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Air pollution is associated with significant adverse health effects. Recent studies support
the idea that inhalation of fine particles can instigate extrapulmonary effects on the
cardiovascular system through several pathways. The systemic transfer of ultrafine
particles (UFPs) or soluble particle components (organic compounds and metals) is of
particular concern. An integral role of reactive oxygen species (ROS)-dependent pathways
has been suggested in systemic inflammatory responses and vascular dysfunction at the
molecular level. Accumulating lines of evidence suggest that fine particles affect fetal
development, giving rise to low birth weight and a reduction in fetal growth, and also affect
the immune, cardiovascular, and central nervous systems. Oxidative stress plays an
important role in fine particles toxicity; pre-treatment with antioxidants partially suppresses
the developmental toxicity of fine particles. On the other hand, Nuclear factor erythroid-
derived 2-like 2 (Nfe2l2), also known as NRF2, is a transcription factor essential for
inducible and/or constitutive expression of phase II and antioxidant enzymes. Studies
using Nrf2-knockout mice revealed that NRF2 dysfunction is intimately involved in the
pathogenesis of various human diseases. Multiple single nucleotide polymorphisms
(SNPs) have been detected in human NRF2 locus. An NRF2 gene SNP (−617C > A;
rs6721961), located in the upstream promoter region, affects the transcriptional level of
NRF2 and thereby the protein level and downstream gene expression. It has been reported
that the SNP-617 is associated with various diseases. The onset and exacerbation of the
diseases are regulated by genetic predisposition and environmental factors; some people
live in the air-polluted environment but are not affected and remain healthy, suggesting the
presence of individual differences in the susceptibility to air pollutants. NRF2
polymorphisms may also be associated with the fetal effects of fine particles exposure.
Screening high-risk pregnant women genetically susceptible to oxidative stress and
prevention by antioxidant interventions to protect fetal development in air-polluted
areas should be considered. This article reviews the recent advances in our
understanding of the fetal health effects of fine particles and describes potential
chemoprevention via the NRF2 pathway to prevent the developmental and
reproductive toxicity of fine particles.
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INTRODUCTION

The strongest evidence from many epidemiological studies linking
air pollution to human health centers on particulate components
(Dockery et al., 1993; Gehring et al., 2010; Krishnan et al., 2012; Xia
et al., 2013). Fine particles are classified according to their
aerodynamic diameter into size fractions such as particulate
matter 2.5 (PM2.5, diameter fine inhalable particles, with
diameters that are generally 2.5 micrometers and smaller) and
ultrafine (nano-sized) particles (UFPs, fine inhalable particles,
with diameters that are generally 0.1 micrometers and smaller)
(Araujo and Nel, 2009). Recent studies support the hypothesis
that inhalation of fine particles can instigate extrapulmonary
effects on the cardiovascular system through several pathways.
Many epidemiological studies have attempted to clarify the
association between PM2.5 and extrapulmonary disorders such as
ischemic cardiovascular diseases (Lipsett et al., 2011; Hayes et al.,
2020), arteriosclerosis (Hoffmann et al., 2007; Kaufman et al., 2016),
neurological disorders (Zanobetti et al., 2014; Grande et al., 2020),
diabetes (Raaschou-Nielsen et al., 2013; Balti et al., 2014), fetal
development, and reproduction (Volk et al., 2013; DeFranco
et al., 2016) (Table 1). PM2.5 in the atmosphere contain a lot of
UFPs. Systemic transfer of UFPs or soluble particle components
(organic compounds and metals) is of most concern in this context.
An integral role of reactive oxygen species (ROS)-dependent
pathways has been suggested in systemic pro-inflammatory
responses and vascular dysfunction at the molecular level (Brook
et al., 2010). Although epidemiological studies on the health effects of
UFPs also are needed, exposure assessment for atmospheric UFPs is
complex (Sioutas et al., 2005) and emerging evidence onUFPs health
effects has mainly led by experimental studies using animals
(Sugamata et al., 2006; Shimizu et al., 2009; Takeda et al., 2009;
Takahashi et al., 2010; Kubo-Irie et al., 2014; Onoda et al., 2014;
Shimizu et al., 2014; El-Sayed et al., 2015; Mitsunaga et al., 2016;
Onoda et al., 2017) and cells (Xia et al., 2004; Mo et al., 2009; Li et al.,
2013).

