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Exposure to exogenous particles found as airborne contaminants or endogenous particles
that form by crystallization of certain nutrients can activate inflammatory pathways and
potentially accelerate autoimmunity onset and progression in genetically predisposed
individuals. The first line of innate immunological defense against particles are myeloid-
lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the
particles, release inflammatory mediators, undergo programmed/unprogrammed death,
and recruit/activate other leukocytes to clear the particles and resolve inflammation.
However, immunogenic cell death and release of damage-associated molecules,
collectively referred to as “danger signals,” coupled with failure to efficiently clear dead/
dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive
leukocyte recruitment/activation. Collectively, these events can promote loss of
immunological self-tolerance and onset/progression of autoimmunity. This review
discusses critical molecular mechanisms by which exogenous particles (i.e., silica,
asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and
endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing
salts) may promote unresolved inflammation and autoimmunity by inducing toxic
responses in myeloid-lineage phagocytes with emphases on inflammasome activation
and necrotic and programmed cell death pathways. A prototypical example is
occupational exposure to respirable crystalline silica, which is etiologically linked to
systemic lupus erythematosus (SLE) and other human autoimmune diseases.
Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe
pulmonary pathology involving accumulation of particle-laden alveolar macrophages,
dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that
drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced
immunogenic cell death and danger signal release triggers accumulation of T and
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B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue
neogenesis, and broad-spectrum autoantibody production in the lung. These events
drive early autoimmunity onset and accelerate end-stage autoimmune
glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been
demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken
together, further insight into how particles drive immunogenic cell death and danger
signaling in myeloid-lineage phagocytes and how these responses are influenced by the
genome will be essential for identification of novel interventions for preventing and treating
inflammatory and autoimmune diseases associated with these agents.

Keywords: endogenous and exogenous particles, inflammation, autoimmunity, myeloid-lineage phagocytes,
inflammasome activity, immunogenic cell death

INTRODUCTION

Exogenous and endogenous particles have profound effects on
human health. The concept of particle toxicology was first
introduced in the 15th century when occupational exposure to
dust was etiologically linked to lung disease [reviewed by
Donaldson and Seaton (2012)]. Paracelsus, the toxicologist who
famously quoted “The dose makes the poison,” documented in a
1567 book his observations of lung disease symptoms in smelters
and miners. In 1700, these observations were expanded upon by
Bernardino Ramazzini, also known as the father of occupational
medicine, who recognized that human disease could be triggered
by environmental factors in his work Diseases of Workers.
Industrialization in the 19th century elicited a rise in
occupationally related diseases such as silicosis, asbestosis, lung
cancer, and pulmonary fibrosis, leading to a significant increase in
both in vitro and in vivo particle toxicology studies in the 20th
century (Perlman and Maier, 2019).

Over the past 50 years, the field of particle toxicology has
expanded to encompass not only pathological impacts of
environmental particles but also of endogenously formed
crystals, hereafter referred to as endogenous particles
(Donaldson and Seaton, 2012). Growing interest in endogenous
particles is largely attributed to increased worldwide prevalence of
genetic hyperuricemia and familial hypercholesterolemia, which
are predispositions for crystallization ofmonosodium urate (MSU)
and cholesterol, respectively (Beheshti et al., 2020; Butler et al.,
2021). Hyperuricemia is a risk factor for gout, coronary heart
disease, and neurodegenerative disorders (Jin et al., 2012; Rock
et al., 2013), and hypercholesterolemia is a risk factor for coronary
heart disease (Goldstein and Brown, 2015), atherosclerosis (Nidorf
et al., 2020), non-alcoholic steatohepatitis (NASH) (Ioannou,
2016), and cholesterol gallstone disease (Di Ciaula et al., 2018).
The observed pathological outcomes associated with MSU and
cholesterol crystals have spurred ongoing in vitro and in vivo
studies to determine the mechanisms by which these endogenous
particles, as well as other types of endogenous particles (e.g.,
calcium-containing salts) elicit toxicity.

In parallel with the growing interest in particle toxicology,
immunologist Polly Matzinger and her colleagues introduced the
“danger model” to explain the development of autoimmune
disease, which contrasts the classic “self/non-self model”

(Matzinger, 1994; Gallucci and Matzinger, 2001; Matzinger,
2002). While the self/non-self model posits that autoreactivity
occurs when the adaptive immunity mistakenly recognizes host
“self” tissues as foreign “non-self” tissues, the danger model
suggests that accumulation of dead cell corpses and released
danger signals (e.g., cytokines, chemokines, alarmins, nucleic
acids) contribute to heightened proinflammatory responses in
innate immune cells, activation of antigen-presenting cells, and
differentiation of autoreactive T and B cells, leading to loss of
immunological self-tolerance and autoimmunity (Tveita, 2010).
In the context of particle toxicology, Matzinger’s danger model
provides a useful framework for understanding the mechanisms
by which exogenous and endogenous particles induce
inflammation and autoimmunity.

The purpose of this review is to provide an overview of critical
molecular mechanisms by which exogenous particles (i.e., silica,
asbestos, carbon nanotubes, titanium dioxide, aluminum-
containing salts) and endogenous particles (i.e., MSU,
cholesterol crystals, calcium-containing salts) promote
unresolved inflammation and autoimmunity by inducing toxic
responses in myeloid-lineage phagocytes with emphases on
inflammasome activation and necrotic and programmed cell
death pathways. Autoimmune diseases are defined by
uncontrolled innate immunity leading to hyperactivation of
adaptive immunity, the latter of which drives tissue damage and
disease pathogenesis (Doria et al., 2012). The review will focus
specifically on myeloid-lineage phagocytes (i.e., macrophages,
neutrophils), as these cells comprise the first line of
immunological defense against particles (Boraschi et al., 2017).

EXOGENOUS PARTICLES, ENDOGENOUS
PARTICLES, AND THEIR SOURCES

Exogenous particles are defined herein as any particles originating
from environmental or synthetic sources. These include silicon
dioxide (SiO2), asbestos, carbon nanotubes (CNTs), titanium
dioxide (TiO2), and aluminum-containing salts (alum). SiO2 is
one of the most abundant compounds in the Earth’s crust
(Mossman and Glenn, 2013) and is classified based on its level
of crystallinity, with crystalline SiO2 (cSiO2) demonstrating a
periodic order of atoms and amorphous SiO2 (aSiO2) having
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either an anarchic order of atoms or crystalline structures (Mulay
and Anders, 2016). Asbestos refers to a broad group of fibrous,
chain-like silicate minerals that have high tensile strength, large
surface area, and resistance to abrasion and chemical
corrosion—all characteristics that made it ideal for
construction, mining, and other industrial applications such as
pipefitting, shipyard work, insulation manufacturing, and textile
production in the 20th century (Kusiorowski et al., 2012; Goswami
et al., 2013). Like asbestos, CNTs are fibrous, carbon-containing
materials that have high tensile strength and large surface area
(Iijima 1991), rendering them useful in construction and
electronics (Zhang and Lieber, 2016; Venkataraman et al.,
2019). TiO2 can exist as either nanospheres or nanobelts
(Porter et al., 2013), giving them versatile use in construction,
agriculture, food additives, cosmetics, and biomedicine
(Mohajerani et al., 2019; Baranowska-Wojcik et al., 2020;
Musial et al., 2020). Alum was serendipitously discovered as a
vaccine adjuvant nearly 100 years ago (Glenny et al., 1926) and is
now the most utilized adjuvant in the world (Tomljenovic and
Shaw, 2011). Another highly relevant exogenous particle is
particulate matter (PM), which may consist of carbon, sulfate,
nitrate, silicon, ammonium, and sodium emissions from both
manmade and organic sources (Dominici et al., 2015). Due to the
complex and heterogenous composition of PM, its toxic
mechanisms are much more difficult to characterize than the
previously mentioned particles. A detailed discussion of PM
toxicity falls outside the scope of this review, but the reader is
referred to several excellent reviews on this topic (Adams et al.,
2015; Peixoto et al., 2017; Park et al., 2018; Zhao et al., 2019; Kelly
and Fussell, 2020; Curtis, 2021).

Exposure to exogenous particles can occur by inhalation,
ingestion, or injection. SiO2 was first identified as an
inhalation hazard in the 1920s when it was etiologically linked
to silicosis in miners (Elliott, 1923; Heffernan, 1929). Today, SiO2

remains an occupational inhalation hazard in construction,
mining, ceramic manufacturing, dental mold production, and
jewelry production (Fazen et al., 2020; Hall et al., 2020; Russ et al.,
2020). Asbestos exposure primarily occurs by inhalation
(Mossman et al., 2011), and despite decreased industrial use in
the United States and Europe, industrial asbestos use is being
deferred to Asian and Latin-American countries (Pira et al.,
2018). CNTs can either pose as respirable toxicants similar to
asbestos fibers in industrial settings (Donaldson et al., 2010) or
function as carrier systems in targeted drug, vaccine, cancer, and
gene therapies (Beg et al., 2011; Negri et al., 2020). TiO2 exposure
can occur by inhalation in industrial environments or ingestion of
commercial products, and it exhibits toxicity in the lungs,
digestive tract, brain, and cardiovascular system (Baranowska-
Wojcik et al., 2020). Exposure to alum occurs primarily by
injection as a vaccine adjuvant (Gherardi and Authier, 2012)
but can also occur by inhalation in foundry work and related
occupations (Rifat et al., 1990; Polizzi et al., 2002). While the
National Institute for Occupational Safety and Health (NIOSH)
recommends using respirators in occupations with high,
prolonged particle exposure (NIOSH, 2019), low compliance
with such guidelines is associated with respirator discomfort,
lack of training on health hazards, self-employment, and

breathing problems that would be aggravated by respirator use
(Fukakusa et al., 2011).

Endogenous particles are defined as any particles that form
within biological systems. From an environmental perspective,
many of these are formed by crystallization of nutrients, typically
in individuals with corresponding genetic predispositions.
Endogenous particles include MSU, cholesterol crystals (CCs),
and calcium salts such as calcium phosphate (CaP) and calcium
oxalate (CaOx). MSU originates from crystallized uric acid, a
byproduct of purine nucleic acid catabolism released by dying
cells (Gallo and Gallucci, 2013). Cholesterol is derived from
dietary sources and biosynthesis in the liver (Pownall and
Gotto, 2019). Dysregulated cholesterol metabolism can
contribute to deposition of low-density lipoproteins (LDLs)
and high-density lipoproteins (HDLs) in tissues, engulfment of
LDLs and HDLs by recruited macrophages and dendritic cells
(DCs), and intracellular CC formation (Schaftenaar et al., 2016;
Defesche et al., 2017; Varsano et al., 2018). Like cholesterol,
calcium occurs both in dietary and body sources, and it can
crystallize as CaP and CaOx salts within renal tubules and blood
vessels (Khan et al., 2016; Karasawa and Takahashi, 2017). While
biomolecules and minerals found in endogenous particles can
originate from diet and/or metabolism, crystal formation itself
occurs in myeloid phagocytes and along tubular structures within
the body.

