation into cardiomyocytes), and zebrafish
embryotoxicity assay. The battery predicted developmental
toxicity correctly for most tested compounds and was useful for
verification of read-across between structurally related chemicals
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(Kroese et al., 2015). The latter approach introduces hypothesis-
driven testing, where knowledge about compounds or close
analogs directs testing toward potential modes of action instead
of the one-protocol-fits-all approach (Scialli et al., 2018).

Unfortunately, most model systems of developmental toxicity
lack the placenta. Only recently has the placenta’s many
active roles become evident. Placental toxicology is still in
its infancy, but accumulating data associates environmental
exposures to microvascular dysfunction and adverse pregnancy
outcomes (Gingrich et al., 2020). In animals, particles have been
shown to perturb the placental environment, via induction of
oxidative stress and inflammation (D’Errico and Stapleton, 2019;
Dugershaw et al., 2020), and human exposure to (particulate)
air pollution increases the risk of hypertensive disorders in
pregnancy (Pedersen et al., 2014). The ex vivo human placenta
model provides a mean for assessment of placental transfer in
humans (Aengenheister et al., 2020), and advanced placental
models envision recreation of the intrauterine architecture in its
entirety (Pollet and den Toonder, 2020).

Induction of epigenetic changes constitutes a potential
mechanism by which chemicals can influence reproduction
and development. Epigenetics refers to stable changes in
gene expression without modification of the DNA sequence.
Chemical exposure may alter the epigenetic make-up, and
such “memory markers” of environmental insults can persist
even after exposure is terminated. Epigenetic changes might
even transmit to subsequent generations. Chemically-induced
epigenetic changes do not suffice for regulatory classification
of chemicals. Recognition of the potential for epigenetic
moderation by chemicals allows for deeper understanding of
the developmental origin of disease. Linkage of epigenomic
changes to corresponding phenotypes could furthermore
provide a “handle” for epigenetics in hazard identification
and incorporation of epigenetic evaluation into toxicity tests
(Ideta-Otsuka et al., 2017; Heindel, 2019).

There is still a ways to go until whole organ models and
test batteries supply data at level with or more predictive than
conventional methods (Clements et al., 2020). (Quantitative)
Structure Activity Relationships [(Q)SAR] offer another route
for prediction of reproductive and developmental toxicity, but
the complexity of reproductive biology poses a challenge in
individual models. Possibly, integration of several models might
reduce uncertainty and improve predictions (Marzo et al.,
2016). Check, for example, developmental toxicity or endocrine
endpoints at the Danish (Q)SAR database (qsar.food.dtu.dk).

Population Based Studies
The environmental causes of congenital malformations were in
many instances discovered in humans by coincidence (Kalter,
2003), and the Developmental Origin of Health and Disease
concept emerged from the study of human birth cohorts
(Heindel et al., 2017). Several birth cohorts have systematically
and prospectively collected information on maternal exposure,
pregnancy, and birth, and followed-up the children on a
regular basis (Vrijheid et al., 2012). Children in some cohorts
have even reached reproductive age, allowing for the study of
developmental exposures on their own reproductive capability

(Brauner et al., 2019; Haervig et al., 2020), and soon of health
in generations. The cohorts, furthermore, allows for the study of
associations in one cohort and the subsequent (re)confirmation
of findings in other cohorts, to test for robustness and
generalizability of findings.

We are moving away from “one exposure, one disease”
toward a multifactorial understanding of reproductive and
developmental health, including timing of exposure during the
life cycle. For fertility, postponement of parenthood toward the
end of the reproductive years, and hence, age-related decrease
in especially female fecundity, is suggested to largely account for
the increase in assisted reproduction (Baird et al., 2005). At this
time in life, women and men (and their reproductive organs)
have however also experienced more years of occupational
and environmental exposures. Smoking, some chemicals, and
chemotherapy accelerate menopause, but otherwise knowledge
is scarce (Iorio et al., 2014). Of note, fertility might be more
sensitive to disruption if already compromised, e.g., due to
advanced age (Hjollund et al., 1999; Minguez-Alarcon et al.,
2017). This indicates a need to consider exposure during multiple
and potentially interacting windows during the life cycle. Also
relevant is interaction of exposures in utero and in adulthood.
Hence, prenatal exposure could alter susceptibility to exposure
later in life and predispose an individual for disease (“two-hit
hypothesis”) (Heindel, 2019). Unexposed and exposed offspring
could even present as similar phenotypes, until challenged by
stressors (Hougaard et al., 2005; Hansen et al., 2020).

In the study of multiple concomitant exposures and stressors,
human cohorts can supply variation in (epi)genetics, timing, and
exposures. Such analyses require large populations, and merging
of (birth) cohorts might be necessary. Prospective studies
are pivotal for understanding the impact of environmental
exposures, but study of the full lifespan is hampered by human
longevity (NRC, 2017; Nakayama et al., 2019). Here, nationwide
registries of health, income, job, and place of living (such
as nationwide Scandinavian registries starting in the 1970’s),
could be combined with exposure matrices, biomonitoring, and
exposome analysis of biobanked material to provide a basis for
advanced “big data” analyses and to generate hypotheses for study
in the aging birth cohorts.

THE FUTURE LIES IN CROSSTALK

The grand challenge lies in the enormous number of chemicals
and pharmaceuticals that precludes establishing adequate
databases for reproductive and developmental toxicity for all.
We urgently need hazard prediction and risk assessment based
on limited or no testing in biological systems. This requires a
deeper understanding of the pathological pathways underlying
disruption of fertility and fetal programming, to feed into, e.g.,
AOP networks and in silico methods. A library of in vitro test
systems ought to ultimately cover the full reproductive cycle (and
placental processes) as basis for selection of combinations of
experimental techniques for targeted test batteries.

This requires knowledge of the in vivo relevance of the
sometimes relatively simple in vitro endpoints, and on how to
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extrapolate in vitro concentrations to in vivo kinetics. We must
however also discuss animal studies as the gold standard for
human hazard assessment, look into the consequence of strain
differences in toxic response (Skovmand et al., 2020), and review
how findings and hypotheses generated in animals and in vitro
correlate with evidence in humans (Bonde et al., 2016).

Testing of the consequences of early exposure for health later
in life needs to include a broader palette of organ systems, such as
offspring kidney and cardiovascular and immune systems. Causal
association to effect biomarkers, such as epigenetic changes, must
be established. Our view of sensitive periodsmust also include the
preconception period for women and men alike, and interaction
between exposures, concomitant as well as during different stages
of life. Focus should shift from the several well- or even over-
studied chemicals to those without a database (Grandjean et al.,
2011) to new types of chemicals, and combinations of chemicals
and common factors in everyday life: non-chemical factors in the
occupational setting, psychosocial stress, nutrition, age, etc.

The overall goals can only be achieved through continuous
crosstalk between researchers and methodologies from different
disciplines, such as in vitro and experimental animal toxicology
and epidemiology; basic and molecular biology; chemistry,
pharmacology, and medicine; exposure assessment, occupational

and environmental science; statistics, in silico modeling and

systems biology; risk assessment, regulation and prevention, to
mention a few.

One thing is certain—there is room to explore reproductive
and developmental toxicology into the next century. This
Specialty Section in Developmental and Reproductive
Toxicology encourages the investigation of the outlined
challenges—and their solutions. It invites review articles,
primary research, and method papers for a broad range of
readers within the many fields required to keep the soil fertile for
development of this important field of research.
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