On the other hand, Nuclear factor erythroid-derived 2-like 2
(Nfe2l2), also known as NRF2, is a transcription factor essential for
the inducible and/or constitutive expression of phase II and
antioxidant enzymes (Itoh et al., 1997). Recent studies using
Nrf2-knockout mice revealed that NRF2 dysfunction is intimately
involved in the pathogenesis of various human diseases after
exposure to diesel exhaust (DE), and Nrf2 knockout mice are

highly sensitive to oxidative stress caused by DE (Li et al., 2008;
Li et al., 2010; Li et al., 2017; Li et al., 2020).MostDE particles (DEPs)
are contained in fine particulates and contain nano-sized carbon
particles at their core (Araujo and Nel, 2009). In this regard, it is
interesting to note that multiple single nucleotide polymorphisms
(SNPs) have been detected in human NRF2 locus. An NRF2 gene
SNP (−617C > A; rs6721961), located in the upstream promoter
region, affects the transcriptional level of NRF2 and thereby the
protein level and downstream gene expression (Yamamoto et al.,
2004). It has been reported that the SNP-617 is associated with
various diseases (Marzec et al., 2007; von Otter et al., 2010; Ungvári
et al., 2012; Suzuki et al., 2013; Okano et al., 2013; Shimoyama et al.,
2014;Wang et al., 2015). It is speculated that the reduction of protein
levels and downstream gene expression by the NRF2 gene SNP may
increase susceptibility to oxidative stress caused by fine particulates
exposure.

Many studies have suggested that fine particulates air
pollution is related to developmental and reproductive (Gilboa
et al., 2005; Shimizu et al., 2009; Takeda et al., 2009; Takahashi
et al., 2010; Dadvand et al., 2013; Volk et al., 2013; Yokota et al.,
2013; Onoda et al., 2014; Kubo-Irie et al., 2014; Symanski et al.,
2014; El-Sayed et al., 2015; Tachibana et al., 2015; DeFranco et al.,
2016; Mitsunaga et al., 2016; Yokota et al., 2016; Carré et al., 2017;
Chen et al., 2017; Martens et al., 2017; Onoda et al., 2017). The
impact of air pollutants on the next generation is of great concern,
and preventive measures are required. This article reviews the
recent advances in our understanding of the fetal health effects of
fine particulates and discusses the potential chemoprevention via
the NRF2 pathway to prevent the developmental and
reproductive toxicity of fine particulates.

CHARACTERISTICS OF FINE
PARTICULATES

Particulate matter is a complex mixture of organic and inorganic
chemicals, including metals and particulates (Mo et al., 2009),
and is composed of heterogeneous compounds of different sizes,
chemical compositions, surface areas, concentrations, and
sources. Fine particles are classified according to their
aerodynamic diameter into size fractions such as PM2.5

(particulate matter of diameter <2.5 μm) and UFPs (particulate
matter of diameter <0.1 μm). These particles are derived from

TABLE 1 | Epidemiological studies linking PM2.5 exposure with extrapulmonary disorders.

Disorders Major findings References

Ischemic cardiovascular Increased risks of incident stroke as well as ischemic heart disease mortality Lipsett et al. (2011)
Associated with the risks of ischaemic heart disease and stroke mortality Hayes et al. (2020)

Arteriosclerosis Associated with the degree of coronary atherosclerosis Hoffmann et al. (2007)
Associated with progression in coronary calcification, consistent with acceleration of atherosclerosis Kaufman et al. (2016)

Neurological disorders Associated with a higher risk of dementia Grande et al. (2020)
Increased the risk of hospitalizations for Parkinson’s disease and diabetes, and of all-cause mortality Zanobetti et al. (2014)

Diabetes Increased risk for type 2 diabetes Balti et al. (2014)
Associated with mortality from diabetes Raaschou-Nielsen et al. (2013)

Fetal development and reproduction Associated with autism Volk et al. (2013)
Increased risk of preterm birth DeFranco et al. (2016)
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various sources and by various mechanisms as shown in Table 2
(Araujo and Nel, 2009). These are just physical definitions, and
the chemical components and the subsequent toxic
characteristics of fine particles vary by country or region.
Differences in energy structure, economic development,
climate classification, etc., determine the type of air pollution
and the chemical composition of fine particles (Pan et al., 2014).
At the cellular level, fine particles various mechanisms involve
free radical production (by transition metals and organic
compounds), oxidative stress, cytokine release, inflammation,
etc., (Araujo and Nel, 2009).

