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In vitro methods offer opportunities to provide mechanistic insight into bioactivity as well as
human-relevant toxicological assessments compared to animal testing. One of the
challenges for this task is putting in vitro bioactivity data in an in vivo exposure context,
for which in vitro to in vivo extrapolation (IVIVE) translates in vitro bioactivity to clinically
relevant exposure metrics using reverse dosimetry. This study applies an IVIVE approach to
the toxicity assessment of ingredients and their mixtures in e-cigarette (EC) aerosols as a
case study. Reported in vitro cytotoxicity data of EC aerosols, as well as in vitro high-
throughput screening (HTS) data for individual ingredients in EC liquids (e-liquids) are used.
Open-source physiologically based pharmacokinetic (PBPK) models are used to calculate
the plasma concentrations of individual ingredients, followed by reverse dosimetry to
estimate the human equivalent administered doses (EADs) needed to obtain these
plasma concentrations for the total e-liquids. Three approaches (single actor approach,
additive effect approach, and outcome-oriented ingredient integration approach) are used to
predict EADs of e-liquids considering differential contributions to the bioactivity from the
ingredients (humectant carriers [propylene glycol and glycerol], flavors, benzoic acid, and
nicotine). The results identified critical factors for the EAD estimation, including the
ingredients of the mixture considered to be bioactive, in vitro assay selection, and the
data integration approach for mixtures. Further, we introduced the outcome-oriented
ingredient integration approach to consider e-liquid ingredients that may lead to a
common toxicity outcome (e.g., cytotoxicity), facilitating a quantitative evaluation of
in vitro toxicity data in support of human risk assessment.

Keywords: new approach methodologies (NAMs), electronic cigarette, in vitro to in vivo extrapolation (IVIVE),
physiologically based pharmacokinetic (PBPK) model, in vitro toxicity mechanism, mixture assessment

INTRODUCTION

Electronic cigarettes (EC) are gaining popularity among adult smokers who are looking for reduced-
risk alternatives. Since EC are noncombustible and have substantially lower levels of harmful and
potentially harmful constituents (HPHCs) they hold the promise as potentially reduced-harm
alternative to combustible tobacco products. However, its long-term health effects are currently
unknown. The e-liquid and the produced aerosol are both complex mixtures, which are typically

Edited by:
Todd Stedeford,

United States Environmental
Protection Agency (EPA),

United States

Reviewed by:
Ursula Gundert-Remy,

Charité University Medicine Berlin,
Germany

David M. Reif,
North Carolina State University,

United States

*Correspondence:
Jingjie Zhang

jingjie.zhang@altria.com

Specialty section:
This article was submitted to

In Vitro Toxicology,
a section of the journal
Frontiers in Toxicology

Received: 01 October 2021
Accepted: 06 December 2021
Published: 02 February 2022

Citation:
Zhang J, Chang X, Holland TL,

Hines DE, Karmaus AL, Bell S and
Lee KM (2022) Evaluation of Inhalation

Exposures and Potential Health
Impacts of Ingredient Mixtures Using

in vitro to in vivo Extrapolation.
Front. Toxicology 3:787756.

doi: 10.3389/ftox.2021.787756

Frontiers in Toxicology | www.frontiersin.org February 2022 | Volume 3 | Article 7877561

ORIGINAL RESEARCH
published: 02 February 2022

doi: 10.3389/ftox.2021.787756

http://crossmark.crossref.org/dialog/?doi=10.3389/ftox.2021.787756&domain=pdf&date_stamp=2022-02-02
https://www.frontiersin.org/articles/10.3389/ftox.2021.787756/full
https://www.frontiersin.org/articles/10.3389/ftox.2021.787756/full
https://www.frontiersin.org/articles/10.3389/ftox.2021.787756/full
https://www.frontiersin.org/articles/10.3389/ftox.2021.787756/full
http://creativecommons.org/licenses/by/4.0/
mailto:jingjie.zhang@altria.com
https://doi.org/10.3389/ftox.2021.787756
https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org/journals/toxicology#editorial-board
https://doi.org/10.3389/ftox.2021.787756


composed of flavor ingredients, nicotine, organic acids, and
carrier chemicals (propylene glycol [PG] and vegetable glycerol
[VG]). PG and VG are commonly used carriers in the EC
products and make up a large portion of the e-liquid (e.g.,
approximately 80% of the total mass and above, National
Academies of Sciences, Engineering, and Medicine. 2018).
Nicotine is considered the active ingredient in the e-liquid
while flavors are added to accommodate user’s sensory
preference. Hundreds of unique flavor ingredients are
identified based on reviews of e-liquids on the market (Hua
et al., 2019; Krüsemann et al., 2021; Salam et al., 2020), with acids
(such as lactic, benzoic, levulinic, salicyclic, malic, and tartaric
acids) in some EC products converting nicotine to nicotine salts
(Harvanko et al., 2020). The combinations of these ingredients
lead to a myriad of e-liquids in the market. Traditionally, the
health impact of EC products is evaluated as ingredients or as a
whole product mixture in preclinical in vitro and if necessary in
vivo testing, with carriers at various PG:VG ratios as the control
(Merecz-Sadowska et al., 2020). Currently, data from in vivo
animal testing is often regarded the gold standard for risk
assessment, although to test all the EC products is unrealistic
and against the current move to 3R’s principle (refinement,
reduction, and replacement) (Russell and Burch, 1959; FDA,
2019), considering the number of studies and animals needed.
In addition, in vivo data also have inherent uncertainty of the
interspecies extrapolation from animal to human.

