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Adverse outcome pathways (AOPs) help to organize available mechanistic
information related to an adverse outcome into key events (KEs) spanning all
organizational levels of a biological system(s). AOPs, therefore, aid in the
biological understanding of a particular pathogenesis and also help with linking
exposures to eventual toxic effects. In the regulatory context, knowledge of
disease mechanisms can help design testing strategies using in vitro methods
that can measure or predict KEs relevant to the biological effect of interest. The
AOP described here evaluates the major processes known to be involved in
regulating efficient mucociliary clearance (MCC) following exposures causing
oxidative stress. MCC is a key aspect of the innate immune defense against
airborne pathogens and inhaled chemicals and is governed by the concerted
action of its functional components, the cilia and airway surface liquid (ASL). The
AOP network described here consists of sequences of KEs that culminate in the
modulation of ciliary beat frequency and ASL height as well as mucus viscosity and
hence, impairment of MCC, which in turn leads to decreased lung function.

Keywords: adverse outcome pathway, AOP, mucociliary clearance, ciliary beat frequency, lung function, new
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1 INTRODUCTION

Regulatory frameworks are moving towards risk assessment approaches that better protect human
health and are not reliant on testing in animals. Therefore, 21st century science is incorporating the
use of human-relevant methods that are ethical, scientifically sound, and can accurately predict the
toxicity of chemicals. In silico models that consider human-relevant parameters as well as in vitro
methods that vary in complexity—spanning from mono-to co-culture systems—are already being
used to predict human outcomes. For example, the Organisation for Economic Co-operation and
Development (OECD) (OECD, 2021) uses combined information from several sources (e.g. in silico
predictions, in chemico, in vitro data) to predict pathological outcomes in humans in response to
chemical exposure. Anchored to known mechanisms of human toxicity such mechanism-based
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approaches enable us to understand whether a chemical will be
toxic and through which pathway(s) it may act to cause the
adverse outcome (AO) (Clippinger et al., 2018).

Adverse outcome pathways (AOP) are a means to organize
known information related to a pathological outcome and
understand the mechanism leading to the adverse effect.
Starting with a molecular initiating event (MIE) and ending in
an AO, AOPs are a sequence of causally linked key events (KE)
that span different levels of biological organization—from the
molecular to the whole organism level (Ankley et al., 2010). An
AOP may not necessarily include every single event that
contributes to the development of the AO, but it does include
all KEs that are critical for its development (OECD, 2017). In vitro
and in silico assays that measure each of the KEs of an AOP can be
used to design testing approaches that closely predict human
responses and replace the need for in vivo data in order to derive
benchmark values for determining the potential adverse health
impacts of chemicals. When combined with existing data and
physicochemical information related to the test substance, AOP-
based testing can help develop integrated approaches that can
predict human responses (OECD, 2021). Given the usefulness of
AOPs in the risk assessment of chemicals, the OECD launched a
program for the development of AOPs in 2012; called the AOP-
Wiki, this program is overseen by the Extended Advisory Group
onMolecular Screening and Toxicogenomics (EAGMST). Several
online resources, including the OECD AOP users’ handbook, are
available to aid developers in compiling AOPs on the AOPwiki
(OECD, 2018). There are currently more than 300 AOPs online,
at various stages of completion. One of these is AOP148 [EGFR
Activation Leading to Decreased Lung Function, https://aopwiki.
org/aops/148], which is extended and complemented by the AOP
network described here.

With a surface area of ∼100 m2 and ventilated by 10,000 to
20,000 L of air per day (National Research Council, 1988;
Frohlich et al., 2016), the lungs are a major barrier that
protect the body from a host of external factors that enter the
respiratory system and may cause lung pathologies. Mucociliary
clearance (MCC) is a key aspect of the innate immune defense
against airborne pathogens and inhaled particles. MCC is
governed by the concerted action of its functional
components, the cilia and the airway surface liquid (ASL),
where the latter comprises mucus and the periciliary layer
(PCL) (Bustamante-Marin and Ostrowski, 2017). Healthy
subjects produce >10 ml airway secretions daily (King, 2006),
which are continuously transported by the mucociliary escalator.
Disturbances in any of the processes that regulate ASL volume,
mucus production, mucus viscoelastic properties, or ciliary
function can cause MCC dysfunction and are linked to airway
diseases such as chronic obstructive pulmonary disease (COPD)
and asthma, both of which bear a significant risk of increased
morbidity and mortality. The mechanism by which exposure to
inhaled toxicants might lead to mucus hypersecretion and
thereby impact pulmonary function has already been mapped
in AOP148 on decreased lung function. However, whether an
exposure-related decline in lung function is solely related to
excessive production of mucus is debatable, particularly in
light of the close relationship between mucus, cilia function,

and efficient MCC. To date, no single event has been
attributed to MCC impairment. This AOP work evaluates the
major processes known to be involved in ensuring efficient MCC
and consists of sequences of KEs that culminate in the
modulation of ASL, ciliary beat frequency (CBF), and mucus
viscosity. Together, these processes impair MCC, which—when
persistent—leads to decreased lung function. Evidence was
gathered from the peer-reviewed literature from multiple
sources (e.g., PubMed, Web of Science, Scopus) by keyword
searches. No publication date limit was applied. Both
empirical and quantitative evidence was captured, consolidated
and transferred to the corresponding KE and KER pages on the
AOPwiki following the recommendations in the AOP User’s
Handbook.