Several studies have shown that UFPs are more toxic than larger
particles (Li et al., 2003; Donaldson et al., 2005). UFPs are important
because when compared with larger particles, they have order of
higher particle number concentration and surface area, and larger
concentrations of adsorbed or condensed toxic air pollutants
(oxidant gases, organic compounds, transition metals) per unit
mass (Sioutas et al., 2005). Also facilitates their intake during
breathing, and their mass ratio greatly enhances their chemical/
catalytic reactivity compared to large-sized particles (Mikami et al.,
2014). UFPs are not as easily phagocytized by alveolar macrophages
as larger particles. They may enter the blood circulation, and
translocation to extra-pulmonary tissues (Frampton, 2001; Sioutas
et al., 2005; Brook et al., 2010). UFPs, with their high surface area, can
carry large amounts of adsorbed or condensed toxic air pollutants,
such as oxidant gas, organic compounds and transition metals
(Oberdörster and Utell, 2002). It is also reported that the
induction of mitochondrial dysfunction caused by DEPs and
UFPs are mediated by adsorbed chemicals quinones and
aromatics rather than the particles themselves (Xia et al., 2004).

DE emissions, are a major source of UFPs in urban
environments, and it is these particles that have the capacity
to induce the most significant health effects (Wåhlin et al., 2001;
Miller and Newby, 2020). Previous studies have shown that DE
exposure can have many adverse effects on the cardiovascular
system, both acutely and chronically (Miller and Newby, 2020).
DEPs have a complex structure characterized by nano-sized
carbon particles at their core with adsorbed organic
compounds such as polyaromatic hydrocarbons (PAHs) and
quinones. The PAHs and their oxygenated derivatives (e.g.,
quinones) have attracted attention because they are able to
participate in the redox cycle and generate ROS in target cells
(Takizawa, 2004). Therefore, DEPs have been extensively used in
studies as a model air pollutant. However, it has been also
reported that standardized DEPs such as standard reference
material (SRM)-2,975 are not suitable to represent traffic
emissions and typical ambient particulate matter used in

toxicological studies (Farahani et al., 2021). Since the actual
composition of air pollutants depends on the region, the DEPs
used in the research has a limit as a model of air pollutants.

FINE PARTICLES AFFECT FETAL HEALTH

Studies support an association for fine particles and fetal health
(Table 3). Exposure to PM2.5 affects development and reproduction
as have been documented in epidemiological reports (Dadvand et al.,
2013; Volk et al., 2013; Symanski et al., 2014; DeFranco et al., 2016;
Martens et al., 2017) and supported by data from animal-model
experiments (Yokota et al., 2013; Tachibana et al., 2015; Yokota et al.,
2016; Chen et al., 2017). Epidemiological reports revealed that
exposure to fine particulates during pregnancy is associated with
autism (Volk et al., 2013) and causes changes in reproductive
function (Carré et al., 2017). Volk, et al. (2013) Reported that
exposure to traffic-related air pollution, such as PM2.5, during
pregnancy and the first year of life was associated with autism.
This study is based on a case-control study and includes data from
279 children with autism and 245 children with typical development
in California (Volk et al., 2013). Exposure to fine particulates during
pregnancy is also associated with biological aging (Martens et al.,
2017), preterm birth (Symanski et al., 2014; DeFranco et al., 2016),
and low birth weight (Dadvand et al., 2013). Similarly, animal-model
experiments suggested that exposure to DE during pregnancy alters
energy metabolism (Chen et al., 2017) and nervous function
(Tachibana et al., 2015; Yokota et al., 2016). In animal model
experiments, exposure to UFPs smaller than 0.1 µm diameter
appeared critical for the development and reproduction, such as
changes in reproductive function (Takeda et al., 2009; Kubo-Irie et al.,
2014) and immune responses (Shimizu et al., 2014; El-Sayed et al.,
2015). Sugamata, et al. (2006) reported that maternal exposure to DE
which contain nano-sized carbon particles at their core, alters the
ultrastructure of perivascular macrophages (PVMs) and surrounding
tissues in the brain ofmouse offspring. Onoda et al. (2014) found that
maternal exposure to ultrafine carbon black altered the phenotype of
PVMs and astrocytes close to blood vessels in offspring mice. This
results suggest that maternal ultrafine carbon black exposure may
associated with increased risk of dysfunction in the offspring brain
(Onoda et al., 2014). Umezawa et al. (2014) also reported that the
degree of the risk on offspring depends on the type of nanoparticles.
Furthermore, many other animal studies also reported that exposure
to UFPs provokes fetal brain dysfunction (Shimizu et al., 2009;
Takeda et al., 2009; Takahashi et al., 2010; Mitsunaga et al., 2016;
Onoda et al., 2017). Ambient fine particles contain a large proportion
of UFPs; due to their small size, UFPs have high physicochemical

TABLE 2 | Classification of fine particles based on size *.