New approach methodologies (NAMs) such as human cell-
based in vitro testing can potentially provide a rapid approach to
assess hazards and toxicity potential to support risk assessments,
while reducing or eliminating the need for animal testing. In vitro
testing can provide various stages of mechanistic information
about the bioactivity of test compounds without traditional
descriptive animal testing. However, most current applications
of in vitro testing within safety assessment are for screening,
prioritization and hazard identification rather than quantitative
risk assessment. One of the challenges in using NAMs for
chemical risk assessment is to relate in vitro bioactivity dose-
responses to relevant in vivo exposures (Parish et al., 2020). To
put the in vitro data into in vivo context requires the use of in vitro
to in vivo extrapolation (IVIVE) approaches. The IVIVE
approach uses physiologically based pharmacokinetic (PBPK)
models to generate in silico predictions of exposure metrics in
human based on in vitro data. Specifically, PBPK models predict
the amount of chemical reaching systemic circulation or tissues of
interest corresponding to biological responses measured with
in vitro assays. The IVIVE approach then uses PBPK models
to translate in vitro bioactivity data to corresponding equivalent
administered doses (EADs) in vivo, thus estimating an external
dose in humans that may induce similar bioactivity reflected by
the in vitro assay (Bell et al., 2018). Fit-for-purpose IVIVE
analyses require consideration of several key factors, including
pharmacokinetic modeling, biochemical and biophysical
properties of the test article, in vivo (human) exposure
parameterization, and the selection of in vitro assays (Bell
et al., 2018; Chang et al., 2021). Several case studies have
explored these fit-for-purpose modeling approaches for
individual chemicals (Clewell et al., 2008; Yoon et al., 2014;

Baltazar et al., 2020; Algharably et al., 2021). However, there
are few studies that investigate the application of the IVIVE
approach for mixtures.

There are several challenges when conducting computational
modeling of mixtures (Raies and Bajic, 2016) including IVIVE
analysis. One challenge is that the in vitro testing for the mixture
is sometimes designed to assess the entirety of the mixture while
PBPK model and parameterization is, by default, constructed for
specific individual compounds. In e-liquids and EC aerosols, the
differential pharmacokinetics of the mixture ingredients may also
shift the availability of those ingredients in plasma compared to the
exposure condition employed in the in vitro testing. In addition, each
ingredient in the mixturemay have different modes of action (MOA)
and may induce perturbations in multiple, disparate biological
pathways that may or may not lead to the same in vitro or in
vivo outcomes. Moreover, there may be agonistic and antagonistic
interactions among ingredients, as well as phase partitioning in
multiphase flows (e.g., tobacco smoke and e-vapor aerosols).

Given that most exposures of interest are as mixtures rather
than single chemicals, there have been many efforts trying to
address the above challenges through modeling (Desalegn et al.,
2019). Expressing the mixture components in a standardized way
and treating the exposure additively is one common approach
(Delistraty, 1997; Haddad et al., 2001). Other studies that have
looked at how to integrate additional information to address the
toxicity as well as the absorption, dispersion, metabolism and
excretion (ADME) of the mixture (Ruiz et al., 2020). No
standardized approaches are currently available for
computational modeling of mixtures. Therefore, it is necessary
to define and evaluate fit-for-purpose criteria to guide the
calculation for the mixture IVIVE modeling.

In a previous case study (Chang et al., 2021), IVIVE analyses were
conducted for the exposure and health impacts of nicotine and flavor
mixtures in EC products using publicly available in vitro cytotoxicity
data of the mixtures (Omaiye et al., 2019) and in vitro bioactivity for
individual ingredients available from the ToxCast/Tox21 inventory.
Chang et al. (2021) provide a methodology to predict maximal
plasma concentrations (Cmax) for ingredients and to integrate
ingredient-level Cmax predictions to generate product-level
estimates based on both individual ingredient and mixture
bioactivity. As a proof of concept, this simplified methodology
assumes minimum interaction between ingredients, equal time to
reach the Cmax in the plasma after exposure (Tmax) across
ingredients, and additive effects of accounted ingredients in the
mixtures. It also assumes that the biological responses of mixtures
are attributed only to nicotine and flavors that are identified and
quantitated in the e-liquids and aerosols as reported in Omaiye et al.
(2019), which did not include other major ingredients (PG, VG and
benzoic acid [BA]). However, PG, VG and BA are major ingredients
in the tested e-liquids and aerosols and their in vitro bioactivity is
demonstrated in other studies (Sassano et al., 2018; Ghosh et al.,
2021). Understanding how the results are affected by the
composition of the test mixture is necessary for applying IVIVE
analyses to inform decision making towards risk assessment.

In this work, we expand Chang et al. (2021) case study on the
application of IVIVE for mixtures, with the following specific
goals: 1) to understand the contribution of the carriers and acid to
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the EAD predictions when their in vitro activity is considered and
2) to develop and evaluate methods by which the ingredient-level
data are integrated to better inform mixture bioactivity. We
achieved the two goals in two stages described as below. The
first stage predicted EADs using in vitro bioactivity data of
e-liquid mixtures and evaluated the impact of the contribution
of carriers and the acid to the EAD predictions by comparing the
results to the previous study (Chang et al., 2021). The second
stage focused on integrating ingredient-level in vitro bioactivity
information to provide insight on the bioactivity of the mixtures
and discussed the selection of ingredient-level in vitro assays
based on cytotoxicity. The ingredient and mixture data were
obtained from publicly available sources, and an open-source,
generic PBPK model was used to perform the EAD estimations.
Methods are developed to facilitate the mixture integration and
described.