2 SUMMARY OF KEY EVENTS AND
MECHANISMS

The epithelium of the respiratory tract has a powerful defense
mechanism against airborne pollutants, owing to the combined
performance of mucus-producing goblet cells and ciliated cells
that are covered with microtubular projections called cilia. In
response to various irritants and pathogens, goblet cells produce
and secrete mucus, and the cilia sweep the mucus upward
through coordinated beating motions, thus clearing the
airways of these substances—a process which is termed MCC.
Optimal MCC is dependent on multiple factors, including cilia
number and structure, ASL height1, and the physical and
chemical properties of mucus. Any disturbances in these
factors can lead to impaired MCC. A summary schematic of
the AOP network delineating processes that lead from oxidative
stress to decreased lung function is presented in Figure 1 and
detailed on the AOPwiki (https://aopwiki.org/aops/411, https://
aopwiki.org/aops/424, https://aopwiki.org/aops/425).The MIE
for this network of AOP is oxidative stress. Oxidative stress is
generally regarded as a redox imbalance characterized by the
increased production of oxidative species and concurrent
depletion of antioxidant defenses. Thus, the overall redox
balance of the cell/tissue is tipped in favor of oxidation.
Various highly reactive species, collectively referred to as
“reactive oxygen species” (ROS) or “reactive nitrogen species”
(RNS), are formed continuously at relatively low concentrations
during the normal biochemical functioning of cells and tissues.
They are highly unstable because they contain unpaired electrons
capable of initiating oxidation reactions and include free radicals
such as hydroxyl radicals, superoxide anions, oxygen radicals,
nitric oxide, and non-free radicals, such as hydrogen peroxide,
peroxynitrite and hypochlorous acid (Rahman et al., 2006).
However, upon exposure to certain xenobiotics or in the
presence of pathogens, cells may form excessive ROS/RNS,

1The literature interchangeably refers to ASL height, ASL volume and ASL depth.
The data presented in original research articles indicate that these terms are
synonymous. To simplify the presentation of evidence, we will refer to “ASL
height” here.
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which may react with cellular components such as proteins, lipids
and nuclear material, leading to the dysfunction of these
components and, ultimately, cell death and disease
manifestation (Halliwell and Aruoma, 1991; Berlett and
Stadtman, 1997). Protective enzymes such as catalase,
glutathione peroxidase, superoxide dismutase, and
thioredoxin—in combination with radical scavengers such as
glutathione, ascorbic acid, uric acid and vitamin E—work in
concert to maintain ROS/RNS levels that are not overly damaging
to cells and cellular systems (Rahman et al., 2006).

In the lungs, free radical species may be endogenously produced
or introduced following exposure to exogenous sources, such as air
pollutants, inhaled chemicals/therapeutics, and cigarette smoke
(Church and Pryor, 1985). The main cellular sources of reactive
species in the lungs include neutrophils, eosinophils, alveolar
macrophages, alveolar epithelial cells, bronchial epithelial cells,
and endothelial cells (Holland et al., 1990; Kinnula et al., 1992;
Kinnula et al., 1995); these cells may increase their ROS/RNS
production in response to infection or tissue damage. ROS/RNS
generally inflict their effects by remodeling extracellular matrix and
stimulating mucus secretion and repair responses (Poli and Parola,
1997). Oxidative stress can lead to a variety of respiratory diseases,
such as asthma, acute respiratory distress syndrome and COPD
(Rahman and MacNee, 1996; Chabot et al., 1998).With respect to
this specific AOP, localized oxidative stress in the airways as a
result of cigarette smoke exposure, for example, can cause damage
to various proteins linked to the regulation of cilia function.
Reduced expression of the CFTR (cystic fibrosis transmembrane
conductance regulator) transcript, diminished CFTR protein levels,
and altered chloride (Cl−) channel gating lead to acquired CFTR
dysfunction (Clunes et al., 2012; Braun, 2014), which perturbs the

height of the ASL and facilitates cilia collapse. Furthermore,
oxidative damage has been reported to decrease the FOXJ1
(forkhead box protein J1) gene and protein expression, a critical
protein involved in the assembly of motile cilia (Milara et al., 2012;
Brekman et al., 2014; Garcia-Arcos et al., 2016; Valencia-Gattas
et al., 2016; Ishikawa and Ito, 2017). Collectively, these
perturbations result in decreased MCC from the upper airways.

CFTR is a multi-domain membrane protein belonging to the
large family of adenine nucleotide-binding cassette transporters
(Riordan, 2008). It is an integral membrane glycoprotein which
functions as cyclic adenosine monophosphate (cAMP)-activated
and phosphorylation-regulated Cl− channel at the apical
membrane of epithelial cells (Farinha et al., 2013). In
respiratory epithelia, CFTR mediates fluid and electrolyte
transport, and its function is critical to ASL homeostasis.
Exposure to inhaled oxidants leads to decreased CFTR gene and
protein expression as well as CFTR internalization, which reduces
protein presentation at the membrane and reduces or abolishes
short-circuit currents (Cantin et al., 2006a; Cantin et al., 2006b;
Clunes et al., 2012; Sloane et al., 2012; Rasmussen et al., 2014).
Decreased CFTR expression (KE1) in airway epithelium has been
observed in cystic fibrosis and after hypoxia and cigarette smoke
exposure, resulting in reduced Cl− transport and, ultimately,
reduced ASL depth (Alexander et al., 2012; Clunes et al., 2012;
Rasmussen et al., 2014; Woodworth, 2015; Raju et al., 2016).

The ASL is a liquid layer on the apical side of the respiratory
epithelium, reportedly between 5 and 100 μm in depth
(Widdicombe and Widdicombe, 1995). It consists of an inner
aqueous PCL, which spans the length of the cilia, and an outer
gel-like mucus layer. The PCL has a low viscosity and enables
ciliary beating, thereby facilitating the movement of the outer

FIGURE 1 | Schematic representation of the proposed decreased lung function adverse outcome pathways (AOP), focusing onmechanisms that result in impaired
mucociliary clearance (MCC) following inhalation exposure. Abbreviations: AO, adverse outcome; ASL, airway surface liquid; CFTR, cystic fibrosis transmembrane
regulator; FOXJ1, forkhead box protein J1; KE, key event; KER; key event relationship; MCC, mucociliary clearance; MIE, molecular initiating event.
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mucus layer toward the glottis and, ultimately, its removal by
cough or ingestion (Antunes and Cohen, 2007). Both ASL
composition and height are considered critical for its function
(Fischer and Widdicombe, 2006). Under physiological
conditions, ASL composition and height are regulated through
vectorial transport of electrolytes, driven by transepithelial
transport and apical secretion of Cl− by (predominantly)
CFTR, which results in passive water secretion and,
consequently, increased ASL height. Absorption of sodium
ions (Na+) on the apical side by the epithelial sodium channel
(ENaC) and its interaction with the basolateral Na+/K+-ATPase
leads to net absorption of Na+, which in turn drives fluid
absorption and therefore decreases ASL height (KE2)
(Hollenhorst et al., 2011; Althaus, 2013). Impairment of CFTR
or ENaC function can lead to the dysfunction of the other ion
channel (increased CFTR activity leads to decreased ENaC
activity and vice versa) (Hobbs et al., 2013; Munkholm and
Mortensen, 2014), resulting in perturbation of ASL height.