Particle Aerodynamic Sources Mode of generation

Fine particles
(PM2.5)

<2.5 Power plants, oil refineries, wildfires, residential fuel combustion, tailpipe
and brake emissions

Gas-to-particle conversion by condensation,
coagulation (accumulation mode)

Ultrafine particles
(UFPs)

<0.1 Fuel combustion (diesel, gasoline) and tailpipe emissions from mobile
sources (motor vehicles, aircrafts, ships)

Fresh emissions, secondary photochemical reactions
(nucleation mode)

*Cited from Araujo JA and Nel, 2009.
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reactivity and show unique behaviors in vivo including the following
three potential pathways: 1) release of proinflammatory mediators
from lung cells, 2) affect autonomic nervous system balance by
particle interactions with lung receptors or nerves, and 3)
translocation of UFPs and soluble particle components into the
systemic circulation. Therefore, inhaled UFPs can reach the
alveolar region and extrapulmonary organs (Brook et al., 2010). It
is also possible that theUPFs contained in the fine particlesmay affect
the foetation. UFPs also have higher permeability than large-sized
particles; this facilitates the translocation of particles from mother to
infant (Mikami et al., 2014).

MECHANISMS OF FINE PARTICLES
BIOLOGICAL ACTIVITY: ROLE OF
OXIDATIVE STRESSES INDUCED BY FINE
PARTICLES

There is increasing evidence that fine particulate pollutants
induce inflammatory responses, and these proinflammatory
effects have been linked to the ability of fine particulate, such
as DEPs, to generate ROS and oxidative stress in bronchial
epithelial cells (Takizawa et al., 1999; Hashimoto et al., 2000),
macrophages (Li et al., 2004). Li et al. (2003) demonstrated that
the increased biological potency of UFPs is related to the content
of redox cycling organic chemicals and their ability to damage
mitochondria. UFPs were collected by ambient particle
concentrators in the Los Angeles basin in California and used
to study their chemical composition in parallel with assays for
generation of ROS and ability to induce oxidative stress in
macrophages and epithelial cells. UFPs exposure induces
oxidative stress by promoting cellular heme oxygenase-1 (HO-
1) expression; HO-1 depletes intracellular glutathione and is a
sensitive marker of oxidative stress. The results showed that HO-
1 expression directly correlated with the high organic carbon and
polycyclic aromatic hydrocarbon (PAH) content of UFPs; PAHs
have been identified in placental tissue and umbilical cord blood

from neonates. Detection of damaged DNA in cord blood
indicates that exposure to these pollutants in the environment
can cause fetal damage (RavindraMittal and Van Grieken, 2001).
Oxidative stress likely plays an important role in nanoparticle
toxicity, as pre-treatment with antioxidants partially suppresses
the developmental toxicity of nanoparticles (Wang et al., 2010).
PAHs, usually bound to fine particles and UFPs, increase the risk
of intrauterine growth retardation. The permeability and
increased ROS generation (which induces oxidative stress in
cells) of small particles are the mechanisms underlying these
harmful effects (Wåhlin et al., 2001).

NRF2 AS A KEY TRASCRIPTION FACTOR
PREVENTING CELLULAR DAMAGE IN
RESPONSE TO OXIDATIVE STRESS
Nrf2 is a key transcription factor that is essential for the induction
and/or constitutive expression of phase II enzymes and
antioxidants in response to ROS or electrophile (Itoh et al.,
1997). Nrf2 possesses a Neh2 domain, which is recognized by
Keap1 (Kelch-like ECH-associated protein 1) and acts as a
degron–an amino acid sequence, which signals degradation
(Itoh et al., 1999) Upon exposure to oxidative and
electrophilic stress, Nrf2 is activated, and accumulates in
nuclei, forms a heterodimer with a member of small Maf
proteins, and binds to antioxidant ⁄ electrophile responsive
elements (ARE⁄EpRE) located in its target genes
(Rushmore et al., 1991; Prestera et al., 1995). This leads to the
induction of a battery antioxidants (Ishii et al., 1993) and phase II
detoxifying enzyme genes (Itoh et al., 1997) (Figure 1).
Cytoprotective pathways are induced by the Nrf2 transcription
signal pathway at the lowest levels of oxidative stress from DEPs
and can induce the transcription of antioxidant genes in the
earliest level of defense. Nrf2 regulates antioxidant defense that is
constituted as the main defense action against the pro-
inflammatory and oxidizing effects of DEPs (Li et al., 2004).
Xiao et al. (2003) showed the hierarchical oxidative stress model

TABLE 3 | Studies linking fine particulates exposure with fetal health.

