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The objective of this work was to use transcriptional profiling to assess the

biological activity of structurally related chemicals to define their biological

similarity and with that, substantiate the validity of a read-across approach

usable in risk assessment. Two case studies are presented, onewith 4 short alkyl

chain parabens: methyl (MP), ethyl (EP), butyl (BP), and propylparaben (PP), as

well as their main metabolite, p-hydroxybenzoic acid (pHBA) with the

assumption that propylparaben was the target chemical; and a second one

with caffeine and its main metabolites theophylline, theobromine and

paraxanthine where CA was the target chemical. The comprehensive

transcriptional response of MCF7, HepG2, A549 and ICell cardiomyocytes

was evaluated (TempO-Seq) after exposure to vehicle-control, each paraben

or pHBA, CA or its metabolites, at 3 non-cytotoxic concentrations, for 6 h.

Differentially expressed genes (FDR ≥0.05, and fold change ±1.2≥) were

identified for each chemical, at each concentration, and used to determine

similarities. Each of the chemicals is able to elicit changes in the expression of a

number of genes, as compared to controls. Importantly, the transcriptional

profile elicited by each of the parabens shares a high degree of similarity across

the group. The highest number of genes commonly affected was between

butylparaben and PP. The transcriptional profile of the parabens is similar to the

one elicited by estrogen receptor agonists, with BP being the closest structural

and biological analogue for PP. In the CA case, the transcriptional profile elicited

of all four methylxanthines had a high degree of similarity across the cell types,

with CA and theophylline being the most active. The most robust response was

obtained in the cardiomyocytes with the highest transcriptional profile similarity

between CA and TP. The transcriptional profile of the methylxanthines is similar

to the one elicited by inhibitors of phosphatidylinositol 3-kinase as well as other

kinase inhibitors. Overall, our results support the approach of incorporating

transcriptional profiling in well-designed in vitro tests as one robust stream of

data to support biological similarity driven read-across procedures and

strengthening the traditional structure-based approaches useful in risk

assessment.
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Introduction

Assuring safety of cosmetic ingredients has become more

challenging given the ban on animal testing for cosmetic

ingredients that has been in place since 2013 (Cosmetics

Directive 76/768/EEC). To address these issues, Alexander-White

et al. (2022) recently described a framework to perform a next-

generation risk assessment (NGRA) based on a read-across (RAX)

using chemical properties, in silico toxicology predictions and

integrating data derived from new approach methodologies

(NAM) to better substantiate biological activity similarity, and

thus similarity in potential toxicity of chemicals being used in a

RAX assessment. Two cases studies describing the application of this

framework have been published to date, with the first using parabens

(Ouedraogo et al., 2022) and with a second using caffeine (Bury

et al., 2021). New approach methods (NAMs) data includes

transcriptional profiling data from exposed cultured cells, as one

of the streams of data to inform about chemical specific biological

activity, and this work addresses the use of this stream of NAMdata.

The basic tenet of RAX is the extrapolation of the outcome of a

specific toxic (or lack thereof) in vivo endpoint from a tested

chemical (source) to a similar (target) chemical. A robust RAX

assessment requires the demonstration of similarity not just in

physicochemical properties, reactivity and metabolism (Wu et al.,

2010) between the chemicals used for the RAX, but also in their

biological activity.

Gathering information to define the biological activity of

both the source and the target chemical is critical to determine

whether the two chemicals act via the same mode of action and

thus pose a similar hazard in vivo. Changes in gene expression are

part of an integrated physiological response to chemical exposure

of a living organism and these changes represent the response to

the biological activity of this chemical on a target organ, which

could end in an adverse outcome depending on the concentration

and time of exposure. Identifying gene expression changes

elicited by a specific chemical exposure, allows the

identification of molecular events and cellular pathways

affected by such an exposure that could lead to an adverse

outcome (De Abrew et al., 2016; Lichtenstein et al., 2020;