The number, structure, and cohesive beating of the motile cilia
lining the upper and lower respiratory tract are critical for efficient
MCC. Motile cilia are microtubular organelles, 6–7 µm long and
0.2–0.3 µm in diameter (Brooks and Wallingford, 2014; Yaghi and
Dolovich, 2016). They protrude from the cell surface and generate
directional flow of fluid though coordinated beating.
Approximately 50–80% of the human respiratory epithelium is
comprised of ciliated cells; each ciliated cell is covered bymore than
a hundred motile cilia, which move mucus upwards (together with
mucus-trapped substances) upward (Yaghi and Dolovich, 2016;
Bustamante-Marin and Ostrowski, 2017). Cilia formation is
initiated and coordinated by a distinct gene expression program,
led by the transcription factor FOXJ1 (Brody et al., 2000; Zhou and
Roy, 2015). The multiple motile cilia assembly factors MCIDAS
(multiciliate differentiation andDNA synthesis associated cell cycle
protein) and GMNC (geminin coiled-coil domain containing)
converge in positively regulating FOXJ1 (Stubbs et al., 2012;
Arbi et al., 2016; Berta et al., 2016), whereas NOTCH (Notch
homolog (Drosophila))-, IL-13 (interleukin-13)- or EGF
(epidermal growth factor)-triggered signaling antagonizes
FOXJ1-driven multiciliogenesis (Gomperts et al., 2007;
Shaykhiev et al., 2013; Gerovac et al., 2014; Gerovac and
Fregien, 2016). Although various other factors are involved in
multiple motile cilia assembly—including MYB (MYB proto-
oncogene), RFX3 (regulatory factor X3), ULK4 (Unc-51 like
kinase 4), Wnt signaling, and others—they mostly act upstream
or in parallel to FOXJ1 (Tan et al., 2013; Choksi et al., 2014; Liu
et al., 2016; Schmid et al., 2017). FOXJ1 appears to be the major
factor inmulticiliogenesis, whereby its activity is necessary and also
sufficient for programming cells to assemble functional motile cilia
(Vij et al., 2012; Zhou and Roy, 2015). It is not surprising, therefore,
that a decrease in FOXJ1 levels (KE3) inhibits ciliogenesis in
multiciliated cells in zebrafish and Xenopus (Stubbs et al., 2008),
and knockdown of FOXJ1 results in almost complete absence of
cilia in mouse epithelial cells (Chen et al., 1998; Brody et al., 2000).
FOXJ1 expression also decreases in cigarette smoke extract-treated
human airway epithelial cells, leading to suppression of cilia
growth, which can be restored by overexpression of the protein
(Brekman et al., 2014).

Because ciliated cell density and the multiple motile cilia
length and number per cell correlate with CBF—which is
routinely used as a predictor of MCC efficiency (King, 2006)—
it follows that, if cilia numbers decrease (KE4), CBF decreases
(KE6). Cohesive beating of multiple motile cilia with a specific
frequency and pattern propels mucus (and trapped particles or
pathogens) upwards, creating a continuous movement (Chilvers
and O’Callaghan, 2000). CBF is influenced by several factors,
including structural modulation in the cilia and the
concentrations of the cyclic nucleotides cAMP and cGMP and
intracellular calcium (Ca2+) (Rubin, 2002). CBF also depends on
the physical and chemical properties of the ASL. If ASL height
decreases following, for example, exposure to cigarette smoke, the
cilia cannot extend to their full height, and MCC efficiency will
drop. In addition, reduced ASL height results in airway
dehydration, which increases mucus viscosity (KE5) (Gheber
et al., 1998; Lai et al., 2009; Fahy and Dickey, 2010). Increased
mucus viscosity, in turn, decreases CBF and slows the transport of
mucus on the mucociliary escalator (i.e., decreases MCC; KE7). In
chronic inflammatory states, as seen (for example) in the lungs of
cystic fibrosis, asthma, or COPD patients, decreased MCC can
lead to mucus impaction, resulting in the formation of mucus
plugs, which then in turn obstruct the airways and, consequently,
lead to decreased lung function (AO) over time (Wanner et al.,
1996; Szczesniak et al., 2017; Dunican et al., 2021).

3 EMPIRICAL EVIDENCE FOR KEY EVENT
RELATIONSHIPS

Table 1 presents a summary of supporting evidence for each of
the KERs in this AOP. KERs are rated as “strong”, “moderate”, or
“weak” on the basis of empirical evidence supporting a change in
an upstream KE (KEup) leading to an appropriate change in the
immediate downstream KE (KEdown). Other considerations are
whether KEups occur at lower doses, earlier time points, and at a
higher incidence than KEdowns and if there are any
inconsistences in the published data. The experimental
evidence for a causal relationship between the KEup and
KEdown in this AOP has been provisionally rated as
“moderate” or “strong” in most cases.

Exposure to inhaled oxidants, such as cigarette smoke and
ozone, leads to decreased CFTR gene and protein expression as
well as CFTR internalization (KE1), thereby reducing or
abolishing open probabilities, short-circuit currents and
subsequently ASL height/volume (KE2) (Kulka et al., 2005;
Cantin et al., 2006a; Cantin et al., 2006b; Qu et al., 2009;
Clunes et al., 2012; Sloane et al., 2012; Rasmussen et al., 2014).
Both reduced mRNA stability (Cantin et al., 2006a) and decreased
transcription rates (Bargon et al., 1992a; Bargon et al., 1992b;
Rasmussen et al., 2014) reportedly contribute to diminished
CFTR mRNA expression. CFTR expression was also
modulated by STAT1 (Kulka et al., 2005; Qu et al., 2009) and
Nrf2 signaling (Zhang et al., 2015). Additionally, on the post-
transcriptional level, CFTR function has been shown to be
affected by oxidative stress (Clunes et al., 2012) and ischemia
(Brézillon et al., 1997; Bodas et al., 2017).
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TABLE 1 | Empirical evidence for key event relationships (KER).