MATERIALS AND METHODS

E-Liquid Composition
Publicly available data of the e-liquid composition were obtained
(Omaiye et al., 2019). Briefly, we extracted the numerical flavor
and nicotine concentrations for the eight e-liquids from figures in
Omaiye et al. (2019) using WebPlotDigitizer (Rohatgi, 2019) as
described in Chang et al., 2021. As carrier ingredients (PG and
VG) and the BA were not analytically quantified in Omaiye et al.
(2019), we estimated their concentrations using the reported
nicotine concentration and PG:VG ratio of 30:70 by mass
(https://www.fda.gov/tobacco-products/market-and-distribute-
tobacco-product/deemed-new-tobacco-product-applications-
lists#list%20of%20deemed; checked on December 01 2021),
assuming BA in equal molar concentration to nicotine.
Estimated concentrations of all ingredients of the eight
e-liquids in this study are presented in Supplementary Table S1.

In vitro Bioactivity Data
In vitro cytotoxicity data for the EC aerosols were obtained from
the dimethylthiazol diphenyltetrazolium bromide (MTT) and
neutral red uptake (NRU) assay data in Omaiye et al. (Omaiye
et al., 2019). Both MTT and NRU assays provided the half-
maximal inhibitory concentration (IC50) values as indicators of
cellular cytotoxicity (Omaiye et al., 2019); IC50 values are
included in the Supplementary Table S1.

In vitro bioactivity data for single ingredients were obtained
from the curated HTS assays available from the Integrated
Chemical Environment (ICE; Bell et al., 2017; Bell et al.,
2020), which provides a curated version of the U.S. EPA’s
invitroDB V3.2 (accessed December 2020) taking into account
chemical quality control information. Furthermore, an additional
manual review of the concentration-response curves was
performed to remove any ambiguous bioactivity calls to
improve robustness of the final dataset. Among the 46
ingredients which were identified and quantitated across the
eight e-liquids (Omaiye et al., 2019), information was not
available for 13 ingredients (not tested) with an additional 12
having no active assay data passing curation. This resulted in 21

out of the 46 ingredients across all e-liquids with data for
subsequent analyses. The ingredient AC50 of the 21
ingredients are available in Supplementary Table S2 with
values used for the outcome-oriented integration approach in
Supplementary Table S3.

PBPK Models
We used an open-source eight-compartment PBPK (physiologically
based pharmacokinetic) model for inhalation exposure (Gas_PBTK)
from the httk (High-Throughput Toxicokinetics) package to
calculate the Cmax resulting from each ingredient (Pearce et al.,
2017). A 1mg/kg single daily dose was used for determining plasma
Cmax for conducing the IVIVE analysis. The gas PBPK model uses
an inhaled air concentration (uM); therefore, a unit conversion from
mg/kg to uM was conducted assuming complete aerosolization of
the e-liquid and uniform dispersion in air for an inhaled chemical.
The airborne concentration was obtained by dividing the total
chemical mass (mg) by the total inhaled air volume over an
assumed exposure period (15min). The total inhaled air volume
(L) is calculated by multiplying average human tidal volume (0.6 L/
breath), respiratory rate (12 breath/minute) and the 15-min
exposure period (Needham et al., 1954; Russo et al., 2017). The
air concentration (mg/L) was converted to uM using the molecular
weight prior to use as dosing input for Gas_PBTK model. The
plasma Cmax at a dose of 1 mg/kg of each ingredient at 2-h dosing
intervals was also predicted and the results are available in
Supplementary Table S5. The impact of the 2-h and 24-h
dosing regimens were discussed in the previous study (Chang
et al., 2021).

Parameters used in PBPK modeling for each ingredient were
obtained from ICE (accessed March 2021). Modeling was limited
to the ingredients only and did not consider metabolites or
potential byproducts from interactions. When available,
measured values for hepatic intrinsic clearance (Clint) and
fraction unbound (fu) were used for ingredients. Otherwise,
in silico predictions were used. Physiochemical data was
obtained from OPERA (v2.6) QSAR models and used to
calculate additional parameters using internal functions of the
httk package (Pearce et al., 2017). Parameters used in modeling
along with the sources are provided in Supplementary Table S4.
All other parameters used the httk’s internal values or calculated
valued based on these provided parameters.

Approaches for the Estimation of Human
EADs
We applied IVIVE to estimate EADs using three approaches: the
single actor approach (for EC aerosols and ingredients), the additive
effect approach (for EC aerosols), and the outcome-oriented
ingredient integration approach (for ingredients). The first two
approaches are described in Chang et al. (2021). In this study, we
developed the outcome-oriented ingredient integration approach to
allow “combining” or integrating in vitro bioactivity data from
multiple ingredients in a mixture based on a common biological
target or process, in contrast to the single actor approach. In the
outcome-oriented ingredient integration approach, we select a
representative assay data for each ingredient and estimate the
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combined EAD for the targeted biological responses. Data can be
integrated from different assays resulting in the same changes at the
molecular level or leading to the same biological outcome (e.g.,
cytotoxicity) creating a better estimate of the additive effect the
ingredients may have. The outcome-oriented ingredient integration
approach is similar to the additive effect approach used for the
e-liquid mixtures but using the individual ingredient in vitro (HTS)
data as opposed to the mixture in vitro (MTT) data. In this study we
used in vitro cytotoxicity data as the common target for the
integration.

Single Actor Approach
The single actor approach assumes the observed in vitro activity
of a mixture is solely attributable to a single ingredient in the
mixture. For each single ingredient that is selected as the “single
actor,” an EAD for the mixture is estimated based on the in vitro
activity concentration (AC) of that ingredient. This approach was
used for calculating the EAD of the e-liquid from mixture
cytotoxicity data as well as from HTS data for individual
ingredients.