Chen et al., 2021). Part of this transcriptional response can be

also exhibited by cultured cells, representative of target organs

(Naciff et al., 2016; De Abrew et al., 2019; Alarcan et al., 2022)

and this information offers the opportunity to determine the

biological activity associated with a particular chemical, and with

that define its mode of action. Comparison of the gene expression

changes elicited by structurally related chemicals will substantiate

the biological basis for RAX. We (De Abrew et al., 2015; De

Abrew et al., 2016; Naciff et al., 2016; De Abrew et al., 2019) and

others (Dreser et al., 2015; Rempel et al., 2015; Yeakley et al.,

2017; Peshdary et al., 2021; Escher et al., 2022) have started trials

in this direction with encouraging results. For example, we (De

Abrew et al., 2019) have used transcriptional profiling to identify

biologically similar chemicals for m-ethyl phenol and 4-chloro-

1,3-diaminobenzene, identifying m-cresol as the closest

biological analogue of m-ethyl phenol; while 4-chloro-2-

methylaniline hydrochloride and 2-chloro-1,4-diaminobenzene

sulfate as the closest biological analogues of 4-chloro-1,3-

diaminobenzene. Peshdary et al. (2021) used transcriptional

profiling to explore similarities and differences between

bisphenol A (BPA) and three of its analogues, bisphenol S

(BPS), bisphenol F (BPF) and 3,3′,5,5′-tetrabromobisphenol A

in the human embryonic stem cell line H9 (WA09). Peshdary

et al. determined that BPA, BPF, and BPS have similar potencies

in inducing transcriptional changes and perturb many of the

same pathways, while TBBPA was the least structurally similar

bisphenol of the group and had much lower potency. Escher et al.

(2022) used transcriptional profiling to determine biological

similarity between thirteen structurally similar branched

aliphatic carboxylic acids and determined that the closest

analogues shared the most similar transcriptional profile in

HepG2 cells, and these were 2-propylheptanoic acid (2-PHP),

2-Ethylheptanoic acid, 2-propylhexanoic acid, 2-ethylhexanoic

acid and valproic acid (VPA), with VPA and 2-PHP being the

two most potent analogues in this group.

In this paper, we have used transcriptional profiling in vitro

systems as a read out to determine the biological activity

associated with a particular set of related chemicals and with

that, substantiate the suitability of a chemical rich in safety data

and support a RAX assessment of a target chemical. Two case

studies are presented: the first one with 4 linear chain n-alkyl

parabens where propylparaben (PP) is the target chemical, while

methyl-(MP), ethyl-(EP), and butylparaben (BP) are the suitable

structural analogs, as well as the main metabolite of these

parabens, p-hydroxybenzoic acid (pHBA). The second case is

with caffeine (CA) being the target chemical and three of its main

metabolites theophylline (TP), theobromine (TB) and

paraxanthine (PX) as the suitable structural analogs. The

indicated structural analogs of each target chemical were

identified by expert judgment following the process for

evaluating analogs for use in Structure-Activity Relationship

(SAR) described by Wu et al. (2010). Even though each target

chemical has a robust safety data set derived from animal studies

performed prior to the testing ban, the assumption was that there

were data gaps for the target chemical of both case studies. The

data gap selected for PP was the reproductive and developmental

toxicity, and for CA was its systemic toxicity. Thus, the goal of

using transcriptional profiling of cultured cells was to identify

potential concerns for these endpoints, for each target chemical,

and at the same time, identify a biologically similar chemical for

RXA and fill the appropriate data gap.
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In this study, the transcriptional profile of each analog for

each case study was evaluated in four cell types: MCF7, HepG2,

A549 and iCell Cardiomyocytes, and compared to the target of

the respective case study. This comparison was used to determine

whether the biological activity for sets of structurally-related

chemicals is comparable. Our results clearly show that the

transcriptional profile elicited by each of the parabens shares a

high degree of similarities across the group members, with the

highest similarity observed between BP and PP. Similar results

were obtained in the case of CA and its metabolites, where the

transcriptional profile of each methylxanthine has significant

concordance with each other, with the highest transcriptional

profile similarity between CA and TP. Pathway enrichment

analysis (MSigDB v7.4) of the transcriptional profile for each

chemical in both cases studies indicated a significant overlap in

the regulated pathways identified by analyzing the transcriptional

profiles of up- and down-regulated genes across the two chemical

groups, with the highest similarities between PP and BP, and CA

and TP respectively, supporting the validity of the read across

among the group, with BT and TP being the closest structural

and biological analogue for PP and CA, respectively. In all, our

results support the use of transcriptional profiling in chemical-

sensitive cultured cells to define the biological activity of chemical

classes and to better define chemical analogs, and thus increase

the confidence in a RAX approach by strengthening the

traditional structure-based approaches useful in hazard

assessment.

Methods

Chemicals and reagents

Propylparaben (CAS# 94-13-3), methylparaben (CAS# 99-

76-3), ethylparaben (CAS# 120-47-8), butylparaben (CAS# 94-

26-8) p-hydroxybenzoic acid (CAS# 99-96-7), caffeine (CAS# 58-

08-2), theophylline (CAS# 58-55-9), theobromine (CAS# 83-67-

0), paraxanthine (CAS# 611-59-6), trichostatin A (CAS# 58880-

19-6), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (CAS# 298-93-1) and dimethyl sulfoxide (67-68-5)

were all obtained from Sigma-Aldrich (St Louis, MO).