KER Defining question: Does empirical evidence support that a change in KEup leads to an appropriate change in KEdown?Does KEup occur
at lower doses, earlier time points, and higher in incidence than KEdown? Inconsistencies?
High (Strong): Multiple studies showing dependent change in both events following exposure to a wide range of specific stressors. No or
few critical data gaps or conflicting data
Moderate: Demonstrated dependent change in both events following exposure to a small number of stressors. Some inconsistencies
with expected pattern that can be explained by various factors
Low (Weak): Limited or no studies reporting dependent change in both events following exposure to a specific stressor, and/or
significant inconsistencies in empirical support across taxa and species

KERA Strong Inducers of oxidative stress such as cigarette smoke reduced CFTR expression at both the RNA Cantin et al. (2006a);
Cantin et al. (2006b); Qu et al. (2009); Rennolds et al. (2010) and protein (Cantin et al. (2006b); Qu et al. (2009); Rennolds
et al. (2010); Sloane et al. (2012); Hassan et al. (2014); Rasmussen et al. (2014); Xu et al. (2015) level in vitro. CFTR protein
expression was lower in the airways of smokers compared to non-smokers Dransfield et al. (2013). In some of these
studies, an accompanying decrease in Cl− conductance was also observed Qu et al. (2009); Rennolds et al. (2010); Sloane
et al. (2012). There are many studies that support a direct link between oxidative stress and decreased CFTR function
in vitro, ex vivo, in vivo and in human subjects. Human primary epithelial cells and cell lines of respiratory epithelial origin have
consistently decreased conductance of Cl− and other ions following exposure to cigarette smoke and other oxidants
(Cantin et al. (2006b); Schwarzer et al. (2008); Raju et al. (2013); Lambert et al. (2014); Schmid et al. (2015); Raju et al.
(2016); Chinnapaiyan et al. (2018), which could be reversed upon antioxidant treatment Raju et al. (2013); Lambert et al.
(2014); Schmid et al. (2015). Similar observations were made under hypoxic conditions Brézillon et al. (1997); Zhang et al.
(2013); Woodworth, (2015). Antioxidants could also increase Cl− conductance and anion transport in the absence of
oxidant treatment or hypoxia induction in human and murine respiratory cells in vitro and in ex vivo tissues Azbell et al.
(2010); Alexander et al. (2011); Conger et al. (2013). Healthy smokers and smokers with COPD have reduced Cl−

conductance Sloane et al. (2012); Dransfield et al. (2013) and increased sweat chloride concentrations Raju et al. (2013);
Courville et al. (2014)

Oxidative stress leading to decreased CFTR function

KERB Strong As amajor Cl− channel in the respiratory epithelium, CFTR levels and function are vital for maintenance of ASL homeostasis.
In vitro studies on the effects of cigarette smoke exposure on human lung primary cells and cell lines showed a reduction in
ASL height, associated with decreased CFTR levels Hassan et al. (2014); Rasmussen et al. (2014); Xu et al. (2015); Ghosh
et al. (2017) and decreased Cl− current Lambert et al. (2014); Raju et al. (2016). Moreover, pharmaceutical stimulation and
inhibition of CFTR function and expression directly increased and decreased ASL height, respectively Song et al. (2009);
Van Goor et al. (2009); Van Goor et al. (2011); Tuggle et al. (2014)

Decreased CFTR function leading to decreased ASL height

KERC Weak Concurrent ASL height and CBF decreases were noted in human 3D airway epithelial cultures following exposure to
cigarette smoke Åstrand et al. (2014); Xu et al. (2015) and following the addition of large dextran molecules, low-melting
point agarose or endogenous mucus Button et al. (2012). Treatment of human airway epithelial with an ENaC inhibitor
prevented the cigarette smoke effect on ASL height and CBF Åstrand et al. (2014). In addition, treatment of cystic fibrosis
airway cultures with a CFTR-modifying drug increased both ASL height and CBF Van Goor et al. (2009)

Decreased ASL height leading to decreased CBF

KERD Moderate A decrease in CBF resulting from sulfur dioxide exposure reduced mucociliary clearance in dogs Yeates et al. (1997) and
mucociliary activity in guinea pig tracheas Knorst et al. (1994). In rats, formaldehyde inhalation exposure resulted in lower
numbers of ciliated cells, while ciliary activity and mucus flow rates were decreased in a dose and time-dependent manner
(Morgan et al. (1986). In humans, CBF positively correlates with nasal mucociliary clearance time Ho et al. (2001), and
bronchiectasis patients have lower nasal CBF and slower mucociliary transport (MCT) Rutland and Cole, (1981).
Administration of nebulized CBF inhibitors and enhancers quantifiably decreased or increased mucociliary clearance,
respectively Boek et al. (1999); Boek et al. (2002). Increased CBF andMCTwas also noted in human sinonasal epithelial cell
cultures treated with Myrtol

®
, an essential oil distillate Lai et al. (2014) and in sheep tracheas and human airway epithelial

cultures subjected to temperature changes Kilgour et al. (2004); Sears et al. (2015). Exposures of frog palate epithelia to
formaldehyde and PM10 reduced MCC and mucociliary transport, but only formaldehyde-treated epithelia showed
decreases in CBF Morgan et al. (1984); Macchione et al. (1999); Fló-Neyret et al. (2001)

Decreased CBF leading to decreased MCC Ex vivo treatment of sheep trachea with acetylcholine and epinephrine increased CBF, but only acetylcholine increased
surface liquid velocity, while both parameters were decreased upon incubation with platelet-activating factor Seybold et al.
(1990)