Endogenous particles are thought to form by crystallization
resulting from supersaturation of biological molecules (e.g.,
cholesterol, uric acid) and minerals (e.g., calcium) in the
joints, arteries, and urinary tract (Mulay and Anders, 2016).
Although the precise mechanisms for crystal formation have yet
to be elucidated, genome-wide associated studies have identified
loci that contribute to overproduction and insufficient
metabolism of uric acid, LDL, HDL, and calcium-containing
salts (Holdt and Teupser, 2013; Dron and Hegele, 2017; Sayer,
2017; Kawamura et al., 2019; Tai et al., 2019). Overabundance of
these biomolecules in synovial fluid, serum, or urine creates
conditions for supersaturation, increasing the likelihood of
crystallization and disease development (Table 1).

RECOGNITION OF EXOGENOUS AND
ENDOGENOUS PARTICLES BY
MYELOID-LINEAGE PHAGOCYTES
Particles can stimulate multiple types of surface receptors to
promote incorporation into phagosomes, or intracellular vesicles
that transport phagocytosed particles. Macrophages, neutrophils,
and DCs can recognize particles through a diverse repertoire of
surface receptors (Figure 1). For instance, SiO2 and TiO2 both
bind to members of the class A scavenger receptor family
including SR-A1 and macrophage receptor with collagenous
structure (MARCO). However, SiO2 also binds the class B
scavenger receptors SR-B1 and CD36/SR-B2, whereas TiO2

does not (Thakur et al., 2009; Tsugita et al., 2017b; Nishijima
et al., 2017). In macrophages, stimulation of class A and class B
scavenger receptors by their respective ligands has been
associated with p38 MAPK and JNK activation and enhanced
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particle endocytosis (Zani et al., 2015). Alternatively, CNTs,
which are more fibrous than SiO2 and TiO2 particles, are
recognized by the phosphatidylserine receptor T cell
immunoglobulin mucin 4 (Tim4) (Omori et al., 2021).

Contrary to exogenous particles, endogenous particles are
recognized by a more diverse set of surface receptors and elicit
different intracellular signaling pathways. For example, MSU
crystals interact with C-type lectin (Clec)-12a on macrophages

TABLE 1 | Sources and common exposure routes of exogenous and endogenous particles.

Name Sources Route References

SiO2 Construction, mining, ceramic manufacturing, dental mold
production, jewelry production

Inhalation Fazen et al. (2020); Russ et al. (2020); Hall et al. (2020)

Asbestos Construction, mining, pipefitting, shipyard work, insulation
manufacturing, textile production

Inhalation Mossman et al. (2011); Kusiorowski et al. (2012); Goswami et al. (2013)

CNTs Construction, electronics, biomedicine Inhalation,
Injection

Donaldson et al. (2010); Beg et al. (2011); Zhang and Lieber (2016); Negri
et al. (2020)

TiO2 Manufacturing, agriculture, food additives, cosmetics,
biomedicine

Inhalation,
Ingestion

Mohajerani et al. (2019); Baranowska-Wojcik et al. (2020); Musial et al.
(2020)

Alum Foundry work, vaccine adjuvants Inhalation,
Injection

Polizzi et al. (2002); Tomljenovic and Shaw (2011); Rifat et al. (1990);
Gherardi and Authier (2012)

MSU Dietary uric acid, dysregulated purine metabolism,
hyperuricemia

N/A Holdt and Teupser (2013); Dron and Hegele (2017); Sayer (2017); Tai et al.
(2019); Kawamura et al. (2019);

CCs Dietary cholesterol, dysregulated cholesterol metabolism,
hypercholesterolemia

N/A Schaftenaar et al. (2016); Defesche et al. (2017); Pownall and Gotto
(2019); Dron and Hegele (2017)

CaP Dietary calcium and phosphate, hypercalcituria,
hyperphosphatemia

N/A Khan et al. (2016); Karasawa and Takahashi (2017); Sayer (2017)

CaOx Dietary calcium and oxalate, hypercalcituria, hyperoxaluria N/A Khan et al. (2016); Karasawa and Takahashi (2017); Sayer (2017);

Alum, aluminum-containing salts; CaOx, calcium oxalate; CaP, calcium phosphate; CCs, cholesterol crystals; CNTs, carbon nanotubes; MSU, monosodium urate; SiO2, silicon dioxide;
TiO2, titanium dioxide.

FIGURE 1 | Surface receptors involved in detecting exogenous and endogenous particles. Phagocytes employ a diverse assortment of membrane receptors to
recognize and ultimately phagocytose particles, some of which are depicted in this illustration. SiO2 is recognized by scavenger receptors SR-A1, MARCO, SR-B1,
CD36. TiO2 is recognized only by SR-A1 and MARCO. CNTs are recognized by phosphatidylserine receptor Tim4. Alum and MSU interact directly with membrane
cholesterol moieties to stimulate Syk signaling. MSU and CCs activate complement components C5 and iC3b, which stimulate C5aR and CR3, respectively. MSU
also binds to FcγRIII/CD16 and C-type lectin (Clec)-12a. On human phagocytes only, CCs are recognized by Clec4e. Surface receptors for asbestos fibers and calcium-
containing salts (e.g., CaP, CaOx) have not yet been identified.
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and DCs (Neumann et al., 2014; Li et al., 2019a) and FcγRIII/
CD16 on neutrophils (Barabe et al., 1998). FcγRIII is also
expressed in murine macrophages and DCs (Nimmerjahn and
Ravetch, 2008). On human macrophages, neutrophils, and DCs,
CCs can bind to Clec4e to potentiate proinflammatory immune
responses (Kiyotake et al., 2015). FcγRIII stimulation by MSU
and Clec4e stimulation by CCs trigger downstream spleen
tyrosine kinase (Syk) signaling (Desaulniers et al., 2001;
Clement et al., 2016). Alternatively, both MSU and alum can
directly interact with membrane cholesterol moieties and induce
Syk signaling in DCs, potentially by lipid membrane sorting (Ng
et al., 2008; Flach et al., 2011).

Surface receptors for asbestos, CaP, and CaOx have not yet
been identified, but it is possible that phagocytes recognize these
particles directly by membrane lipid binding or indirectly
through complement receptor signaling. Accordingly,
complement C5 binding to the C5a receptor (C5aR) can
amplify MSU-driven toxicity (An et al., 2014). In addition,
activation of C5aR by C5 and complement receptor 3 (CR3)
by complement factor iC3b can augment CC-induced toxic
responses (Niyonzima et al., 2017).

Differential Expression of Particle-Sensing
Receptors in Myeloid-Lineage Phagocytes
Not only is it important to consider the types of surface receptors
that can be stimulated by particles, but it is also crucial to further
emphasize which myeloid-lineage phagocytes express which
receptors, because different particles might activate different
subsets of myeloid cells. For instance, SR-A1 is expressed by
macrophages, monocytes, and DCs, while MARCO is primarily
expressed by macrophages and DCs (Ingersoll et al., 2010; Stephen
et al., 2010). CD36 is expressed by many cell types including
macrophages, monocytes, DCs, and non-hematopoietic cells,
whereas SR-B1 is predominantly expressed by macrophages and
hepatocytes (Prabhudas et al., 2014; Li et al., 2020).Macrophages and
DCs have been shown to express Tim4, but data pertaining to Tim4
expression in neutrophils is currently lacking (Wong et al., 2010;
Caronni et al., 2021). On the other hand, macrophages, neutrophils,
and DCs express Clec12a (Neumann et al., 2014; Li et al., 2019a;
Vaillancourt et al., 2021), FcγRIII (Barabe et al., 1998; Nimmerjahn
and Ravetch, 2008), and Clec4e (in humans only) (Kiyotake et al.,
2015). Collectively, these observations suggest that myeloid-lineage
phagocytes might be better prepared to respond to endogenous
particles compared to exogenous particles. Nevertheless, additional
research is required to confirm or reject such a hypothesis.

Several studies published over the past decade have shed
additional light on differential expression patterns of particle-
sensing receptors in tissue-resident macrophages that commonly
interact with particles, including bone marrow-derived
macrophages (BMDMΦs), alveolar macrophages (AMΦs), and
hepatic Kupffer cells (KCs). A comprehensive gene expression
review across different tissue-resident macrophage types found
that SR-A1 expression is high in BMDMΦs and low in both
AMΦs and KCs, whereas MARCO expression is low in
BMDMΦs and high in both AMΦs and KCs (Ley et al., 2016).
In the same analysis, notable observations were made in relation

to the other receptors mentioned in the present review: 1) SR-B1
expression is higher in AMΦs and KCs compared to BMDMΦs;
2) CD36 expression is high in BMDMΦs but lower in AMΦs and
KCs; 3) Tim4 expression is low in BMDMΦs and AMΦs but high
in KCs; 4) Clec12a is highly expressed in BMDMΦs but not in
AMΦs or KCs; 5) Clec4e expression is high in BMDMΦs and
AMΦs but low in KCs; 6) FcγRIII is highly expressed in
BMDMΦs, AMΦs, and KCs; and 7) C5aR expression is high
only in BMDMΦs (Ley et al., 2016). In two different studies,
MARCO and Tim4 expression were found to be lower in
BMDMΦs compared to KCs (Beattie et al., 2016; A-Gonzalez
et al., 2017). Two other studies also showed that Clec4e
expression increases in macrophages localized to the kidneys
during acute renal inflammation, suggesting Clec4e perpetuates
proinflammatory cytokine signaling and cell death in the kidney
(Lv et al., 2017; Tanaka et al., 2020).