To calculate the single actor EAD for the EC aerosol, we first
calculate the EAD for each ingredient, which is then divided by
mass fraction of the ingredient. To calculate the EAD for each
ingredient (Equation 1), the IC50 for the mixture was first
adjusted by the mass fraction of the ingredient to get the IC50
for the ingredient, which was then divided by the maximum
plasma concentration (Cmaxi) at a dose of 1 mg/ kg. When
considering only single ingredient activity data, the lowest
AC50 values of in vitro HTS data was used. The Equation
1EADiEq. 1 is calculated by dividing the lowest AC50 by
Cmax at a dose of 1 mg/kg and then scaling with the mass
fraction of the ingredient in the mixture to get EAD for the
mixture.

EADmix−i � EADi

fraci
�

ACi
Cmaxi

fraci
� ACtotalp

fraci
Cmaxi

fraci
� ACtotal

Cmaxi
(1)

(Where AC is the activity concentration of a mixture)

EADmix−i � EADi

fraci
� ACi/Cmaxi

fraci
(2)

(Where AC is the activity concentration of a single chemical).
In Eqs 1, 2, EADmix-i is the equivalent administered dose for

the mixture estimated based on in vitro activity concentration of
chemical i,mg/kg; EADi, is the EAD for chemical i corresponding
to in vitro activity concentration of chemical i, mglkg; fraci is the
mass fraction of chemical i in the mixture; ACi is activity
concentration for an ingredient from in vitro assay. It is IC50
from the in vitro cytotoxicity assay of EC aerosol mixture after
being adjusted by the mass fraction of chemical i (Eq. 1) or AC50
from in vitro assay of an ingredient (Eq. 2); ACtotal is the activity
concentration of in vitro cytotoxicity assay of EC aerosol; Cmaxi
is the maximum plasma concentration at 1 mg/ kg/ dose of Eq. 1
chemical i; For additional context, EADs were converted to
e-liquid pod equivalents by dividing the total mass of a single
pod after being scaled up to whole body exposure
(Supplementary Figures S1–S3).

Additive Effect Approach
The additive effect approach assumes all chemicals in the mixture
contribute to the in vitro bioactivity of the mixture proportionally
to their mass fraction in the mixture. This creates a single point
estimate of the EAD-mix representing the integration of the
activities. The in vitro cytotoxicity data of the mixtures (MTT,
Omaiye et al., 2019) were also used in this approach. To compare
the impact of including the total ingredients in EC product as
contributing to bioactivity, as opposed to previous Chang et al.,
we considered the IC50 value representing either the bioactivity
from the quantified ingredients (nicotine and flavor; Chang et al.,
2021) or the total product (nicotine, flavors, BA and carriers).

When only a subset of ingredients is used as in Chang et al.
(nicotine and flavors), the equation to calculate the EAD and
number of pods is as follows:

EADmix � ACtotalp∑
m
i�1fraci

∑m
i�1(Cmaxipfraci)

(3)

In Equation 3, EADmix is the equivalent administered dose for
the mixture, ACtotal is the IC50 of in vitro cytotoxicity assay of the
EC aerosol, Cmaxi is the maximum plasma concentration at
1 mg/kg/dose of ingredient i, fraci is the fraction of individual
flavor or nicotine ingredient in the total product, and m is the
number of ingredients in the subset.

When all ingredients of the e-liquid (total product) are
assumed to contribute to the bioactivity, the equation to
calculate the EAD is as follows:

EADmix � ACtotal

∑n
i�1(Cmaxipfraci)

(4)

Equation 4 uses the same variable names as Eq. 3 except that n
is the total number of ingredients in the e-liquid (total product).
As with the single actor analysis, we provided additional context
for the EAD predictions by converting them to e-liquid pod
equivalents dividing the mass of a single pod (0.7 ml) scaled for
body weight (70 kg) (Supplementary Figures S1, 2).

Outcome-Oriented Ingredient Integration Approach
The outcome-oriented ingredient integration approach
quantitatively integrates individual chemical bioactivity
measures from in vitro HTS assays to provide estimates of the
mixture bioactivity with common biological responses. This
approach assumes that chemicals affecting the same targeted
outcome contribute in an additive manner and the Cmax from
each chemical occurs at the same time (i.e. Tmax is the same).
While it is likely different chemicals in a mixture have different
Tmax values, this simplification can provide a conservative
estimate as it maximizes the total concentration (Cmax). In
this study, we selected cytotoxicity or cell viability as the
common biological response and used relevant assays from the
HTS database, which is parallel to the MTT and NRU assays used
in EC mixtures. ICE provided mapping of the HTS assays to
mechanistic targets (Bell et al., 2020) and was used to identify
assays annotated to cytotoxicity (cell viability) in the integrated
analysis (Supplementary Table S2). The majority of the
ingredients tested in the cell viability assays were not found to
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be bioactive (inactive designation). Ingredients with at least one
active HTS cell viability assay (7 ingredients, out of total 21) were
designated as active for the purposes of this analysis, as most of
the cell viability assays for these ingredients were inactive
(Table 1).