Study Fine particulates Major findings References

Epidemiological study Atmospheric PM2.5 Associated with autism Volk et al. (2013)
Associated with preterm birth DeFranco et al. (2016)

Symanski et al. (2014)
Associated with shorter telomere length Martens et al. (2017)
Associated with low birth weight Dadvand et al. (2013)

Animal study DEPs Provokes fetal brain dysfunction Tachibana et al. (2015)
Yokota et al. (2016)
Yokota et al. (2013)
Sugamata et al. (2006)

Alters energy metabolism Chen et al. (2017)
UFPs Provokes fetal brain dysfunction Onoda et al. (2017)

Onoda et al. (2014)
Damage the genital and cranial nerve systems Takeda et al. (2009)

Kubo-Irie et al. (2014)
Changes immune responses El-Sayed et al. (2015)

Shimizu et al., (2014)
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in response to redox cycling DEPs components in vitro:
Cytoprotective pathways are induced by the Nrf2 transcription
signal pathway at the lowest levels of oxidative stress, and this
may constitute the first tier of a hierarchical oxidative stress
response, as is in the production of heme oxygenase (HO)-1. If
these enzymes fail to neutralize the effects of ROS,
proinflammatory effects constitute a second tier or
superimposed level of oxidative stress. The final tier or
superimposed level of oxidative stress is cytotoxicity, including
the initiation of programmed cell death. (Xiao et al., 2003). DNA
adduct formation is accelerated in the lungs of Nrf2 knockout
mice exposed to DE inhalation (Aoki et al., 2001). Previous
studies suggest that oxidative stress induced by DE inhalation
is associated with airway inflammation (Li et al., 2008), allergic
asthma (Li et al., 2010), pulmonary fibrosis (Li et al., 2017), and
airway innate immune responses (Li et al., 2020) evidenced in
experiments using Nrf2 knockout mice. Nrf2 also played an
important role in mediating the adjuvant effect of UFPs at the
level of functional dendritic cells (Li et al., 2013).

NRF2 POLYMORPHISM

Multiple single nucleotide polymorphisms (SNPs) have been
identified in human NRF2 (Yamamoto et al., 2004). The NRF2
gene SNP (-617C > A; rs6721961) located in the upstream
promoter region affects the transcriptional level of NRF2 and
thus the protein level and downstream gene expression. Suzuki
et al. (2013) reported that minor A/A homozygotes of NRF2
rSNP-617 exhibit significantly decreased NRF2 gene expression.

SNP-617 was found to be associated with a higher risk of oxidant-
induced acute lung injury in humans (Yamamoto et al., 2004;
Marzec et al., 2007). Individuals with NRF2 polymorphisms have
been reported to be at greater risk of developing acute lung injury
(Marzec et al., 2007), Parkinson’s disease (von Otter et al., 2010),
diabetes mellitus (Wang et al., 2015), chronic obstructive
pulmonary disease (Hua et al., 2010), breast cancer
(Hartikainen et al., 2012), cerebrovascular disease (Kunnas
et al., 2016), and vascular stiffness (Shimizu et al., 2020). The
presence ofNRF2 polymorphisms correlates significantly with the
incidence of non-small cell lung cancer, especially in smokers
(Suzuki et al., 2013), and is also related to air pollution and
childhood asthma (Ungvári et al., 2012) (Table 4). Thus,
personalized medicine based on NRF2 polymorphisms might
be effective to treat environmental pollutant-induced diseases.

As mentioned above, the NRF2 transcription factor controls
cellular adaptation/protection to ROS and electrophiles by
inducing antioxidant and detoxification genes. Under non-
stressed conditions, the transcription factor Nrf2 is
constitutively degraded by binding to Keap1 (Itoh et al., 1997;
Itoh et al., 1999; Kobayashi et al., 2004). Oxidative stress and/or
electrophilic attack leads to the dissociation of Nrf2 from Keap1
(Kobayashi et al., 2006); the Nrf2 protein is then translocated into
the nucleus (Iso et al., 2016), and many genes encoding
detoxifying and antioxidant enzymes are regulated by Nrf2
(Motohashi and Yamamoto, 2004; Kobayashi and Yamamoto,
2006; Suzuki et al., 2020). Notably, changes in Nrf2 transcript
level alter the Nrf2 protein level, even in the basal state, in which
Keap1 actively degrades Nrf2. When the appropriate Nrf2
transcript is supplied, the Nrf2 protein is maintained at low