Not only do tissue-resident macrophages demonstrate
differential expression patterns for many particle-sensing
surface receptors, but similar patterns can be detected in
blood-derived monocytes. A single-cell gene expression
analysis with human monocytes found that expression levels
for SR-A1, MARCO, CD36, and Clec4e significantly differed
between classical monocytes (CD14++CD16–), intermediate
monocytes (CD14++CD16+), and non-classical monocytes
(CD14+CD16++) (Gren et al., 2015). A different study
comparing FcγRIII expression in classical and non-classical
monocytes found that expression was higher in classical
monocytes than non-classical monocytes in mice, but
expression was lower in classical monocytes than non-classical
monocytes in humans (Kerntke et al., 2020). Furthermore,
FcγRIII expression in murine classical monocytes was similar
to that in neutrophils, while expression in human neutrophils was
remarkably higher than both classical and non-classical
monocytes (Kerntke et al., 2020). Although surface receptor
expression patterns were not compared between monocytes
and macrophages in either of these studies, such distinctions
might require a case-by-case basis approach. For instance,
monocytes and BMDMΦs express similar levels of Clec12a
(Lobato-Pascual et al., 2013), but CD36 expression increases in
monocytes differentiating into BMDMΦs (Huh et al., 1996).
Accordingly, future research in this area would provide
valuable insight into specific myeloid-lineage phagocyte subsets
that respond to different types of exogenous and endogenous
particles. Future therapies for particle-induced inflammatory and
autoimmune diseases may potentially include antagonists that
prevent particle-receptor interactions and downstream toxicity.

INFLAMMASOME ACTIVATION: A
CENTRAL MECHANISM OF
PARTICLE-INDUCED TOXICITY AND
PROINFLAMMATORY IMMUNE
RESPONSES

Following phagocytosis, one central mechanism of toxicity
initiated by exogenous and endogenous particles alike is
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inflammasome activation (Martinon et al., 2006; Dostert et al.,
2008; Hornung et al., 2008; Tsugita et al., 2017a; Dominguez-
Gutierrez et al., 2018; Karasawa and Takahashi, 2019; Luz et al.,
2019). Inflammasomes are cytosolic multiprotein complexes that
assemble upon sensing diverse stimuli—including microbial
moieties, endogenous danger signals, and particles—to
promote proinflammatory signaling (Strowig et al., 2012;
Sayan and Mossman, 2016). Because of their importance in
orchestrating innate immune responses, inflammasomes are
primarily studied in innate immune cells, most notably
macrophages; however, other investigators are beginning to
investigate their roles in adaptive immune cells and
nonhematopoietic cells (Gasteiger et al., 2017). Pattern
recognition receptors (PRRs) from the nucleotide-binding
oligomerization domain (NOD) leucine-rich region-containing
receptor (NLR) family, including NLRP1, NLRP3, and NLRC4, as
well as absent-in-melanoma 2 (AIM2) and pyrin, form well-
defined inflammasome complexes (Haneklaus and O’Neill, 2015;
Duncan and Canna, 2018; Heilig and Broz, 2018; Lugrin and
Martinon, 2018; Mitchell et al., 2019). In addition, the NLRs
NLRP2, NLRP6, NLRP7, NLRP12, and NLRC5, as well as
interferon-inducible protein 16 (IFI16), form inflammasome
complexes, albeit less well-characterized or atypical complexes
(Elinav et al., 2011; Khare et al., 2012; Vladimer et al., 2012;
Janowski and Sutterwala, 2016; Matsuoka et al., 2019).

The NLRP3 inflammasome is the most studied inflammasome
due to its putative roles in various pathologies including
rheumatic disease (So et al., 2013), Alzheimer’s disease
(Heneka et al., 2018), acute myocardial infarction (Toldo and
Abbate, 2018), kidney disease (Komada and Muruve, 2019), type
2 diabetes (Wada and Makino, 2016), obesity (Rheinheimer et al.,
2017), cancer (Moossavi et al., 2018), and COVID-19, which is
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection (Freeman and Swartz, 2020). This
inflammasome also plays a pertinent role in particle-driven
diseases such as pulmonary fibrosis, asthma, chronic
obstructive pulmonary disease (COPD), malignant
mesothelioma, and other lung cancers (Sayan and Mossman,
2016). NLRP3 inflammasome oligomers consist of the NOD-like
receptor NLRP3, the adapter protein apoptosis-associated speck-
like protein containing a caspase recruitment domain (ASC), and
pro-caspase-1 as an effector (Kelley et al., 2019). Three distinct
pathways are implicated for NLRP3 inflammasome activation: 1)
the canonical pathway, 2) the alternative pathway, and 3) the
noncanonical pathway (He et al., 2016). The alternative and
noncanonical pathways fall beyond the scope of this review,
though readers are directed to other excellent discussions of
these topics for further information (Gaidt and Hornung,
2017; Yi, 2017).

Step 1: Priming
Canonical inflammasome activation occurs in a two-step process
that first requires a priming signal to promote transcriptional
upregulation of inflammasome-related proteins and a subsequent
activating signal to trigger inflammasome oligomerization and
caspase-1 activation (Zheng et al., 2020). Priming can be
accomplished upon recognition of damage-associated

molecular patterns (DAMPs), pathogen-associated molecular
patterns (PAMPs), or cytokines by specific surface receptors.
For example, the bacterial PAMP lipopolysaccharide (LPS)
activates toll-like receptor (TLR)-4, the endogenous DAMP
high group mobility group box 1 (HMGB1) activates TLR2/4/
9, and tumor necrosis factor (TNF)-α and interleukin (IL)-1α
activate the TNF and IL-1 receptors, respectively (Rai and
Agrawal, 2017; McKee and Coll, 2020; Wang and Zhang,
2020). These binding events contribute to phosphorylation of
the inhibitor of nuclear factor kappa-B kinase (IKK)-β subunit
within the cytosolic IKK2 complex. IKKβ then phosphorylates
IκBα and targets it for K48-ubiquitination and proteasomal
degradation. Degradation of IκBα liberates the dimeric
transcription factor nuclear factor-kappa B (NF-κB), allowing
its translocation into the nucleus where it upregulates the
inflammasome subunits NLRP3, ASC, and pro-caspase-1 as
well as pro-IL-1β and pro-IL-18 (Dorrington and Fraser,
2019) (Figure 2). Under homeostatic conditions, DAMPs and
proinflammatory cytokines are typically contained inside
phagocytes; however, these danger signals can be released into
the extracellular environment following particle-induced cell
death (Zitvogel et al., 2010; Rabolli et al., 2016). If clearance of
extracellular particles, DAMPs, and cytokines is hindered,
perpetual stimulation of DAMP/cytokine receptors and
particle-sensing receptors may ensue, leading to aberrant
inflammasome priming and activation.

Step 2: Activation
Following the priming signal, a separate activating signal triggers
inflammasome assembly and caspase-1 maturation. Contrary to
the priming step, which is initiated by a select set of ligands, the
activating step can be triggered by many different stimuli
including ATP (Di Virgilio et al., 2017), mitochondrial
reactive oxygen species (mtROS) (Zhou et al., 2011),
mitochondrial DNA (mtDNA) (Shimada et al., 2012),
ceramide (Scheiblich et al., 2017), bacterial toxins (Munoz-
Planillo et al., 2013), and particles (Sayan and Mossman,
2016). The diverse nature of these stimuli suggests they do not
directly act upon inflammasome subunits but rather induce a few
common intracellular events that lead to inflammasome
oligomerization. Lawlor and Vince propose that these signals
may converge on lysosomal rupture, mitochondrial dysfunction,
and endoplasmic reticulum (ER) stress (Lawlor and Vince, 2014)
(Figure 3).

Lysosomal Membrane Permeabilization
Once particles or other danger signals are incorporated into a
phagosome, the phagosome fuses with a lysosome to form an
intracellular phagolysosome (Rosales and Uribe-Querol, 2017).
The role of the phagolysosome is to digest internalized materials;
however, many crystalline particles such as cSiO2, CCs, alum, and
MSU disrupt the phagolysosomal membrane in a process called
lysosomal membrane permeabilization (LMP) (Hornung et al.,
2008; Campden and Zhang, 2019). LMP describes any process by
which the lysosomal membrane is disrupted and lysosomal
enzymes including cathepsins are released into the cytosol
(Boya and Kroemer, 2008). Although the precise mechanisms
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by which particles induce LMP remain unknown, one critical
study recently found that a subfamily of silanols, termed “nearly
free silanols,” on the surface of cSiO2 and aSiO2 particles promote
membranolysis by direct membrane interaction (Pavan et al.,
2020). Once cathepsins are released from ruptured
phagolysosomes, some cathepsins may directly activate the
inflammasome (Niemi et al., 2011; Orlowski et al., 2015;
Chevriaux et al., 2020) or elicit dysfunction of other
intracellular organelles, including the mitochondria and ER,
that can indirectly activate the inflammasome. Accordingly,
exogenous and endogenous particles that are engulfed by
phagocytes can directly elicit LMP and indirectly promote
mitochondrial and ER stress.

Mitochondrial Dysfunction
As mentioned in the previous section, cathepsins released by
particle-triggered LMP may promote downstream mitochondrial
dysfunction (Thibodeau et al., 2004; Joshi and Knecht, 2013).
Mitochondrial dysfunction has been linked to inflammasome
activation specifically by the release of mitochondrial DAMPs
(mtDAMPs) such as ATP, oxidized mtDNA, and mtROS (Zhou
et al., 2011; Mills et al., 2017). A large body of evidence suggests
ATP can trigger inflammasome assembly and caspase-1

activation in macrophages, specifically by promoting K+ ion
efflux through either the P2X7 surface receptor or the
TWIK2 K+ channel (Luna-Gomes et al., 2015; Di Virgilio
et al., 2017; Martinez-Garcia et al., 2019). In phagocytes,
particle exposure also can trigger apoptosis, a process that can
begin in the mitochondria (Hamilton et al., 1996; Iyer et al., 1996;
Lim et al., 1999; Thibodeau et al., 2003; Hu et al., 2006; Hirano
et al., 2017). It is possible that opening of the mitochondrial
permeability transition pore (MPTP) during apoptosis allows
oxidized mtDNA and mtROS to exit depolarized mitochondria
and activate the inflammasome, but this requires additional
investigation. Once in the cytosol, oxidized mtDNA can
directly bind NLRP3 to promote caspase-1 activation and
resultant IL-1β maturation (Shimada et al., 2012; Zhong et al.,
2018).