To account for this distribution of active and inactive assays,
the geometric mean of AC50 values was calculated to provide a
weighted bioactivity estimate considering both active and inactive
assays for each ingredient. Inactive assay results were assigned an
AC50 value of 400 uM, twice the maximum concentration tested
(200 uM) for most ingredients. Ingredients that were tested in
HTS cell viability assays but had all inactive results (26
ingredients) were considered inactive in this analysis
(designated with 400 uM). It is notable that three major EC
ingredients (nicotine, BA, and VG, making up about 30% of total
mass) were inactive for Tox21/ToxCast HCS cytotoxicity assays
(Table 1). When no cytotoxicity data were available for an
ingredient (13 ingredients), the geometric mean AC50 value
(387.012 uM) across all cell viability assays, calculated
considering both the active and inactive (400 uM) response
values as a conservative estimate. Full details about the
number of assays tested for each ingredient and the AC50’s
used in the integration analysis are shown in Supplementary
Table S3. An RNotebook with code describing the analysis is
available in Supplementary File S1.

The integration approach first predicted plasma
concentrations for each ingredient and adjusted them based
on the ingredient’s mass percent in the mixture. The
“Gas_PBTK” httk model was used for Cmax prediction. Then,
using AC50 data as a measure of bioactivity for each active or not
tested ingredient (Supplementary Table S3), individual
ingredient plasma concentrations were scaled to “equivalent
plasma concentration” of the most sensitive mixture
ingredient. These equivalent plasma concentrations were
calculated using the ratio of the ingredient AC50 to the lowest
AC50 and describe the Cmax of the most sensitive ingredient that
is expected to contribute the same bioactivity as the predicted
Cmax for the focal ingredient. Finally, these relative plasma
concentrations for each mixture ingredient were summed to
predict activity from the mixture. A detailed example
calculation is provided in Data Sheet S2 to demonstrate each
step of the analysis using a hypothetical mixture.

We compared the EAD for in vivo toxicity (based on
cytotoxicity in vitro) from two different IVIVE scenarios:
“total product,” and “flavor only.” The total product scenario
contained all active or not tested ingredients in the mixture, while
the flavor only scenario considered only flavor ingredients
(Supplementary Table S3). Ingredient Cmax and AC50 values
of included ingredients were used to estimate EAD for each EC
flavor under both scenarios.

RESULTS

EAD Predictions Using the Cytotoxicity
Data of EC Aerosols
Both the single actor and additive effect approaches (Chang et al.,
2021) were applied to estimate EADs from the MTT data of EC
aerosols (Omaiye et al., 2019). With the single actor approach,
comparison of EADs from “total product” and “nicotine + flavor”
showed that the inclusion of PG, VG, and BA (total product) did
not change the upper or lower limits of the EAD range while the
median shifted due to different compositions of each EC aerosol
(Figure 1). The distribution of the EAD estimates varied
depending on what ingredient was used as the primary
contributor to the bioactivity. With the additive effect
approach, the inclusion of PG, VG and BA resulted in an
increased to the calculated EAD (Figure 1) compared to
considering just “nicotine + flavor”. This is due to a
combination of the ADME properties and the percent
composition of the ingredients and thus may change if
different carrier ingredients were considered. EAD estimations
using the NRU assay data (Supplementary Table S1), along with
pod exposure estimations can be seen in Supplementary
Figures 1, 2.

EAD From Single Actor Approach Using
Ingredient HTS Data
The single actor approach was used to predict EADs for mixtures
using the assay with the lowest AC50 (representing the most
sensitive assay) in vitro HTS data from the ToxCast and Tox21
programs for each ingredient (Supplementary Table S2). This
approach considered 21 ingredients out of total 46, which have at

TABLE 1 | Ingredients treated as active in the integration analysis based on at least one active HTS cytotoxicity assay.

CASRN Ingredient name Number
of cytotoxicity assays

Number active assays AC50 for integration
approach; geometric meana

(uM)

104-50-7 4-Octanolide 66 1 383.3755
104-67-6 5-Heptyldihydro-2(3H)-furanone 81 2 380.1397
562-74-3 4-Methyl-1-(propan-2-yl) cyclohex-3-en-1-ol 66 1 390.8753
706-14-9 gamma-Decanolactone 66 1 380.6671
57-55-6 1,2-Propylene glycol 81 1 386.8474
87-25-2 Ethyl anthranilate 68 11 274.1430
99-49-0 dl-Carvone 66 1 389.1948

aGeometric mean of AC50 values was calculated using measured AC50 values and a value of 400 uM for inactive assay results.
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least one valid active in vitro assay in the HTS database. The
annotated mechanisms of these in vitro assays include
cytotoxicity and various early cellular responses, such as
receptor modulation and oxidative stress.

The EAD predictions using the Gas_PBTK model are
shown in Figure 2. Comparisons among “flavor”, “flavor +
nicotine + BA”, and “total product” showed the impact of
nicotine’s bioactivity on IVIVE outcomes. Nicotine, while
making up ∼5% of the aerosolized mixture, generated the
lowest EAD for combinations where it was included. The

AC50 (1.36 µM) used for this estimation is based an in vitro
assay of which the mechanistic target is annotated as
neurotransmission (competitive binding to neuronal
acetylcholine receptor subunit α -2). This supports the
earlier observation that considering the combination of
flavor and nicotine may provide a conservative estimate for
bioactivity (Chang et al., 2021). Furthermore, the PG (AC50 of
26.66 µM from a cell viability assay) and BA (AC50 of 7.54 µM
from an assay of which the mechanistic target cannot be
annotated) consistently produced the second and third

FIGURE 1 | EAD estimates for the bioactivity of e-liquids based on theMTT assay using different assumptions about contributors to bioactivity under both the single
actor and additive approaches. “Total product” (shown in red) assumes all e-liquid ingredients (including PG, VG, and BA) contribute to bioactivity, while “nicotine +
flavor” (shown in blue) assumes only nicotine and flavors contribute to bioactivity. Box plots show distributions of results across all ingredients using the single actor
approach while points (solid triangles and circles) show the point estimate for EAD using the additive effect approach.