FIGURE 1 | Activation of Nrf2 with ROS or electrophiles, and expression of Phase II enzyme genes and antioxidant stress protein genes via ARE/EpRE. Under non-
stressed conditions, the transcription factor Nrf2 is constitutively degraded by binding to Keap1. ROS or electrophilic attack leads to the dissociation of Nrf2 from Keap1.
Activated Nrf2 protein is then translocated into the nucleus and many genes encoding detoxifying and antioxidant enzymes are expressed. ROS: reactive oxygen
species, ARE: antioxidant response element, EpRE: electrophile responsive element, GST: glutathione S-transferase, NQO1: NAD(P)H quinone dehydrogenase 1,
HO-1: heme oxygenase-1, MSP23: macrophage 23-kDa stress protein.
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levels by Keap1-mediated degradation under basal conditions,
and constant levels of Nrf2 protein are accumulated after
inactivation by Keap1. When Nrf2 transcription levels are low,
Nrf2 protein is reduced in both basal and stress-induced states.
When Nrf2 transcription levels are high, large amounts of Nrf2
are produced in both basal and stress-induced states (Suzuki et al.,
2013). This study suggests that the transcription level of theNRF2
gene is indeed important for the roles that NRF2 plays in
cytoprotection (Okano et al., 2013).

A Personalized Prevention of Fine
Particles-Induced Oxidative Stress Based
on NRF2 Polymorphism
The onset and exacerbation of diseases are regulated by genetic
predisposition and environmental factors; some people living in
an air-polluted environment are not affected by it and remain
healthy. This suggests that there are individual differences in the

susceptibility to air pollutants. Many reports mentioned above
suggest that NRF2 polymorphisms may be associated with the
development and replication of oxidative stress caused by
nanoparticle exposure. It has been reported that the NRF2
SNP homozygous allele (–617A/A) is a useful biomarker for
clinical diagnosis (Okano et al., 2013). In air-polluted areas, it is
possible to screen high-risk pregnant women genetically
susceptible to oxidative stress using NRF2 SNP homozygous
allele (-617A/A) biomarker; personalized prevention of UFPs-
induced oxidative stress at the developmental and reproductive
stages, by antioxidant interventions based on NRF2
polymorphisms, may be feasible. Activation of NRF2
represses pro-inflammatory reactions induced by oxidative
stress and ameliorates various inflammatory diseases. Many
NRF2-activating compounds have been developed or are
currently being refined (Suzuki et al., 2020). Figure 2 shows
a schematic diagram of the potential of the NRF2 pathway to
prevent developmental and reproductive toxicity caused by fine
particles.

CONCLUSION

This review is a literature review and has not been statistically
analyzed. Regarding the health effects of fine particulates, the
effects of component analysis have not been analyzed. Although
there are these limits, the information summarized in this report
highlights the importance of the NRF2-antioxidant pathway and
proposes a hypothesis for preventing developmental and
reproductive processes implicated in oxidative stress caused by
exposure to fine particles in the atmosphere.

TABLE 4 | Representative diseases associated with NRF2 polymorphism.

Diseases References

Non-small cell lung cancer Suzuki et al. (2013)
Acute lung injury Marzec et al. (2007)
Air pollution and childhood asthm Ungvári et al. (2012)
Parkinson’s disease von Otter et al. (2010)
Type 2 diabetes Wang et al. (2015)
Chronic obstructive pulmonary disease Hua et al., (2010)
Breast cancer Hartikainen et al. (2012)
Cerebrovascular disease Kunnas et al. (2016)
Vascular stiffness Shimizu et al. (2020)

FIGURE 2 | Hypothesis schematic diagram of the potential NRF2 pathways to prevent developmental and reproductive toxicity of fine particles. The colored lines
show the putative NRF2 signaling pathway, with the signals being weaker in the order green, orange, and red. ROS: reactive oxygen species, UFPs: ultrafine particles,
C/C: wild-type homozygous (c.–617C/C) alleles, C/A: SNP heterozygous (c.–617C/A) alleles, A/A: SNP homozygous (c.–617A/A) alleles; Green arrowhead: antioxidant
intervention (NRF2-activating compounds, etc.).
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