Conversely, the requirement of mtROS in inflammasome
activation is debatable, with some investigators arguing that
mtROS are indispensable for inflammasome activation and
others suggesting that mtROS only partially contribute to
inflammasome activity (Munoz-Planillo et al., 2013; Harijith
et al., 2014; Gross et al., 2016). Of interest, activation of the
transcription factor nuclear factor erythroid 2-related factor 2
(Nrf2), which mediates transcription of antioxidant genes, has been

FIGURE 2 | Mechanisms of Signal 1 inflammasome priming. Inflammasome priming can be triggered by diverse stimuli including bacterial molecules (e.g., LPS),
alarmins (e.g., IL-1α), or proinflammatory cytokines (e.g., IL-1β, TNF-α). LPS binds to TLR4, activates the MyD88-IRAK-TRAF6 pathway, and induces IKKβ activity within
the IKK2 complex. Likewise, by binding IL-1R, IL-1α and IL-1β promote IKKβ activity through the MyD88-IRAK-TRAF6 pathway. Conversely, when TNF-α binds TNFR,
the TRADD-TRAF2/5-RIP pathway induces IKKβ activity. Once activated, IKKβ phosphorylates IκB within the NF-κB complex, targeting IκB for K48
polyubiquitination and proteasomal degradation. IκB degradation liberates the NF-κB complex (i.e., P50 and p65/c-Rel) and enables its translocation to the nucleus,
where it upregulates proinflammatory cytokines, chemokines, and other immune response genes.
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shown to inhibit inflammasome-driven IL-1βmaturation, supporting
a clear role for total cellular ROS in promoting inflammasome
assembly (Tsai et al., 2011; Ka et al., 2015; Hennig et al., 2018). It
is currently unclear how much of this response is driven by mtROS
specifically; however, it is reasonable to expect mtROS play a fairly
large role because mitochondria are major drivers of ROS production
(Brieger et al., 2012). Evidence suggests mtROS can further disrupt
lysosomal compartments (Heid et al., 2013). On the other hand,
lysosomal leakage has been previously shown to occur upstream from
perturbations in mitochondrial membrane potential following cSiO2

exposure in AMΦs (Thibodeau et al., 2004; Joshi and Knecht, 2013).
Taken together, these findings suggest that lysosomal and
mitochondrial dysfunction might reciprocally influence one
another in the context of particle-induced toxicity. Such a notion

requires additional study, as the mechanisms driving cyclical
lysosomal and mitochondrial dysfunction remain unclear.

Endoplasmic Reticulum Stress
Similar to mitochondrial dysfunction, ER stress has also been
linked to inflammasome activation. Extracellular ATP, a
mtDAMP released from dying cells, stimulates the
transcription factor CCAAT enhancer binding protein
homologous protein (CHOP) in LPS-primed BMDMΦs to
induce Ca2+ signaling, which promotes Ca2+ efflux from the
ER, downstream mitochondrial damage, and resultant caspase-
1 activation (Murakami et al., 2012). Additionally, ER stress
promotes NF-κB-dependent transcription of pro-IL-1β and
activation of the oxidative protein folding pathway to induce

FIGURE 3 | Mechanisms of Signal 2 inflammasome activation. (A) Summary of Signal 1 inflammasome priming. Translocation of NF-κB into the nucleus leads to
upregulation of proinflammatory cytokines such as pro-IL-1β and inflammasome subunits (i.e., NLRP3, ASC, pro-caspase-1; not shown). (B) The NLRP3 inflammasome
is a cytosolic multiprotein complex that promotes proinflammatory cytokine production in response to extracellular stimuli and intracellular stress. Many extracellular and
intracellular components can be involved in particle-driven inflammasome oligomerization and activity. Some particles (e.g., SiO2, TiO2, CCs) bind transmembrane
receptors prior to phagocytosis, whereas other particles (e.g., MSU, alum) interact directly with the plasma membrane. Following phagocytosis, the particle-containing
phagosomes fuse with a lysosome to form a phagolysosome. Through undefined mechanisms, the particles aggravate the phagolysosomal membrane and induce
lysosomal membrane permeabilization (LMP), which causes release of lysosomal proteases called cathepsins into the cytosol. Some cathepsins such as cathepsin B
can directly trigger inflammasome oligomerization. Cathepsins can cause mitochondrial dysfunction and release of mtDAMPs (e.g., ATP, mtROS, mtDNA) into the
cytosol. ATP released from dying phagocytes can interact with P2X7 receptors and trigger K+ efflux, which can contribute to inflammasome activation. mtROS and
mtDNA can also contribute significantly to inflammasome oligomerization. Mitochondrial dysfunction can alternatively be elicited by CHOP-mediated Ca2+ release and
ROS production from the ER. Cytosolic ROS contributes to dissociation of TXN from TXNIP, the latter of which can promote inflammasome activation. Once the
inflammasome is assembled, pro-caspase-1 proteolytically activates adjacent pro-caspase-1 moieties. Activated caspase-1 then proteolytically processes pro-IL-1β to
IL-1β, which is ultimately released from the cell to interact with IL-1R on neighboring phagocytes.
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ROS production (Kim et al., 2014). Elevated ROS levels initiate
the dissociation of thioredoxin-interacting protein (TXNIP) from
thioredoxin (TXN) and its subsequent association with the LRR
of NLRP3, which promotes inflammasome oligomerization and
caspase-1 activation (Kim et al., 2014). Furthermore, ER stress
can activate inositol-requiring enzyme 1 alpha (IRE1α), which
promotes translocation of TXNIP to the mitochondria and the
release of mtDAMPs including mtROS and mtDNA (Zhou et al.,
2020). In previous studies, it has been demonstrated in
macrophages that SiO2 upregulates CHOP (Chen et al., 2019),

asbestos increases CHOP expression and cytosolic Ca2+ (Ryan
et al., 2014), and MWCNTs promote intracellular lipid
accumulation, CHOP phosphorylation, and CD36 expression
(Long et al., 2019). Additional research is needed to determine
the specific steps that occur between particle phagocytosis and
downstream ER stress.

Taken together, inflammasome-activating exogenous
(Table 2) and endogenous (Table 3) particles have
multifaceted impacts on intracellular lysosomal, mitochondrial,
and ER-related functionality, and these pathways can feed into

TABLE 2 | Examples of studies demonstrating toxic responses of exogenous particles.

Reference Particle
Type(s)

Experimental
Model(s)

Dose(s) Time Point(s) Results

Dostert et al.
(2008)

SiO2,
Asbestos

THP-1 cells (human MΦs) SiO2: 0.2 mg/ml
Asbestos: 0.2 mg/ml

6 h Caspase-1 activation, IL-1β release

Hornung et al.
(2008)

SiO2, Alum Primary murine BMDMΦs, primary
human PBMCs

SiO2: 125–1,000 µg/ml 3 h LMP, cathepsin B release, caspase-1
activation, IL-1β releaseAlum: 100–500 µg/ml

Kool et al. (2008) Alum Primary murine peritoneal MΦs 40–240 µg/ml 6 h Caspase-1 activation, IL-1β maturation
Hamilton et al.
(2009)

TiO2 Primary murine AMΦs 50–200 µg/ml 1 h, 4 h LMP, cathepsin B release, ROS production,
IL-1β release

Winter et al. (2011) SiO2, TiO2 Primary murine BMDCs SiO2: 5–50 µg/cm2 18 h SiO2: apoptosis; TiO2: ROS production, IL-
1β releaseTiO2: 5–50 µg/cm2

Palomaki et al.
(2011)

Asbestos,
CNTs

Primary human MΦs Asbestos: 100 µg/ml 6 h Cathepsin B activity, Syk activity, ROS
production, IL-1β releaseCNTs: 100 µg/ml

Kuroda et al.
(2011)

Alum Primary murine peritoneal MΦs,
primary murine BMDMΦs

400 µg/ml 2 h, 6 h LMP, IL-1β synthesis, PGE2 synthesis

Joshi and Knecht
(2013)

SiO2 MH-S AMΦs (murine AMΦs) 50 µg/cm2 30–120 min,
3–6 h

30–120 min: LMP; 3–6 h: caspase-3/9
activation, apoptosis, necrosis

Khameneh et al.
(2017)

SiO2, Alum Primary murine BMDCs SiO2: 62.5–250 µg/ml 24 h Syk activity, IL-2 release, CD4+ T cell
expansionAlum: 62.5–250 µg/ml

Desai et al. (2017) SiO2,
Asbestos

Primary murine neutrophils, primary
human neutrophils

SiO2: 0.2 mg/ml
Asbestos: 0.2 mg/ml

2 h NET formation, primary necrosis and
necroptosis, NET release

Alum, aluminum-containing salts; AMΦ, alveolar macrophage; BMDC, bone marrow-derived dendritic cell; BMDMΦ, bone marrow-derived macrophage; CNT, carbon nanotube; h,
hour(s); LMP, lysosomal membrane permeabilization; min, minute(s); MΦ, macrophage; NET, neutrophil extracellular trap; PBMC, peripheral bloodmononuclear cell; PGE2: prostaglandin
E2; ROS, reactive oxygen species; SiO2, silicon dioxide; Syk, spleen tyrosine kinase; TiO2, titanium dioxide.

TABLE 3 | Examples of studies demonstrating toxic responses of endogenous particles.

Reference Particle
Type(s)

Experimental
Model(s)

Dose(s) Time
Point(s)

Results

Martinon et al. (2006) MSU, CaP THP-1 cells (human MΦs), primary human
monocytes, primary murine peritoneal MΦs

MSU: 1–100 µg/ml
CaP: 1–100 µg/ml

6 h Caspase-1 activation, IL-1β
maturation and release

Duewell et al. (2010) CCs Primary human PBMCs 15.6–125 µg/ml 6 h LMP, caspase-1 activation, IL-1β
release

Rajamaki et al. (2010) CCs THP-1 cells (human MΦs), primary human
monocytes, primary human BMDMΦs

0.1–2 mg/ml 4–24 h LMP, cathepsin B release, K+

efflux, IL-1β release
Conforti-Andreoni et al.
(2011)

MSU Primary murine BMDCs 250 µg/ml 5 days Inflammasome activity and Th17-
associated cytokine release

Pazar et al. (2011) CaP THP-1 cells (human MΦs), primary human
monocytes, primary human MΦs, primary murine
BMDMΦs

500 µg/ml 6 h ROS production, caspase-1
activation, IL-1β release, apoptosis

Mulay et al. (2013) CaOx Primary murine BMDCs 30–1,000 µg/ml 6 h CaOx phagocytosis, K+ efflux, IL-
1β maturation and release

Desai et al. (2017) MSU, CCs,
CaP, CaOx

Primary murine neutrophils, primary human
neutrophils

MSU: 0.2 mg/ml
CCs: 0.2 mg/ml
CaP: 0.2 mg/ml
CaOx: 0.2 mg/ml

2 h NET formation, primary necrosis
and necroptosis, NET release

BMDC, bone marrow-derived dendritic cell; BMDMΦ, bone marrow-derived macrophage; CaOx, calcium oxalate; CaP, calcium phosphate; CC, cholesterol crystal; d, day(s); h, hour(s);
LMP, lysosomal membrane permeabilization; MSU, monosodium urate; MΦ, macrophage; NET, neutrophil extracellular trap; PBMC, peripheral blood mononuclear cell; ROS, reactive
oxygen species.
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each other to mount robust inflammatory responses that drive
rheumatic and autoimmune disease.