FIGURE 2 | EAD estimated using the HTS data for individual ingredients in the single actor approach. EAD estimates were generated based on each ingredient’s
most sensitive bioactivity from the HTS assay and adjusted for the ingredient’s concentration in the e-liquid flavor. The data were plotted based on each of three
combinations: flavor, flavor + nicotine + BA, and total product. Boxplots show the distribution of EAD calculations for all considered ingredients using the single actor
approach. Triangle, circle, and asterisk points indicate the EADs predicted when BA, nicotine, and PG were used as active ingredients, respectively.
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lowest EAD estimates (Figure 2) wherever they were included.
The median of “flavor only,” “flavor + nicotine + BA” and
“total product” ranked from high to low for all eight EC
mixtures, indicating increased health risks.

The EAD predictions for each ingredient in the EC mixtures
are shown in Figure 3. Notably ingredients with lower AC50
values did not necessarily produce the lowest EAD predictions, as
the mass fraction as well as the metabolic clearance also played a
role in EAD estimation using this approach. For example, the
lowest available AC50 for isopulegol is 13.47 uM from an in vitro
assay that measures estrogen receptor modulation, which is about
half of the PG AC50 (26.66 µM), but the estimated EAD based on
isopulegol was 10,000-fold higher than that estimated based on
PG mainly because the percent mass of isopulegol is much lower
than PG (10–4 vs. 102 in terms of order of magnitude) in the

formulations containing both ingredients (Figure 3;
Supplementary Table S1).

EAD From Outcome-Oriented Ingredient
Integration Approach Using Ingredient HTS
Data
Using the outcome-oriented ingredient integration approach, EAD
predictions for the “total product” scenario (Figure 4, blue dots)
were the lowest, with little difference observed across EC product
flavors. This suggests that the EAD estimation was mainly
determined by the large mass percentage of PG, a carrier
ingredient with cytotoxicity demonstrated in the HTS assays.
EAD predictions for the “flavor only” scenario (Figure 4 red
triangle) were substantially higher than the “total product”

FIGURE 3 | EAD predictions for individual ingredients using the single actor approach and the lowest AC50 values reported in the HTS data sets. Data are ordered
based on the minimum EAD for each ingredient across all mixtures. Orange colors indicate lower EAD estimations (more toxic), while blue colors show higher EAD
estimations. The size of dots indicates the mass percentage of the e-liquid mixture for each ingredient (log scale). Note that nicotine and BA represent ∼5% mass while
PG represents ∼30% mass (Supplementary Table S1). The AC50 for each ingredient used in calculating is shown in parentheses next to the ingredient name.
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scenario results and showed high variability across the eight EC
aerosols. Full sets of EAD predictions for all the combinations of
PBPKmodels and scenarios were provided in Supplementary Table
S5. The single actor (Figure 4 grey boxplots) or additive effect
e-liquid (Figure 4 grey squares) results derived from the mixture
cytotoxicity data were added to compare with the “total product”
results (Figure 4 blue dots) derived from the ingredient cytotoxicity
data. The e-liquid results were approximately a factor of 10 higher
than the “total product” results and showed good consistency
between different approaches.

DISCUSSION

The Committee on Toxicity Testing and Assessment of
Environmental Agents of the National Research Council
(NRC, 2007) has envisioned toxicity testing is to transit from
whole animal in vivo testing toward in vitro approaches
conducted in human cells. Besides regular in vitro assays, a
suite of HTS assays targeted to specific biochemical targets has
been developed by Tox21 consortium (Dix et al., 2007; Tice et al.,
2013) to aid this transition. At the same time, putting the in vitro
test data into an in vivo context requires the IVIVE approach to
extrapolate in vitro bioactivity to in vivo exposures and dosimetry.
While conceptually feasible, there are many variables and
assumptions before applying IVIVE, especially on mixtures
such as EC aerosols, decisions such as what the expected
bioactivity is, what components of the mixture contribute to
the bioactivity, what in vitro assays will be used, and how that data
will be integrated need to be determined as all of these influence

the interpretation of model predictions. This work investigated
these issues by using publicly available in vitro cytotoxicity data of
EC aerosols and ingredients and comparing EADs estimated with
various IVIVE data integration approaches. We evaluated the
impact of e-liquid carriers (PG and VG) and BA on the total EC
aerosol bioactivity and EAD predictions, albeit limited to
available in vitro data for EC mixtures and ingredients. We
also compared the EAD results from this study with results
predicted by previous approaches (Chang et al., 2021).

EAD Predictions for Total Product
Chang et al. (2021) estimated EADs of e-liquids using in vitro
cytotoxicity and analytical data of EC mixtures reported in
Omaiye et al. (2019). However, they did not account for PG,
VG, and BA, of which the mass percentage in the e-liquids or
aerosols were not available. With the composition information
obtained from the FDA’s website (2020), we were able to calculate
the EAD based on the total e-liquid composition (PG, VG, BA,
nicotine, and flavors) using the EC aerosol MTT assay (Omaiye
et al., 2019). As shown in Figure 1, the EAD predictions using
both the single actor approach and the additive approach
indicated that the inclusion of PG, VG or BA in IVIVE
modeling did not have a significant impact on the human
EADs based on the mixture MTT assay (Omaiye et al., 2019),
despite that the three ingredients accounted for over 85% of the
total mass of e-liquids and aerosols. The results can be explained
by the distribution of the mixture bioactivity across all the
ingredients and the relatively faster clearance of the carriers,
which represent the majority of the mixture mass
(Supplementary Table S1). The relatively high intrinsic