KERE Moderate Changes in MCC rate are typically paralleled by effects on lung function in several studies where both endpoints have been
assessed. In patients with primary ciliary dyskinesia, absence of cilia motion prevents normal MCC and consequently, lung
function is reduced Denizoglu Kulli et al. (2020). In cystic fibrosis patients, the ASL is depleted resulting in impaired MCC
Boucher, (2004). Although the known CFTR genotypes can result in a variety of phenotypes Derichs, (2013), clinical data
indicate that some specific gene defects, such as the p.Phe508del variant, are more frequently associated with decreased
lung function indices (e.g. FEV1% predicted, FVC % predicted, FEF25-75) Kerem et al. (1990); Johansen et al. (1991);
Schaedel et al. (2002). Both cigarette smoking and occupational exposure to biomass fumes led to slower MCC and
reduced FEV1% predicted and FEV1/FVC Ferreira et al. (2018). Nasomucociliary clearance was slower in COPD smokers
compared to former smokers with COPD or to nonsmokers Ito et al. (2015). Allergen challenge in asthma patients resulted
in both reduced MCC and FEV1, which could be reversed by inhalation of hypertonic saline solution Alexis et al. (2017). In
cystic fibrosis patients, treatment with mucolytic agents Laube et al. (1996); McCoy et al. (1996); Quan et al. (2001); Elkins
et al. (2006); Amin et al. (2011); Donaldson et al. (2018) or a CFTR potentiator Rowe et al. (2014) improved both MCC and
lung function (FEV1, FVC and FEF25-75)

Decreased MCC leading to decreased lung function

KERF Moderate Cigarette smoke-induced oxidative stress downregulates FOXJ1 expression at both the gene and protein levels in human
lung cells in vitroMilara et al. (2012); Brekman et al. (2014); Valencia-Gattas et al. (2016); Ishikawa and Ito, (2017). Oxidative
stress induced by human respiratory syncytial virus reduces FOXJ1 mRNA levels, which can be restored by treatment with
antioxidants or the phosphodiesterase 4 inhibitor roflumilast N-oxide Akaike et al. (1990); Geiler et al. (2010); Mata et al.
(2012). In mice, thoracic irradiation results in free radical generation and subsequent reduction in FOXJ1 mRNA expression

Oxidative stress leading to decreased FOXJ1 protein

(Continued on following page)
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Serous and glandular secretions of the airway epithelium
contribute to the ASL, and epithelial ion channel function is
critical to ASL homeostasis. Absorption of liquid to and from
the mucus layer serves to maintain ASL depth. The regulation of
these reabsorption processes is complex and not fully elucidated
(Boucher, 2004). Experimental evidence suggests that the
balance between Na+ absorption and Cl− secretion—mediated
by ENaC and CFTR, respectively—plays a major role in these
processed, with the ion channels affecting each other’s activity
(Boucher, 2003; Boucher, 2004; Schmid et al., 2011). Impaired

functioning of the CFTR and ENaC ion channels results in
enhanced Na+ absorption, reduced Cl− secretion, and
consequently, reduced ASL height (KE2). This phenomenon
is well known not only from studies in models of cystic fibrosis
and acquired CFTR deficiency—even though the exact
mechanism of the interaction between these two channels
remains to be elucidated (Tarran et al., 2001; Boucher, 2003;
Zhang et al., 2013; Hassan et al., 2014; Rasmussen et al., 2014;
Woodworth, 2015; Raju et al., 2016)—but also from studies with
pharmacological agents that enhance CFTR expression and/or

TABLE 1 | (Continued) Empirical evidence for key event relationships (KER).

Bernard et al. (2012). Many genes that are transcriptionally regulated by FOXJ1 are also downregulated following exposure
to cigarette smoke, which implies a reduction in FOXJ1 transcriptional activity Brekman et al. (2014)

KERG Strong Homozygous null mutation of Foxj1 results in complete absence of cilia in mouse respiratory epithelium Chen et al. (1998);
Brody et al. (2000). In a previous study, wild-type mice had approximately 20% heavily ciliated cells in the proximal
pulmonary epithelium, while explanted Foxj1-/- mouse trachea had no ciliated cells Gomperts et al. (2004). Loss of FOXJ1
orthologs FoxJ1–4 in flatworm Schmidtea mediterranea results in loss of ciliation of the ventral epithelium which closely
resembles the human airway epithelium Rompolas et al. (2009); Vij et al. (2012). Loss of Foxj1 activity in Xenopus and
zebrafish—through antisense morpholino oligonucleotides—reduces cilia formation, while, conversely, ectopic Foxj1
overexpression results in formation of multiple motile cilia Stubbs et al. (2008); Yu et al. (2008). There is a strong correlation
between FOXJ1 and expression of the FOXJ1 ciliogenesis program genes in zebrafish, Xenopus and mouse cells
Abedalthagafi et al. (2016)

Decreased FOXJ1 protein leading to decreased motile cilia
length/number

Treatment with cigarette smoke extract downregulates FOXJ1 mRNA and protein expression, which is accompanied by a
reduction in cilia length and number in human bronchial epithelial cells in vitroMilara et al. (2012); Brekman et al. (2014). This
can be prevented by overexpression of FOXJ1 Brekman et al. (2014) or treatment with roflumilast N-oxide, which reduces
intracellular free radical levels and increases FOXJ1 mRNA and protein expression Milara et al. (2012)

KERH Moderate In Chlamydomonas, ciliary motion is directly related to the length of the cilia Bottier et al. (2019). Similar observations have
been made in zebrafish, where modulation of cilia length and number by FOR20 (centrosomal protein 20) deletion/
knockdown directly impairs ciliary motility Xie et al. (2019). There is also a positive correlation between cilia number andCBF
in sinusitis patients Joki et al. (1998), while cilia number, length and orientation correlate positively withmucociliary transport
rate in patients with recurrent or longstanding respiratory infections Toskala et al. (1995); Joki et al. (1998). Comparisons of
strips of normal and disrupted ciliated epithelium have shown that CBF is decreased in the latter Thomas et al. (2009)

Decreased motile cilia length/number leading to decreased CBF Mathematical models and simulations have shown that periciliary liquid and mucus velocity are directly affected by cilia number
and length Lee et al. (2011); Jayathilake et al. (2012); Jayathilake et al. (2015)