PARTICLE-INDUCED CELL DEATH
PATHWAYS THAT CONTRIBUTE TO
INNATE AND ADAPTIVE IMMUNE
RESPONSES

Consistent with Matzinger’s danger model (Gallucci and
Matzinger, 2001), exposure to exogenous (Table 2) and

endogenous (Table 3) particles can trigger inflammasome-
dependent and -independent cell death pathways in
phagocytes, resulting in the release of DAMPs and
autoantigens that can activate innate and adaptive immunity.
Of note for the present review are necrosis, pyroptosis, apoptosis,
necroptosis, and NETosis. In addition, we provide a brief
perspective on PANoptosis, a recently proposed unified cell
death pathway involving pyroptosis, apoptosis, and necroptosis.

Necrosis
Necrosis is an unprogrammed cell death pathway characterized
by organellar disorganization, cellular swelling, plasma

FIGURE 4 | Major cell death pathways induced by particles. (A) Overview of necrosis. Necrosis can be triggered by various stimuli that provoke cellular stress.
Common hallmarks of necrosis include Ca2+ efflux from the ER, Ca2+-induced LMP and cathepsin release, ROS-driven mitochondrial dysfunction, cellular swelling,
plasma membrane rupture, and DAMP release. (B) Overview of pyroptosis. Following NLRP3 inflammasome oligomerization and activation, caspase-1 proteolytically
processes GSDMD to expose its N-terminal pore-forming domain (PFD). GSDMD-PFD polymerizes into a pore in the plasmamembrane, which allows Na+ tomove
along its electrochemical gradient into the cell. By osmosis, water enters the cell, causes cellular swelling, and cell lysis. (C)Overview of apoptosis (extrinsic and intrinsic).
Extrinsic apoptosis is triggered by activation of a death receptor (e.g., TNFR), which promotes assembly of Complex I. Complex I consists of TRADD, TRAF2/5, cIAP1/2,
and ubiquitinated RIPK1. Inhibition of cIAP1/2 and/or deubiquitylation of RIPK1 by CYLD (not shown) induces formation of cytosolic Complex II, which consists of RIPK1,
RIPK3, FADD, and pro-caspase-8 oligomers that proteolytically activate themselves. Intrinsic apoptosis is defined by release of cytochrome c (cyt c) from perturbed
mitochondria, formation of a multiprotein apoptosome, and activation of caspase-9. In certain cases, LMP-driven cathepsin release may contribute to mitochondrial
dysfunction. Caspase-8/9 proteolytically activates caspase-3/7, which promotes nuclear DNA cleavage, cytoskeletal rearrangement, and apoptotic body formation. (D)
Overview of necroptosis. Necroptosis is characterized by activation of a death receptor (e.g., TNFR), Complex I formation, and Complex II formation as in extrinsic
apoptosis. Inhibition of pro-caspase-8 activation allows formation of the RIPK1-RIPK3 necrosome, which phosphorylates MLKL. Phospho-MLKLmonomers polymerize
into a pore-shaped complex at phosphatidylinositol 3-phosphate sites in the inner leaflet of the plasma membrane. Consequently, cell lysis occurs and DAMPs are
released from the cell. Some steps in the depicted cell death pathways are omitted for clarity.
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membrane rupture, and DAMP release (Rello et al., 2005). No
specific signaling pathway is associated with necrosis, but it is
usually preceded by lysosomal rupture, mitochondrial swelling,
and ROS production (Green and Llambi, 2015; Niemann and
Rohrbach, 2016). Necrosis is generally considered a
proinflammatory mode of cell death, as DAMPs released from
dying cells provoke inflammatory gene expression and signaling
in neighboring innate and adaptive immune cells (Davidovich
et al., 2014) (Figure 4A). Both exogenous and endogenous
particles have been shown to provoke necrotic cell death in a
variety of cell types including AMΦs, fibroblasts, mesothelial
cells, and kidney epithelial cells. Primary mechanisms by which
particles induce necrosis include upstream LMP, mitochondrial
depolarization, and ROS production (Joshi and Knecht, 2013;
Mulay et al., 2019b; Ito et al., 2020), though it might also be
possible that particles directly disrupt the plasma membrane
(Pavan et al., 2020; Reus et al., 2020) or promote necrosis
through other unelucidated mechanisms. Infectious agents,
mechanical stress, hypoxia, and chemical and radiation
exposure can also compromise the integrity of the cell
membrane, leading to necrosis (Nirmala and Lopus, 2020).
When particles induce necrosis, the dying cell releases
particles and DAMPs, which can perpetuate unresolved
inflammation if not efficiently cleared.

Pyroptosis
Pyroptosis is a programmed lytic cell death pathway that is
dependent on inflammasome activation (Lamkanfi and Dixit,
2014; Abe and Morrell, 2016). As previously discussed, many
different types of exogenous and endogenous particles can
activate the inflammasome (Martinon et al., 2006; Dostert
et al., 2008; Hornung et al., 2008; Tsugita et al., 2017a;
Dominguez-Gutierrez et al., 2018; Karasawa and Takahashi,
2019; Luz et al., 2019). When the NLRP3 inflammasome
assembles and activates caspase-1 following particle exposure,
caspase-1 not only converts pro-IL-1β and pro-IL-18 to their
mature forms but also cleaves the N-terminal pore-forming
domain (PFD) of gasdermin D (GSDMD). PFD monomers
oligomerize and insert into the plasma membrane, which
destabilizes plasma membrane potential and leads to an
osmotic movement of water into the cell that mediates cellular
swelling and lysis (Ros et al., 2020) (Figure 4B). Like necrosis,
pyroptosis is considered a proinflammatory cell death pathway
because the GSDMD pore and resultant lysis caused by its
insertion into the plasma membrane allows passage of DAMPs
from intracellular to extracellular environments (Davidovich
et al., 2014).

Apoptosis
Exposure to exogenous and exogenous particles such as SiO2,
asbestos, CCs, MSU, and CaP can induce apoptosis in
macrophages (Hamilton et al., 1996; Geng et al., 2003; Pazar
et al., 2011; Joshi and Knecht, 2013; Kim et al., 2016). Unlike
necrosis, apoptosis is morphologically defined by nuclear DNA
cleavage, cytoskeletal rearrangement, cellular shrinkage, and
plasma membrane blebbing (Rello et al., 2005) (Figure 4C). In
apoptosis, the plasma membrane does not rupture but rather

invaginates organelles and DAMPs in apoptotic bodies that are
engulfed by phagocytes (Santavanond et al., 2021). Accordingly,
apoptosis is a quiescent mode of cell death; however, if apoptotic
bodies are insufficiently removed, they undergo secondary
necrosis, which releases DAMPs into the extracellular space
(Nagata, 2018). Apoptosis can be induced by death receptor
(DR) signaling (extrinsic pathway), mitochondrial signaling
(intrinsic pathway), or perforin/granzyme signaling (Elmore,
2007; Nirmala and Lopus, 2020). The perforin/granzyme
pathway falls outside the scope of the present review, but
readers are encouraged to consult other excellent reviews on
this topic (Trapani and Smyth, 2002; Voskoboinik et al., 2010;
Voskoboinik et al., 2015). While particles have not been shown to
bind DRs and particle-sensing receptors are not known to activate
signaling components downstream from DRs (Thibodeau et al.,
2003; Hu et al., 2006), an overview of extrinsic apoptosis is
warranted because particle exposure can induce expression
and secretion of DR ligands such as TNF-α (Dubois et al.,
1989; Perkins et al., 1993; Gozal et al., 2002; Brown et al.,
2007; Chen et al., 2018; Dominguez-Gutierrez et al., 2018). In
the context of particle-triggered apoptosis, however, the intrinsic
pathway is most relevant because particles can indirectly elicit
mitochondrial stress (Thibodeau et al., 2003; Hu et al., 2006; Joshi
and Knecht, 2013).

In the extrinsic pathway, the initiation phase is triggered by
activation of a DR in the TNF receptor superfamily [e.g., TNF
receptor (TNFR)-1 or Fas receptor (FasR)] by its corresponding
ligand [e.g., TNF-α or Fas ligand (FasL)], which triggers association
of an adapter protein to the intracellular domain of the DR
(Nirmala and Lopus, 2020). The recruited adapter protein
differs depending on the DR activated: FasL recruits Fas-
associated protein with death domain (FADD) to FasR, and
TNF-α recruits TNFR1-associated death domain protein
(TRADD) to TNFR1 (Elmore, 2007). Specific to TNFR1, TNF
receptor associated factor (TRAF)-2/5, receptor-interacting serine/
threonine-protein kinase (RIPK)-1, and cellular inhibitor of
apoptosis protein (cIAP)-1/2 are subsequently recruited to the
intracellular receptor domain of TNFR1 and associate with
TRADD (i.e., Complex I). Cylindromatosis tumor suppressor
protein (CYLD) then deubiquitylates RIPK1 which allows this
protein to leave Complex I and leads to association of FADD and
RIPK3 (i.e., Complex II). Following these events, FADD associates
with multiple pro-caspase-8 proteins to form a death-inducing
signaling complex (DISC) that cleaves pro-caspase-8 to caspase-8
(Tummers and Green, 2017). Caspase-8 then proteolytically
activates caspase-3 and -7 and triggers the execution phase of
apoptosis (Elmore, 2007). During the execution phase, mature
caspases-3 and -7 cleave nuclear DNA and intracellular proteins,
which are encapsulated in apoptotic bodies (Walsh et al., 2008).
Apoptotic cells express phosphatidylserine (PS) in the outer leaflet
of the plasma membrane, which serves as an “eat me” signal for
phagocytes to engulf the dying cells. This process, termed
efferocytosis, functions to remove apoptotic bodies, thus
preventing secondary necrosis and DAMP release (Segawa and
Nagata, 2015).