FIGURE 4 | EAD predictions for each flavor using the ingredient integration analysis based on the geometric mean in vitro cytotoxicity assay AC50 from the HTS
data for individual ingredients. This figure compares integration analysis results under different scenarios (red and blue points) to the e-liquid mixture results presented in
Figure 1 (gray points and boxplots). Blue circular points show predictions for total product, while red triangle points show predictions for flavor ingredients only. Note that
for this analysis ingredients that were inactive in cytotoxicity assays were excluded (Supplementary Table S3); nicotine, BA, and VG were among the inactive
ingredients. The grey boxplots show the results of the single actor analysis for each e-liquid using the MTT assay for comparison, while the grey square points show the
additive effect results.
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clearance rate and fraction unbound of the carriers
(Supplementary Table S4) contributed to their rapid
clearance and resulted in a lower Cmax in the dosimetry
model and thus a minor impact on the EAD.

This result based on total mixture (EC aerosols) in vitro
bioactivity (Figure 1) seemed to contrast with the result of the
single actor approach using individual ingredient in vitro HTS data.
EAD estimations resulting from the HTS data of individual
ingredients (Figure 2) indicated that the “total product” EAD
might be lower than nicotine + flavors alone. Using the lowest
AC50 value across multiple assays from the HTS data set, the
ingredient-based single actor approach indicated that PG and BA
consistently produced two of the three lowest EAD estimations
immediately following nicotine (Figure 3). Using the lowest HTS
AC50 among all assays is an extremely conservative approach and
might have overestimated the bioactivity of these ingredients relative
to what was observed in the in vitromixture cytotoxicity testing. This
was also partly due to the lack of bioactivity across the assays in
general and the lowest measure is not related to cytotoxicity or
generally not as robust due to experimental and technical variability.
This discrepancy in the results highlights how assay selection and
interpretation can impact IVIVE calculations.

Either the single actor or the additive effect approaches did not
incorporate the biological mechanisms. When we used the single
actor approach with the HTS data of individual ingredients, we
selected the most sensitive assay among assays annotated with
various mechanistic targets to obtain the most conservative EAD
estimations. This has a disadvantage of being overly sensitive and
may reflect a spurious interaction as opposed to a biologically
relevant measure of ingredient effect on the biological system.
Nonetheless, this preliminary approach can be used in screening
and prioritizing when the goal is to be conservative to assess
potential bioactivity. In contrast, when we used the additive effect
approach with the mixture cytotoxicity data, we assumed equal
toxic potential for all ingredients of the mixture, as individual
ingredient bioactivity for the assay was not available. This
assumption likely attributed bioactivity to relatively inert
ingredients and could affect the EAD estimates when
combined with different PK profiles.

EAD Predictions Using an
Outcome-Oriented Ingredient Integration
Approach
As an alternative to the above approaches, we explored the
mechanism-based IVIVE for the mixtures, an outcome-oriented
ingredient integration approach using a common mechanism.
This approach has the advantage of consolidating biological
effects from ingredients that would contribute to the same
toxicity endpoints in a mixture that has not yet been tested
in experiments. In this regard, the outcome-oriented ingredient
integration approach is similar to the toxicity equivalent factor
(TEF) approach applied by the U.S. Environmental Protection
Agency to assess the toxicity of structurally similar chemicals
that affect the same endpoint (Delistraty, 1997). This approach
also assumes additive effects from single ingredients. We
selected cellular cytotoxicity to make relevant comparison to

the results derived from the mixture cytotoxicity data (Omaiye
et al., 2019).

The EAD estimations from the cytotoxicity-oriented
ingredient integration approach encompassed a range of
approximately 10-fold below to 100-fold above those estimated
using the mixture cytotoxicity data, depending on which
ingredients are included in the analysis (“total product” or
“flavor only”) (Figure 4). Notably, the “total product” EAD
estimation produced conservative results, i.e., the EAD
predictions for the total product were the lowest. When
comparing the outcome-oriented ingredient integration
approach to the single actor approach based on the HTS
ingredient data, the “total product” EAD estimations were the
lowest (Figure 2; Figure 4). When comparing to the additive
effect approach using mixture cytotoxicity data (Figure 4, grey
points and boxplots), the results of the outcome-oriented
ingredient integration approach are about a factor of 10 lower
than the mixture cytotoxicity-based results, which could be
explained in part by the inclusion of different ingredients and
the varied sensitivity of the in vitro assays. Similar to the additive
effect approach demonstrated in Figure 1 (also included in
Figure 4 as gray square points), the outcome-oriented
ingredient integration approach modeled the pharmacokinetics
of each ingredient separately. The two approaches (the additive
approach vs. the outcome-oriented ingredient integration
approach) differ, however, in the weight of contribution that is
assigned to each ingredient. The additive effect approach assumes
that all ingredients contribute to the mixture cytotoxicity and
every ingredient is equally cytotoxic, while the outcome-oriented
ingredient integration approach assumes that only ingredients of
which cytotoxicity is demonstrated (“positive” in Tox21/ToxCast
database) and the contribution of a single ingredient is inversely
proportional to its AC50 (Supplementary File).

Despite increased biological relevance, there are limitations of
the outcome-oriented ingredient integration approach, for
example, limited in vitro data relevant to mechanistic targets
of interest. In this case study, there were only seven distinct
ingredients with active in vitro responses out of the total 46
ingredients (Table 1). An additional 13 ingredients were
considered active using the median AC50 of cytotoxicity
assays (387.012 uM) for the calculation as a conservative
estimation based on a lack of in vitro testing data. Nicotine
and BA were excluded from the outcome-oriented integration
modeling as they are both identified as inactive in the Tox21/
ToxCast cell viability assays. Although cytotoxicity and cell
viability assays were not available for all ingredients, it may be
possible to address the data gap by searching the literature or
conducting ingredient-specific in vitro experiments.