KERI Moderate The phenomenon of ASL volume changes determining mucus viscosity is well described in the cystic fibrosis literature. In
patients with this genetic defect, impaired CFTR function results in ASL depletion and mucus hyperviscosity Knowles and
Boucher, (2002); Puchelle et al. (2002); Mall et al. (2004); Tarran, (2004). This has been confirmed experimentally in pig and
rat models of this disease Birket et al. (2014); Birket et al. (2016); Birket et al. (2018). Studies with transgenic mice
overexpressing βENaC in the airways also corroborate the link between ASL dehydration and increased mucus viscosity,
evidenced by the increased incidence of airway mucus plugging [129, 195]. In a ferret model of cigarette smoke-induced
COPD, ASL depletion was shown to be one of the drivers of increased mucus viscosity and decreased MCC Lin et al.
(2020). The same study also showed that mucus from COPD patients, obtained from 3D organotypic airway epithelial
cultures from different smoking donors with COPD, is significantly more viscous than that from healthy, non-smoking
individuals and smokers without disease Lin et al. (2020)

Decreased ASL height leading to increased mucus viscosity

KERJ Strong Experimental studies in vitro have shown that exposure of ciliated respiratory cells directly or indirectly to sources of
oxidative stress leads to decreased CBF Burman andMartin, (1986); Wilson et al. (1987); Feldman et al. (1994); Yoshitsugu
et al. (1995); Min et al. (1999), which can be reversed by treatment with antioxidants Schmid et al. (2015). Cigarette smoke
condensate, a known inducer of oxidative stress, also causes a decrease in CBF in vitro Cohen et al. (2009), while, in
human subjects exposed to different oxygen levels, oxygen stress causes a decrease in nasal CBF Stanek et al. (1998)

Oxidative stress leading to decreased CBF

KERK Moderate Several studies have shown that there is an optimal range of viscoelastic mucus properties that facilitates efficient MCC and
that changes inmucus viscosity beyond that optimal range impact CBF and alter MCC. Studies in humans,mice, hamsters,
horses and frogs have shown that increased mucus viscosity correlates with a decrease in CBF King, (1979); Gheber et al.
(1998); Matsui et al. (1998); Andrade et al. (2005); González et al. (2016); Kikuchi et al. (2017); Birket et al. (2018)

Increased mucus viscosity leading to decreased CBF

KERL Moderate Mucus viscoelastic properties, whether altered by airway dehydration or mucus hypersecretion, directly influence MCC.
Studies cystic fibrosis models and those on mimicking changes in mucus viscosity by using (bio)polymers or large
molecules such as dextran have indicated a dose-response effect of increasing mucus viscosity on mucociliary transport
rates, although these changes are transient in nature in ex vivo and in vitro systems Birket et al. (2018); Fernandez-Petty
et al. (2019). Increased mucus viscosity also has a negative impact on MCC in horses with recurrent airway obstruction
Gerber et al. (2000). Conversely, inhalation of hypertonic saline solution decreases mucus viscosity and enhances MCC in
cystic fibrosis patients Robinson et al. (1997)

Increased mucus viscosity leading to decreased MCC

Abbreviations: 3D, three-dimensional; ASL, airway surface liquid; CBF, ciliary beating frequency; CFTR, cystic fibrosis transmembrane regulator; Cl−, chloride (ion); COPD, chronic
obstructive pulmonary disease; ENaC, epithelial sodium channel; FEF25-75, forced expiratory flow between 25 and 75% of FVC; FEV1, forced expiratory volume in 1 s; FOR20,
centromere protein 20; FOXJ1, forkhead box J1; FVC, forced vital capacity; MCC, mucociliary clearance; MCT, mucociliary transport.
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function or perturb the interaction between CFTR and ENaC
(Van Goor et al., 2009; Van Goor et al., 2011; Lambert et al.,
2014).

Under physiological conditions, ASL height is adjusted to the
appropriate height, which helps maintain the PCL depth at
approximately the length of the cilia (Antunes and Cohen,
2007). If the airways become “dehydrated” (i.e., the ASL
height decreases; KE2), the cilia collapse and ciliary movement
is slowed or inhibited (KE6) (Matsui et al., 1998; Tarran et al.,
2001; Knowles and Boucher, 2002; Munkholm and Mortensen,
2014). Decreased ASL height also contributes to increased mucus
viscosity (KE5), a phenomenon that is well described in cystic
fibrosis, where CFTR defect results in decreased ASL height,
leading to decreased MCC (KE7) and subsequent mucus
plugging (Birket et al., 2014; Birket et al., 2016; Birket et al., 2018).

Free radicals such as super oxides, hydroxyl radicals, and
hydrogen peroxides are a common factor in various respiratory
diseases, such as acute respiratory distress syndrome, asthma and
pneumonia. Oxidative stress (such as that caused by cigarette
smoke exposure or irradiation) leads to decreased FOXJ1 gene
and protein expression (KE3) as well as to decreased FOXJ1 target
gene expression (Milara et al., 2012; Brekman et al., 2014; Garcia-
Arcos et al., 2016; Valencia-Gattas et al., 2016; Ishikawa and Ito,
2017). Because FOXJ1 is a key factor of multiple motile cilia
assembly in the respiratory airways (Zhou and Roy, 2015),
oxidative stress blocks the multiciliogenesis program, which is
necessary and also sufficient to program cells to grow functional
motile cilia (Hua et al., 2010; Vij et al., 2012). Studies in different
model organisms have shown that the loss of FOXJ1 (KE3) results
in a loss of multiple motile cilia (KE4) (Chen et al., 1998; Brody
et al., 2000; Stubbs et al., 2008; Vij et al., 2012).