In the intrinsic pathway, particle-driven organellar
dysfunction leads to MPTP opening, as described in the
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previous section. This releases cytochrome c (cyt c) into the
cytosol, where it binds with apoptotic protease activating
factor 1 (Apaf-1) and pro-caspase-9 to form a multiprotein
apoptosome complex that is structurally and functionally
analogous to the inflammasome. During this process,
mitochondrial second mitochondria-derived activator of
caspases (SMAC) and high temperature requirement protein
A2 (HtrA2) block the activity of inhibitors of apoptosis
proteins (IAPs) to promote apoptosis (D’Arcy, 2019). Pro-
caspase-9 moieties proteolytically activate each other within
the apoptosome in a manner that resembles caspase-1
activation in the inflammasome. Activated caspase-9 then
activates caspase-3, which activates caspase-activated DNase
(CAD). Subsequently, caspase-3 cleaves nuclear DNA, triggers
cytoskeletal rearrangement, and induces formation of apoptotic
bodies, which are cleared by phagocytes under normal conditions
(Elmore, 2007). However, phagocytotic capacity might be
exhausted under conditions of persistent particle exposure,
which raises the likelihood of secondary necrosis, DAMP
release, and ongoing inflammatory signaling.

Necroptosis
Exogenous particles (e.g., SiO2, TiO2) and endogenous particles
(e.g., CCs, MSU, CaP, CaOx) have been demonstrated to induce
necroptosis in neutrophils, with less well-defined effects in
macrophages (Desai et al., 2017; Honarpisheh et al., 2017).
Necroptosis is a programmed cell death pathway that
morphologically resembles necrosis but shares cellular
machinery with the extrinsic apoptotic pathway. Accordingly,
the early steps of necroptosis involve DR activation and
recruitment of signaling proteins to the intracellular domain of
the DR (e.g., TNFR1) to form Complex I as previously described
(Frank and Vince, 2019). TNFR1 endocytosis, cIAP1/2
inhibition, and RIPK1 deubiquitylation by CYLD triggers
formation of cytosolic Complex II, which involves dissociation
of TRAF2/5 and cIAP1/2 and association of FADD and pro-
caspase-8 as previously described (Newton and Manning, 2016;
Su et al., 2016). Under normal conditions, Complex II can induce
extrinsic apoptosis. However, impairment of pro-caspase-8
activity allows formation of a RIPK1- and RIPK3-containing
complex called the necrosome (Galluzzi et al., 2017). The
necrosome facilitates activation of the pseudokinase mixed
lineage kinase domain-like (MLKL) via phosphorylation, and
MLKL monomers forms oligomers at phosphatidylinositol 3-
phosphate sites on the inner leaflet of the plasma membrane.
Consequently, the MLKL oligomers elicit plasma membrane
permeabilization by currently undefined mechanisms, leading
to destabilization of membrane potential and cell lysis
(Figure 4D). As with necrosis and pyroptosis, necroptosis
allows DAMP release from the cell, and these DAMPs can
induce downstream inflammatory responses (Newton and
Manning, 2016). While the exact mechanisms of particle-
induced necroptosis have yet to be fully elucidated, it is
possible that cathepsins released from disrupted
phagolysosomes promote assembly of the RIPK1-RIPK3
necrosome, which promotes MLKL polymerization
(Honarpisheh et al., 2017). Another possibility is that TNF-α

released from dying cells interacts with TNFR1 on viable nearby
cells, promoting either extrinsic apoptosis or necroptosis
depending on pro-caspase-8 activity.

PANoptosis
PANoptosis is a recently coined term that unifies inflammatory
cell death involving simultaneous activation of pyroptosis,
apoptosis, and necroptosis (Malireddi et al., 2019). Currently,
two models have been proposed for PANoptosis-induced cell
death. In the first model, an inflammatory stimulus
simultaneously activates the inflammasome, apoptosome, and
necrosome, which execute their respective forms of cell death. In
the second model, PANoptosis is induced through inflammatory
stimuli that trigger formation of a multiprotein complex called
the PANoptosome, which triggers pyroptosis, apoptosis, and
necroptosis at the same time. In myeloid-lineage phagocytes
(e.g., neutrophils and macrophages exposed to LPS), caspase-8
(apoptosis), FADD (apoptosis and necroptosis), RIPK1
(necroptosis), NLRP3 (pyroptosis), ASC (pyroptosis), and
caspase-1 (pyroptosis) can assemble into the PANoptosome.
Accordingly, the PANoptosome can trigger apoptosis by
caspase-8-dependent activation of caspase-3/7, pyroptosis
by caspase-1-dependent cleavage of GSDMD, and
necroptosis by RIPK3-dependent phosphorylation of MLKL
(Samir et al., 2020) (Figure 5). The result is a detrimental cell
death pathway that permits release of inflammatory DAMPs
into the extracellular space. While it is still unclear which
factors dictate execution of PANoptosis versus individual
activation of pyroptosis, apoptosis, or necroptosis,
inhibition of TGF-β-activated kinase 1 (TAK1) has
previously been associated with PANoptosome formation in
macrophages (Malireddi et al., 2020).

Currently, there is no evidence linking particle exposure to
PANoptosis in myeloid-lineage phagocytes, yet the current
evidence supports such a possibility. Multiple particles have
been previously reported to induce pyroptosis, apoptosis, and
necroptosis in phagocytes [summarized by Mulay et al. (2019a)],
but whether these multiple forms of cell death occur
simultaneously in the same model is yet to be determined.
Intriguingly, components of these three pathways can regulate
one another. Not only can caspase-8 promote pyroptosis by
cleaving GSDMD, but it can also prevent necroptosis by
degrading RIPK. Necroptotic MLKL pore formation also can
trigger NLRP3 inflammasome activity by K+ efflux (Schwarzer
et al., 2020).

NETosis
In addition to pyroptosis, apoptosis, and necroptosis,
exogenous particles (e.g., SiO2, alum) and endogenous
particles (e.g., MSU, CCs, CaP) can induce NETosis
[reviewed by (Rada, 2017) and (Li et al., 2018)]. NETosis
describes the process by which neutrophil extracellular traps
(NETs) are formed within and released from neutrophils
(Sollberger et al., 2018). NETs are web-like structures
composed of decondensed chromatin decorated with
cytosolic myeloperoxidase (MPO) and neutrophil elastase
(NE) (Papayannopoulos, 2018). NETs can be released from
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neutrophils by two mutually exclusive pathways: 1) suicidal
NETosis and 2) vital NETosis (Yipp and Kubes, 2013)
(Figure 6).

In suicidal NETosis, phagocytosis of particles elicits Ca2+

efflux from the ER, which triggers activation of protein kinase
C (PKC). PKC activates the MEK/ERK pathway, ERK
phosphorylates the gp91phox subunit of NADPH oxidase to
induce ROS production, and increased cytosolic ROS activate
peptidyl arginine deiminase 4 (PAD4). Together with MPO and
NE, which translocate to the nucleus, PAD4 promotes chromatin
decondensation and nuclear membrane disruption.
Consequently, NETs are released from the nucleus into the
cytosol, where they are further decorated with cytosolic
proteins, and ultimately released into the extracellular
environment upon cell lysis (Delgado-Rizo et al., 2017; Jorch
and Kubes, 2017). Unlike suicidal NETosis, in vital NETosis,
NETs are packaged into vesicles and released by exocytosis, and
thus, the neutrophil remains viable. Stimulation of TLR2/4 or
CR3 by Gram-positive bacteria (e.g., S. aureus) or Gram-negative
bacteria (e.g., E. coli) activates PAD4, which partners with nuclear
MPO and NE to induce nuclear membrane disruption and
chromatin decondensation. (Delgado-Rizo et al., 2017; Jorch
and Kubes, 2017). While released NETs can immobilize
bacteria and viruses, they can also potentiate inflammation
(Papayannopoulos, 2018). This raises a few questions
pertaining to NETosis and particle toxicology. First, can
released NETs capture extracellular particles and prevent their

interactions with other phagocytes? Second, can NETs in particle-
exposed neutrophils be decorated with particles prior to their
release? Answering these questions could provide further insight
into the protective and/or pathologic roles of NETs in particle-
driven diseases.

PHYSICOCHEMICAL ATTRIBUTES THAT
INFLUENCE PARTICLE-INDUCED
TOXICITY AND PROINFLAMMATORY
RESPONSES

Although many published studies suggest that different particles
elicit similar toxic mechanisms in myeloid-lineage phagocytes,
these responses depend greatly on the physicochemical attributes
of the particle. Such attributes may include, but are not limited to,
particle length (Hamilton et al., 2009; Murphy et al., 2011; Boyles
et al., 2015), size (Fenoglio et al., 2012; Kusaka et al., 2014;
Mischler et al., 2016), shape (Turci et al., 2016; Cohignac
et al., 2018; Nahle et al., 2019), surface area (Sager and
Castranova, 2009; Rabolli et al., 2010), and surface charge
(Morishige et al., 2010; Hamilton et al., 2012; Hamilton et al.,
2018; Pavan et al., 2020). An in-depth discussion of these
attributes goes beyond the scope of this review, but the reader
is encouraged to consult other previously published reviews on
this topic (Aust et al., 2011; Rabolli et al., 2016; Sukhanova et al.,

FIGURE5 | PANoptosome components and functionality. The PANoptosome is amultiprotein complex consisting of molecules from the apoptotic, pyroptotic, and
necroptotic cell death pathways. Exposure to a proinflammatory stimulus such as LPS causes upregulation and activation of apoptotic proteins (i.e., caspase-8, FADD),
pyroptotic proteins (i.e., NLRP3, ASC, caspase-1), and necroptotic proteins (i.e., RIPK1, RIPK3). These proteins associate with one another to form the PANoptosome.
Following assembly, the PANoptosome can execute apoptosis, pyroptosis, and necroptosis simultaneously by driving caspase-3/7 activation by caspase-8,
GSDMD processing by caspase-1, and MLKL phosphorylation and pore formation by RIPK1 and RIPK3. Cell death by concurrent apoptosis, pyroptosis, and
necroptosis is termed PANoptosis.
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2018; Baranov et al., 2020). While current research has focused on
characterizing relationships between particle attributes and toxic
responses exhibited by exogenous particles, these relationships
have not yet been characterized in relation to endogenous
particles.