EADs for Preliminary Risk Assessment
The methodologies presented in the work incorporated the
bioactivity, ADME and composition of ingredients to enable
preliminary chemical risk assessment. The results can be used
to prioritize individual ingredients or ingredient groups for
further toxicological testing and risk assessment. For EC
products, flavors, nicotine (or nicotine salt), and humectant
carriers can play different roles in the in vitro and in vivo

Frontiers in Toxicology | www.frontiersin.org February 2022 | Volume 3 | Article 7877569

Zhang et al. IVIVE for Inhaled Mixtures

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


responses and the IVIVEmethods provided a modeling approach
to estimate the potential contribution of each or groups of
ingredients. For example using the HTS data, the EAD
predictions for the “flavor only” group are the highest,
suggesting flavors (less than 1.2% of the total mass in this case
study) are not likely the major toxicity driver in the tested e-liquid
and aerosol mixtures. The medians of “flavor-only” EAD
predictions are about a factor of 100 higher than the “total
product” results when the lowest AC50 data are used
(Figure 2). The “flavor-only” predictions are about a factor of
10,000 higher than the “total product” results when the selected
cytotoxicity data are used for the estimation (Figure 4). The
difference between the “flavor only” and “total product” scenarios
suggests the contribution of the flavor and non-flavor ingredients
to the potential in vivo toxicity of the mixture. In addition, the
IVIVE results can help to identify priority ingredients that may
drive the bioactivity. Considering their bioactivity and levels, it is
not surprising that nicotine and BA significantly contribute to the
bioactivity of the mixture as shown in Figure 2. Among flavors,
benzyl alcohol, identified as a flavor compound in six out of eight
EC products, and ethyl maltol, identified in three products, could
contribute to lower EADs among flavor ingredients (non-PG,
VG, BA, or nicotine ingredients) across the EC products
(Figure 3). Additional toxicological assessment (e.g., in vitro
responses in various combinations of these ingredients) could
be of interest to further elucidate their contributions to mixture
bioactivity and to evaluate their use level in the products. For the
EC aerosols as a whole, the lowest EAD predictions for the total
product (>100 mg/ kg body weight, i.e. > 7,000 mg/ day based on
70-kg body weight, about ten pods per person per day) (Figure 4)
were still regarded substantially higher than typical consumer
daily uses (e.g., approximately two pods per person per day
(0.7 ml of e-liquid per pod https://www.juul.com/resources/
what-is-the-size-of-a-juulpod).

Despite many potential applications, it is important to
acknowledge the limitations of the current IVIVE
approaches for the EAD predictions. Firstly, although
cytotoxicity was selected as the surrogate biological
response in this study, in vitro assays that are more
mechanistically relevant and specific to the exposure would
be desirable for the EAD prediction and risk assessment. For
example, increased vascular and lung oxidative stress level was
reported to be associated with e-vapor aerosol exposure
(Taylor et al., 2016; Kuntic et al., 2019) and may lead to
potential lung injury. Secondly, the in vitro values used did
not account for any potential interaction with endogenous
ligands for the targeted receptors. Additionally, the metabolic
saturation was not considered in the generic PBPK model used
in this study. In future studies, the PBPK model may be
expanded by adding key metabolic information (e.g.
saturable metabolic pathways and resulting metabolites).
Target tissue concentrations can also be considered for the
EAD calculation in addition to the systemic plasma
concentration. Finally, for EAD calculation of mixtures, we
used the simple assumptions on the interaction of ingredients
(additive as opposed to synergistic, for instance). For a simple
mixture system such as a binary system, the interactions

between chemicals could possibly be incorporated in the
model and verified by experiments. Considering these
limitations and data gap, uncertainty factors can also be
applied to EAD calculation depending on the application
(Raies and Bajic, 2016).

CONCLUSION

IVIVE modeling for mixtures can be complex as it must
consider both the bioactivity measure and the
pharmacokinetics of each ingredient in the mixture. This
work investigated the application of IVIVE as a NAM to
use in vitro data toxicity assessment of EC ingredients
separately and as part of total product in the context of
human in vivo exposure. Specifically, we illustrated the
impact of the inclusion or exclusion of carrier chemicals
(PG and VG) and BA in e-liquids and EC aerosols on EAD
prediction using various IVIVE approaches. The single actor
analysis demonstrated in this work can be informative for
prioritization of testing for ingredients or in sets of mixtures.
By considering bioactivity, mass fraction, and toxicokinetic
properties, the IVIVE results can identify which ingredients in
a set of mixtures are most likely to contribute to toxic effects,
potentially supporting usage limit (Figure 3). We also
demonstrated that the outcome-oriented ingredient
integration approach as introduced in this work can provide
conservative screening estimates of mixture bioactivity for
selected bioactivity targets when experimental mixture data
are not available. The EAD estimations generated by these
approaches have the potential to inform risk assessment and
decision making through a margin of exposure approach that
compares expected exposures with the equivalent exposures to
match in vitro results. As different assumptions are embedded
in each approach, it is necessary to define the purpose of the
study and the assumptions to develop fit-for-purpose
methodologies. In conclusion, IVIVE is a useful tool for
interpreting in vitro data in the context of in vivo human
exposure and can be applied to mixtures assessment for
hypothesis generation and preliminary risk assessment.
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