Cilia in the respiratory epithelium beat in a coordinated
fashion at a frequency of approximately 7–16 Hz, propelling
mucus upwards (Joki et al., 1998; Smith et al., 2012; Jing et al.,
2017). Many factors have been shown to affect ciliary function,
including cilia length, number, structure, orientation, and
distribution as well as mucus viscosity, temperature, pH,
chemicals, ASL height, and exposure to bacterial and viral
pathogens (Kanthakumar et al., 1996; Clary-Meinesz et al.,
1998; Joki et al., 1998; Ho et al., 2001; Mall, 2008; Smith et al.,
2012; Jing et al., 2017; Snyder et al., 2017). Alterations in normal
physiological conditions and healthy cilia number/length/
structure (KE4) as well as oxidative stress through exposure to
hydrogen peroxide or free radicals typically reduce CBF (KE6)
(Burman and Martin, 1986; Clary-Meinesz et al., 1998; Min et al.,
1999; Jayathilake et al., 2012).Synchronized ciliary action helps
transport mucus from the lungs to the mouth, where it is
swallowed or expectorated (Munkholm and Mortensen, 2014).
In addition to ASL and mucus properties, the speed of mucus
movement—and hence the effectiveness of MCC—is dependent
on ciliary amplitude and beat frequency (Rubin, 2002). Aside
from genetic defects leading to ciliopathies, there is ample
evidence that prolonged exposure to noxious agents, such as
cigarette smoke, nitrogen oxide and sulfur dioxide, causes a
decrease in CBF (KE6) and, subsequently, MCC (KE7) (Knorst
et al., 1994; Yeates et al., 1997; Kakinoki et al., 1998; Cohen et al.,
2009; Schmid et al., 2015). CBF also seems to be dependent on

mucus viscosity, with the CBF decreasing with increasing
viscosity in animal models (Andrade et al., 2005; Kikuchi
et al., 2017). This linear correlation between CBF (KE7) and
mucus viscosity (KE5) has also been confirmed in mathematical
models simulating the two-layer mucociliary transport process
(Lee et al., 2011; Sedaghat et al., 2016).

Finally, the link between decreased MCC and decreased lung
function (AO) is well established through observations in patients
with ciliary defects (e.g., primary ciliary dyskinesia) and cystic
fibrosis. Failure to clear mucus from the lungs causes mucus build
up, which can lead to mucus plugging in the airways and,
consequently, leads to decreased lung function over time
(Mossberg et al., 1978; Regnis et al., 1994; Wanner et al., 1996;
Robinson and Bye, 2002; Kerem et al., 2014; Szczesniak et al.,
2017). Mucus plugging due to decreasedMCC is also considered a
major cause of airway obstruction and airflow limitation in
COPD patients (Okajima et al., 2020; Dunican et al., 2021)
and asthmatics (Maxwell, 1985; Kuyper et al., 2003).

4 OVERALL ASSESSMENT OF THE
ADVERSE OUTCOME PATHWAYS

4.1 Key Event Essentiality
The definition of essentiality implies that modulation of
upstream KEs impacts the downstream KEs in an expected
fashion. When blocked or when they fail to occur, the KEs in the
current AOP will not necessarily stop the progression to
subsequent KEs. Owing to the complex biology of motile
cilia formation and function, ASL homeostasis, mucus
properties, and MCC, the KEs and AO may be triggered
because of alternative pathways or biological redundancies.
However, when exacerbated, the KEs promote the occurrence
of downstream events that eventually lead to the AO. The causal
pathway starting from exposure to oxidants and leading to
decreased lung function involves parallel routes with KEs,
each of which is sufficient to cause the downstream KE to
occur. Different mechanisms—such as oxidant-induced
decreases in ASL height due to CFTR function decline or
oxidant-induced decrease in cilia number and length as a
result of decreased FOXJ1 levels—lead to decreased CBF and
decreased MCC. Each of these pathways contributes to the AO,
but their relative contributions are difficult to evaluate. We
judge the KEs MIE, KE1, KE3, KE4, KE6, and KE7 as highly
essential and suggest moderate essentiality for KE2 and KE5
(Table 1; AOPwiki, https://aopwiki.org/aops/411, https://
aopwiki.org/aops/424, https://aopwiki.org/aops/425).

4.2 Key Event Relationship Biological
Plausibility
Mechanistic data on the pathways that contribute to oxidative
stress-elicited lung damage have varied coverage in current
literature. The AOP network we present here starts with an
oxidant exposure or exposure-causing oxidative stress leading to
decreased CFTR and FOXJ1 mRNA and protein levels as well as
decreased protein function. KERA (oxidative stress leading to
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decreased CFTR function) is supported by multiple studies across
different species, which suggest their high biological plausibility (for
empirical evidence supporting each KER, refer to Table 1). For a
similar inhibitory role of oxidative stress on FOXJ1, the studies are
less ample. However, there is credible evidence that oxidative stress
has a deteriorating effect on FOXJ1 transcript and protein levels as
well as on the function of this transcription factor. Therefore, we
judge the plausibility of KERF (oxidative stress leading to decreased
FOXJ1 protein) to be moderate.

The biological functions of CFTR and FOXJ1 are extensively
studied and established across different test systems, implying
the high biological plausibility of both KERB (decreased CFTR
function leading to decreased ASL height) and KERG (decreased
FOXJ1 protein leading to decreased motile cilia length/number).
Specifically, CFTR contributes to healthy lung function by
regulating epithelial ion conductance to support ASL height
maintenance (Boucher, 2003; Csanady et al., 2019), and FOXJ1
is an essential factor for functional multiple motile cilia
assembly (Vij et al., 2012; Choksi et al., 2014). Both
decreased ASL height (KE2) and decreased motile cilia
length/number (KE4) lead to decreased CBF (KE6), as
outlined in KERC and KERH, respectively. Multiple studies
describe the link between decreased ASL height and reduced
CBF. However, the causality between these KEs is not well-
established, prompting us to judge KERC as weakly supported.
As for KERH, higher numbers of motile cilia with a healthy
length support efficient ciliary beating, and a decrease in cilia
number and/or length results in a proportionate reduction in
CBF. This causal relationship is logical but is directly tested only
in few studies. Therefore, we rank the biological plausibility of
KERH as moderate. ASL height is also linked to the physical
properties of mucus, and studies in models of or individuals
with cystic fibrosis support the link between ASL depletion and
increased mucus viscosity (KERI), though the overall evidence is
sparse, and causality is not always proven. Because the
dependencies between these two KEs were highlighted in
different species in vitro and in vivo, and the underlying
mechanism is well established, we judge the plausibility of
KERI as moderate.