FROM PARTICLE EXPOSURE TO LOSS OF
IMMUNOLOGICAL SELF-TOLERANCE

As discussed in previous sections, inflammasome activity and cell
death induced by exogenous particles (Table 2) and endogenous
particles (Table 3) permit DAMP release into the extracellular
environment, where they can stimulate innate and adaptive
immune cells. Released DAMPs include proinflammatory

cytokines, nucleic acids, uric acid, cholesterol, heat shock
proteins, HMGB1, type I interferons (IFNs), NETs, and
mtDAMPs including mtDNA, ATP, cardiolipin, and cyt c
[reviewed by Gallo and Gallucci (2013) and Grazioli and
Pugin (2018)]. DCs, which are commonly referenced as
bridges between innate and adaptive immunity (Balan et al.,
2019), may also be bridges between particle exposure and loss of
immunological self-tolerance because they interact with both
particles and released DAMPs (Gallo and Gallucci, 2013). For
example, DCs secrete cytokines involved in Th1 and Th17
differentiation (i.e., IL-1α, IL-1β, IL-2, IL-6, IL-17, IL-23) in
response to MSU (Conforti-Andreoni et al., 2011), CCs
(Westerterp et al., 2017), or alum (Khameneh et al., 2017).
SiO2 and TiO2 induce caspase-1-dependent IL-1β maturation
and apoptotic cell death in DCs (Winter et al., 2011), and

FIGURE 6 | Mechanisms that contribute to NETosis. NETosis is the process by which neutrophil extracellular traps (NETs) are formed and released from
neutrophils. Two primary forms of NETosis exist: suicidal and vital NETosis. (A) Overview of suicidal NETosis. Neutrophils phagocytose exogenous particles (e.g., SiO2)
and endogenous particles (e.g., CCs), which triggers Ca2+ efflux from the ER. Intracellular Ca2+ efflux activates protein kinase C (PKC), PKC activates MEK, and MEK
activates ERK. ERK stimulates NADPH oxidase via gp91phox phosphorylation, and NADPH oxidase produces ROS. ROS activates peptidyl arginine deiminase 4
(PAD4), which contributes to chromatin decondensation. Translocation of myeloperoxidase (MPO) and neutrophil elastase (NE) into the nucleus leads to nuclear
membrane disruption and additional chromatin decondensation. Resultant NETs are directly released into the cytosol, and rupture of the plasma membrane contributes
to extracellular NET release and neutrophil death. Suicidal NETosis occurs within a 2–4 h timeframe. (B) Overview of vital NETosis. Activation of TLR4 by LPS or Gram-
negative bacteria (e.g., E. coli) contributes to ROS production, which is required for PAD4 activity. Alternatively, activation of TLR2 or CR3 by Gram-positive bacteria (e.g.,
S. aureus) leads to downstream PAD4 activation. As with suicidal NETosis, PAD4 triggers chromatin decondensation, and nuclear translocation of MPO and NE
contributes to disruptions in the nuclear membrane. NETs are encased in nuclear vesicles, and NETs are released from viable neutrophils via exocytosis. Vital NETosis
occurs within a 5–60 min timeframe, and released NETs can ensnare bacteria in the extracellular environment.
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extracellular IL-1β plays critical roles in promoting Th17
polarization (Sutton et al., 2006). In addition, HMGB1, ATP,
TNF-α, and NETs can stimulate DC maturation,
proinflammatory cytokine production (i.e., IL-6, CXCL8, IL-
12, TNF-α), and subsequent T cell activation (Schnurr et al.,
2000; Yang et al., 2007; Parackova et al., 2020). Furthermore,
specific DC subsets secrete type I IFN and B-cell activating factor
(BAFF), which regulate B cell differentiation into antibody-
secreting plasma cells (Jego et al., 2005). Intriguingly, DCs also
can promote and maintain immunological tolerance by inducing
regulatory T cell (Treg) differentiation through cell-to-cell
contact or secreted cytokines such as TGF-β and IL-10 (Raker
et al., 2015; Hilpert et al., 2019). Consequently, activated Tregs
can suppress proliferation and differentiation of naïve T cells into
effector T cells, as well as the functions of activated CD4+ and
CD8+ T cells, B cells, macrophages, and DCs. Treg depletion has
been associated with exacerbated immune responses to self- and
non-self antigens and development of autoimmunity (Sakaguchi
et al., 2008; Ma, 2020). Nonetheless, the impacts of Treg function
on particle-driven inflammation remain unclear. For instance,
imbalances in the Treg/Th17 ratio significantly aggravate SiO2-
and MSU-induced inflammation in the lungs and joints of mice,
respectively (Dai et al., 2016; Dai et al., 2018), but inhaled SiO2

and asbestos elicit recruitment of Tregs to the lungs, which secrete
TGF-β and IL-10 and contribute to resultant development of
pulmonary fibrosis (Liu et al., 2010; Lo Re et al., 2011; Maeda
et al., 2017). Accordingly, DCs play crucial roles in regulating
T cell differentiation, interacting with proximal particles and
DAMPs, and maintaining immunological self-tolerance.
Dysregulated DC activation by particles and DAMPs, on the
other hand, represents one major bridge connecting particle-
induced innate immunity to irregular adaptive immunity.

Cells undergoing particle-induced death not only release
DAMPs into the extracellular space but also autoantigens that
can be recognized by T and B cells and consequently trigger
autoimmunity. Autoantigens are self-proteins that are
erroneously recognized as foreign proteins by the host’s
immune system (Burbelo et al., 2021). When presented by
DCs or other antigen-presenting cells, autoantigens promote
activation of autoreactive T cells, which evade elimination in
individuals with genetic predispositions to autoimmune disease
and specifically target the presented self-proteins (Stranges et al.,
2007). In addition, autoreactive T cells promote differentiation of
autoreactive B cells into plasma cells, which secrete
autoantibodies specific to the presented self-proteins
(Riedhammer and Weissert, 2015). Autoantigens involved in
systemic autoimmune diseases such as systemic lupus
erythematosus (SLE) include dsDNA, small nuclear
ribonucleoprotein (snRNP), cardiolipin, and histone proteins
(i.e., H2B, H3, H4) (Doyle et al., 2014; Rosen and Casciola-
Rosen, 2016). In some cases, autoantigens with post-translational
modifications (PTMs), but not native self-proteins, are
recognized by autoreactive T and B cells (Doyle et al., 2014).
These PTMs include phosphorylation/dephosphorylation
(Terzoglou et al., 2006; Nagai et al., 2012), methylation
(Brahms et al., 2000), acetylation (van Bavel et al., 2009),
citrullination (Lande et al., 2021), oxidation (Chang et al.,

2004), and isomerization (Doyle et al., 2013). Since cytotoxic
processes can contribute to modification of autoantigen structure
and immunogenicity, it is tempting to speculate that intracellular
mechanisms involved in inflammasome activation may also
contribute to formation of PTM autoantigens and novel
autoantigens. For example, cathepsins released from particle-
containing phagolysosomes may non-specifically cleave
mitochondrial and cytosolic proteins to create novel self-
proteins that elicit immunological autoreactivity when released
from dying cells. Caspase-1 may cleave mitochondrial and
cytosolic proteins other than its identified substrates (i.e., pro-
IL-1β, pro-IL-18, GSDMD) at specific sites, though this
possibility seems less likely.

In addition to the roles that released DAMPs, autoantigens,
and other danger signals play in aberrant activation of the
immune system, genetics constitute a major determinant in
the loss of immunological self-tolerance and resultant
development of autoimmunity. Although some autoimmune
diseases are monogenic, the majority are polygenic by nature
(Doria et al., 2012). Genetic polymorphisms leading to increased
expression and activation of inflammasome proteins (e.g.,
NLRP3), TLRs (e.g., TLR7, TLR9), transcription factors (e.g.,
STAT4), and IFN signaling proteins (e.g., IRF5) have been
associated with increased susceptibility and severity of several
autoimmune diseases including SLE, rheumatoid arthritis (RA),
and multiple sclerosis (Cho and Gregersen, 2011; Yang and
Chiang, 2015). In addition, loss-of-function mutations in
efferocytosis receptors (e.g., MerTK), which leads to decreased
engulfment of cytotoxic cell debris, have been associated with
systemic autoimmunity (Lemke, 2013). Unique to autoimmune
diseases are genetic polymorphisms in the major
histocompatibility complex (MHC), or human leukocyte
antigen (HLA) region in humans (Caso et al., 2018), which is
crucial for presenting antigens to CD4+ helper T cells (Gough and
Simmonds, 2007). Taken together, these genetic aberrations set
the stage for increased inflammasome priming and activation,
elevated proinflammatory cytokine and IFN production, and
hindered cell debris clearance contributing to inflammatory
tissue damage. In individuals susceptible to autoimmunity,
these genetic variants may also contribute to enhanced
autoantigen presentation to T and B cells, tissue damage by
autoreactive T cells, and autoantibody production by
autoreactive plasma cells, leading to development of
autoimmunity.

PARTICLE-TRIGGERED AUTOIMMUNE
AND AUTOINFLAMMATORY DISEASES

Consistent with evoking inflammatory responses and cell death in
phagocytes, exogenous and endogenous particles can trigger
development of both chronic inflammatory and autoimmune
diseases. Workplace inhalation of asbestos fibers has a long-
recorded history of potentiating asbestosis and malignant
mesothelioma (Westerfield, 1992; Brody, 1993; Bartrip, 2004).
In rodents, CNT inhalation has been associated with
proinflammatory AMΦ polarization and pulmonary fibrosis
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(Dong andMa, 2018), (Kobayashi et al., 2017). TiO2 exposure has
been connected to malabsorption, neuroinflammation, and
cardiopulmonary inflammation in rodents and humans
(Czajka et al., 2015; Zhao et al., 2018; Baranowska-Wojcik
et al., 2020). MSU deposition in joints and blood vessels can
promote gouty arthritis (Rock et al., 2013), coronary heart
disease, and neurodegeneration (Jin et al., 2012). CCs can
contribute to coronary heart disease (Goldstein and Brown,
2015), atherosclerosis (Nidorf et al., 2020), NASH (Ioannou,
2016), and cholesterol gallstone disease (Di Ciaula et al., 2018)
if deposited in blood vessels, liver, or gallbladder, respectively.
Furthermore, CaP and CaOx deposition can lead to pseudogout,
nephropathy, and atherosclerosis (Lorenz et al., 2013;
Kalampogias et al., 2016; Rosenthal and Ryan, 2016).
Although different particles share similar mechanisms of
promoting persistent inflammation, they elicit different
pathologies depending on their routes of exposure and
distribution in the body.

In addition to genetic predispositions, other factors that may
modulate autoimmune susceptibility include particle exposure
level, aging, and biological sex. Dose-response impacts of particle
exposure on autoimmune pathogenesis remain largely
uninvestigated. However, according to Paracelsus’s paradigm
statement “The dose makes the poison,” it can be assumed
that chronic exposures to many particles are more likely to
induce aberrant inflammation and autoimmunity compared to
acute exposures to few particles (Lison et al., 2014). This trend has
been noted with respirable cSiO2 exposure in both mice (Bates
et al., 2015; Mayeux et al., 2018) and humans (De Klerk et al.,
2002; Boudigaard et al., 2021). Conversely, aging seems to have
unclear impacts on the development of autoimmune disease.
Older adults (>60 years) have higher prevalence of non-organ-
specific autoantibodies than younger adults (20–60 years), but
older adults are less likely than younger adults to develop
autoimmune disease (Vadasz et al., 2013). Accordingly, aging
contributes to restructuring of the immune system, leading to
impaired immune responses, increased inflammation and
oxidative stress, and increased autoantibody production
(Watad et al., 2017). This suggests that the immune system is
much more sensitive and reactive to autoantigens in younger
adults compared to older adults, as many systemic autoimmune
diseases manifest between 30 and 50 years of age (Amador-
Patarroyo et al., 2012). A third factor that influences
autoimmunity yet remains an enigma is biological sex. In
general, autoimmune disease is more prevalent in women
compared to men (Ngo et al., 2014). Postulated reasons for
this observation include pregnancy and hormonal changes
during puberty and menopause (Angum et al., 2020). While
particle-induced inflammation and autoimmunity might be
more biased toward men working in dusty occupations, more
women are beginning to enter similar occupations, with
emphases on making dental molds and using scouring
powders in custodial work (Finckh et al., 2006; Pollard, 2012).

While exposure to exogenous and endogenous particles has
been linked to inflammatory and autoimmune diseases, much less
is known about their roles in initiating and exacerbating
autoinflammatory disease. Briefly, autoinflammatory diseases

are defined by uncontrolled innate immunity contributing to
direct tissue damage and disease pathogenesis, whereas
autoimmune diseases are potentiated by unresolved innate
immunity leading to hyperactivation of adaptive immunity,
the latter of which primarily drives tissue damage and disease
pathogenesis (Doria et al., 2012). Most autoinflammatory
diseases are caused by genetic mutations contributing to
aberrant inflammasome activity, IL-1β activation, protein
folding, IFN signaling, complement activation, and
proinflammatory cytokine signaling (Krainer et al., 2020).
Considering these mechanisms, it is not unreasonable to
speculate that particles can worsen, or even trigger,
autoinflammatory disease, beginning with myeloid-lineage
phagocytes. Research in this area is crucial for verifying an
etiological link between particle exposure and
autoinflammatory disease and would provide additional
rationale for regulating workplace particle exposure and fine-
tuning dietary constituents for individuals predisposed to either
autoinflammatory or autoimmune disease.

LINKING PARTICLE-INDUCED
INFLAMMATION TO AUTOIMMUNE
DISEASE—CRYSTALLINE SILICA AS A
PROTOTYPICAL EXAMPLE

Both preclinical and clinical studies have established that
exposure to respirable cSiO2 contributes to SLE and other
human autoimmune diseases (Parks et al., 2002; Pollard, 2016;
Morotti et al., 2021). Patients with SLE typically have recurrent
cycles of flaring and remission that eventually can cause
cumulative damage to kidney, lung, heart, skin, and/or brain
(Moulton et al., 2017). Intriguingly, both autoimmune flaring and
disease progression can be induced by instilling cSiO2 to airways
of mouse models of SLE (Brown et al., 2003; Brown et al., 2004;
Brown et al., 2005; Bates et al., 2015; Clark et al., 2017; Bates et al.,
2018; Foster et al., 2019). This is perhaps best exemplified in SLE-
prone female New Zealand Black White (F1) (NZBWF1) mice
which show autoantibody-driven glomerulonephritis with
proteinuria by age 34 weeks resulting in death by age 52 weeks
(Borchers et al., 2000). Our laboratory has demonstrated in this
model that four weekly intranasal cSiO2 instillations of 1 mg
trigger glomerulonephritis 12 weeks earlier than the conventional
genome-driven model (Bates et al., 2015; Bates et al., 2018).
Before glomerulonephritis onset in these mice, cSiO2 elicits
severe pulmonary pathology involving continual accumulation
of particle-laden AMsΦ, dying and dead cells resulting from
PANoptosis, nuclear and cytoplasmic debris, and neutrophilic
inflammation. Furthermore, there is buildup of large numbers of
T and B cells, along with IgG-secreting plasma cells, suggestive of
ectopic lymphoid tissue (ELT). Consistent with prolonged
particle-induced pulmonary inflammation and ELT formation,
lung fluid and blood from cSiO2-instilled mice have elevated
proinflammatory cytokines, chemokines, and autoantibodies. As
illustrated in Figure 7, these observations support the lung
playing an essential role as the nexus for cSiO2-induced
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systemic autoimmune flaring and glomerulonephritis in the
NZBWF1 mouse.

A potential promising intervention against cSiO2-induced
chronic lung inflammation and resultant autoimmunity is
increasing dietary intake of the marine polyunsaturated fatty
acids (PUFAs) docosahexaenoic acid (C22:6 ω-3; DHA) and
eicosapentaenoic acid (C20:5 ω-3; EPA) (Wierenga et al.,
2019). Modes of action for ω-3 PUFAs’ ameliorative effects
include 1) moderating membrane and lipid raft function, 2)

up- and down-regulating gene expression, 3) competing with
ω-6 PUFAs and their downstream proinflammatory eicosanoids,
and 4) pro-resolving actions of their downstream metabolites
[reviewed by Akbar et al. (2017), Calder (2017), Ferreira et al.
(2019), and Wierenga et al. (2020)]. Preclinical (Halade et al.,
2010; Halade et al., 2013; Pestka et al., 2014) and clinical
investigations (Akbar et al., 2017; Li et al., 2019b;
Charoenwoodhipong et al., 2020; Duarte-Garcia et al., 2020)
indicate that ω-3 PUFAs can counter onset and progression of

FIGURE 7 | Respirable cSiO2 triggers autoimmune flaring and progression in the SLE-prone female NZBWF1 mouse. Chronic exposure to respirable cSiO2

particles contributes to irresolvable lung inflammation and systemic autoimmunity, resulting in end-stage glomerulonephritis and shortened lifespan in female NZBWF1
mice. Alveolar macrophages (AMΦs), which serve as one of the first lines of immunological defense in the lung, detect and phagocytose inhaled cSiO2. Resultantly, cSiO2

particles engulfed by AMΦs induce immunogenic cell death (i.e., pyroptosis, apoptosis, necrosis), proinflammatory cytokine and chemokine release, and NETosis
in neighboring neutrophils. Aberrant accumulation of dead cell corpses, proinflammatory mediators, and host nucleic acids promotes recruitment of autoreactive T and
B cells into the lung and type I interferon (IFN) release from plasmacytoid dendritic cells, leading to formation of ectopic lymphoid tissue (ELT). Type I IFN triggers
maturation of B cells into plasma cells, which secrete IgG autoantibodies (AAb) that target local and systemic autoantigens (AAg). Binding of AAbs to their corresponding
AAgs can lead to formation of immune complexes (ICs) that circulate in the body via blood vessels and deposit in other organs such as the kidneys. Once deposited, ICs
recruit additional proinflammatory cells to the tissue, ultimately resulting in irreversible kidney damage and failure. Steps at which DHA has been shown to interfere with
these pathways are indicated by red ┴ symbols.

Frontiers in Toxicology | www.frontiersin.org November 2021 | Volume 3 | Article 77776817

Favor et al. Particle-Triggered Inflammation and Autoimmunity

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


lupus symptoms, including nephritis. We have found that dietary
DHA supplementation reflecting realistic human consumption
(i.e., 2 and 5 g/d) can be employed as a prophylactic approach
against cSiO2-triggered autoimmune flaring in NZBWF1 mice
(Bates et al., 2018). DHA consumption specifically inhibited
cSiO2-triggered pulmonary accumulation of B and T cells,
follicular DCs, and IgG+ plasma cells. Importantly, DHA dose-
dependently inhibited cSiO2-triggered lung mRNA signatures
indicative of inflammation-, chemokine-, and interferon
(IFN)-related gene pathways (Benninghoff et al., 2019).
Additionally, DHA supplementation suppresses both cSiO2-
induced autoantibody responses against a large number of
SLE-associated autoantigens (Rajasinghe et al., 2020) and
cSiO2-triggered glomerulonephritis (Bates et al., 2018). Lastly,
we have recently demonstrated that DHA supplementation has
value as a therapeutic intervention in this model (Pestka et al.,
2021). The demonstration that DHA acts at many stages of cSiO2-
induced autoimmunity (Figure 7) raises the possibility that ω-3
PUFA supplementation could be used as an intervention against
other diseases associated with particle-triggered inflammation
and autoimmunity.

CONCLUSIONS AND FUTUREDIRECTIONS

Particle toxicology is a longstanding research field with origins
in the 15th century. While this field primarily focused on toxic
impacts of inhaled particles in the lung and their connections
to occupational disease, it now encompasses a much broader
arena that includes seeking to understand how exogenous and
endogenous particles influence development of inflammatory
and autoimmune diseases in diverse organs. Interestingly, the

mechanisms by which particles trigger autoimmunity align
with Polly Matzinger’s danger model, which argues that
ongoing production and insufficient clearance of danger
signals contributes to autoreactivity. Some outstanding
knowledge gaps in the field of particle toxicology include
understanding how genetics influence the immunotoxic
potential of particles, how particles impact other immune
cell populations (e.g., innate lymphoid cells, natural killer
cells), and how particle toxicology studies can be performed
in silico to assess risks associated with an individual’s
environment and lifestyle. Answering these questions will
lead to new understanding of the mechanisms by which
particles elicit toxicity in the context of the genome, and
will provide valuable insight into new interventions that can
be used to prevent or treat particle-associated inflammatory
and autoimmune diseases.
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