Additionally, we propose a direct relationship between
oxidative stress and KE6, decreased CBF (KERJ). A variety of
oxidants, such as hydrogen peroxide, nitric dioxide, sulfur
dioxide, acetaldehyde, ozone, and cigarette smoke decrease
CBF in airway epithelial cells in a dose- and time-dependent
manner after exposure. This link is demonstrated in several
studies in various species, and we judge the plausibility of
KERJ as strong. Synchronized ciliary beating helps transport
mucus from the distal airways to the mouth, where it is
cleared through ingestion or expectoration. In vivo studies and
observations in patients with ciliopathies, respiratory infections,
or allergies, and following exposure to inhaled toxicants that
compromise ciliary function demonstrate that absent, decreased,
or asynchronous cilia beating results in defective mucus
clearance. Pharmacological studies have demonstrated that
CBF stimulation typically results in MCC stimulation. While
some results support both a dose-dependent response and
temporal sequence of decreased CBF (KE6) leading to

decreased MCC (KE7), most studies evaluate these KEs in
parallel, and no clear causal linkage is affirmed. The same is
true for increased mucus viscosity. Mucus viscoelastic properties,
whether altered by airway dehydration or mucus hypersecretion,
directly influence MCC. In fact, there is an inverse relationship
between mucus viscosity and CBF (KERK) and mucus transport/
MCC (KERL), as demonstrated in several in vivo and ex vivo
studies. A large proportion of these studies have employed (bio)
polymers or other large organic molecules to mimic the mucus
layer in the airways and the increase in its viscosity. In addition,
some of these studies have shown that decreased mucus viscosity
may also result in impairment of MCC. Therefore, a causal link is
only tentatively supported. Because cilia function, ASL height,
and mucus properties are intricately linked to each other as
evidenced by cystic fibrosis studies, we consider the
plausibility of KERD, KERK, and KERL as moderate.

Different routes lead to impaired MCC, such as smoking-
related oxidative stress, ciliary defects or CFTR mutations.
Regardless of the route that leads to a reduction in MCC,
individuals with impaired MCC exhibit decreased lung
function. Moreover, many pharmacological treatments that
enhance MCC also improve lung function. KE7 and the AO
are thus closely related; however, as causal evidence is not always
available, we judge the biological plausibility of KERE (decreased
MCC leading to decreased lung function) as moderate.

The linear AOPs presented here have certain knowledge gaps;
however, overall, we consider the biological plausibility of our AOP
network as strong, as the network integrates different plausible
pathways from the same MIE, leading to a common AO. For
example, while oxidative stress leading to decreased lung function
through the branch MIE → KE1 → KE2 → KE5 and/or KE6 →
KE7 → AO has a weakly supported link represented by KERC
(KE2→ KE6, i.e., decreased ASL height leading to decreased CBF),
the oxidative stress can lead to the AO also throughMIE→ KE6→
KE7→ AO or via decreased FOXJ1 protein levels through MIE→
KE3 → KE4→ KE5 and/or KE6 → KE7 → AO.

5 DISCUSSION AND CONCLUSION

Here, we have presented an AOP that links oxidative stress
resulting from inhalation exposure to toxicants to impaired lung
function via a decrease in MCC. Given the individual and public
health burden of the consequences of lung function impairment,
gaining a greater understanding of the underlying mechanisms of
this pathology is extremely important in the risk assessment of
inhaled toxic chemicals. There is strong empirical evidence to
support several of the KERs in this AOP, particularly at the cellular
level (i.e., oxidative stress leading to decreased CFTR function
[KERA], decreased CFTR function leading to decreased ASL height
[KERB], and oxidative stress leading to decreased CBF [KERJ]).
However, additional evidence on causality is required to attribute
stronger plausibility to KERs such as that between decreased ASL
height and decreased CBF (KERC), which we evaluated as being
weak. Future studies, using in vitro assays such as those outlined in
Supplementary Table S1, that directly assess this linkage as well as
the KERs we determined to have moderate plausibility (i.e., KERD,
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KERE, KERF, KERH, KERI, KERK, and KERL) will help greatly
strengthen this AOP overall.

An integrated assessment of substances with the potential to be
inhaled, either intentionally or unintentionally, could incorporate
inhalation exposure and dosimetry modelling to inform an in vitro
assessment approach with appropriate exposure techniques and cell
systems for assessing the KEs in this AOP (EPA’s Office of Chemical
Safety and Pollution Prevention, 2019). Standardization and
robustness testing of assays against explicit performance criteria
using suitable reference materials can greatly increase the level of
confidence in their use for KE assessment (Petersen EJ. et al., 2021;
Petersen E. J. et al., 2021). Much of the empirical evidence that
supports theKERs in the qualitativeAOPdescribed herewas obtained
from in vitro studies using well-established methodologies for
biological endpoint assessment (Supplementary Table S1). Being
chemical-agnostic, this AOP can be applied to a variety of substances
that share the AO. For example, impaired MCC and decreased lung
function have a long-known relationship with smoking, but little is
known about the consequences of the long-term use of alternative
inhaled nicotine delivery products such as electronic cigarettes and
heated tobacco products. This AOP can form the basis of an
assessment strategy for evaluating the effects of exposure to aerosol
from these products on the basis of the KEs identified here.

AOPs such as this one can play a central role in risk assessment
strategies for a wide variety of regulatory purposes by providing
mechanistic support to an integrated approach to testing and
assessment (IATA; (Clippinger et al., 2018)) or defined
approach (DA). IATAs are flexible frameworks that can be
adapted to best address the regulatory question or purpose at
hand. Unlike the assessment process within IATA that involves
some level of expert judgement, DA uses rule-based fixed data
interpretation procedure. Both DA and IATAs are a means to
integrate existing data on a chemical (e.g., physicochemical
properties and ADME [absorption, distribution, metabolism,
and excretion] information) with an AOP-based in vitro testing
strategy to generate data that does not currently exist (Willett,
2019). An important feature of these approaches is that they should
also include a measure of uncertainty to facilitate regulatory
decision-making. AOPs can be used in an iterative fashion to
identify and reduce or resolve, where possible, areas of uncertainty
by generating data to fill those knowledge gaps. Furthermore, a
quantitative AOP could provide data that would be translated to
prediction models for human risk assessment through the
application of in vitro to in vivo extrapolation (IVIVE) approaches.
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