Concentration and time point selection

For each chemical tested in this case study, a cytotoxicity

assessment was performed in one of the cell lines used in the

experiments (i.e. MCF7, HepG2 or A549 cells) using increased

concentrations of the chemicals up to a concentration that

resulted in some toxicity, but no more than 10% cytotoxicity

as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay according to

Mosmann (1983). In our experience, the cytotoxic effects of

any given chemical can be determined in any of the indicated cell

types, and these cells do not display a particular sensitivity to

cytotoxic effects when compared among each other. The highest

concentration of each chemical that elicited no more than 10%

cytotoxicity, determined in this preliminary experiment, was

selected as the highest concentration (D1) to be evaluated in

each of the 4 cell lines: MCF7, HepG2, A549 cells (obtained from

American Type Culture Collection, ATCC), and iCell

Cardiomyocytes (obtained from Fujifilm/Cellular Dynamics).

To determine the transcriptional profile associated with the

exposure to each chemical, each cell line was treated with

D1 and two dilutions of D1 (D2 and D3), for a total of

3 concentrations for each chemical for each cell line (Tables 1

and 3) and compared to the appropriate control (cell line treated

with the appropriate concentration of vehicle, dimethyl sulfoxide,

DMSO). The concentration of DMSO of 0.1% was maintained

constant across the different chemicals and cells evaluated,

including the vehicle controls. In the parabens case study, the

response to each chemical was evaluated at 1, 50 and 500 μM;

while in the methylxanthines case study the response to each

chemical was evaluated at 50, 500 and 1,000 μM. For every

chemical and cell type evaluated, 4 biological replicas were

generated.

The exposure time for each chemical and all the 4 cell lines

was 6 h. This time has been selected in order to both obtain a

signature related to the direct mechanism of action (molecular

initiating event, MIE) of the chemical being evaluated and to

maintain consistency with earlier experiments (Lamb et al., 2006;

De Abrew, et al., 2016; De Abrew, et al., 2019). Other studies have

shown the importance of using early response genes in predictive

toxicology (Zhang et al., 2014). This time point was also found to

be more informative than later time points by Lamb et al. (2006).

Thus, whole cell lysates were obtained after 6 h of exposure to

each chemical or the appropriate vehicle (controls) for

transcriptional profiling, using the lysis buffer recommended

by BioSpyder (provider of the TempO-seq platform). In every

experiment, each cell type was also exposed to 0.1 μM

Trichostatin A, used as positive control.

Gene expression profiling

The transcriptional response to the exposure to each

chemical was evaluated in 4 cell lines: MCF-7, A549,

HepG2 and iCell Cardiomyocytes cultured using

recommended culture protocols and reagents (ATCC or

Fujifilm/Cellular Dynamics, respectively). Each cell type

displays a specific phenotype from the representative target

organ, including an endocrine-responsive (MCF-7), liver-

derived (HepG2), lung-derived (A549) and an electrically

active cell type (iCell Cardiomyocytes) and are terminally

differentiated. The use of these 4 cell types allows for a

broader “biological coverage” to determine the potential effect
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on gene expression of any given chemical being evaluated. Cells

were seeded on 96 well plates and treated with 3 concentrations

of each chemical or vehicle (DMSO) for 6 h. Treatments were

randomized across the plate to minimize batch effect and

dispensed using an Andrew System 1000G liquid handling

robot (Andrew Alliance, Waltham, MA). Following 6 h

treatment, cell lysates were harvested according to a protocol

provided by Biospyder (TempO-SeqWorkflow—BioSpyder) and

then stored at −80°C until analysis. Each experiment was

performed in 4 biological replicas, with the cells for each

replicate treated and harvested on separate days, to better

represent 4 biological replicas. Cell lysate plates were shipped

frozen to BioSpyder (BioSpyder Technologies, Inc., Carlsbad,

CA) and Tempo-Seq human whole transcriptome (version 2.0)

assay was performed at BioSpyder as previously described

(Yeakley et al., 2017).

The complete gene expression data have been deposited in

the National Center for Biotechnology Information Gene

Expression Omnibus (GEO) (Edgar et al., 2002) and are

accessible through GEO Series accession number GSE218902.

Gene expression statistical analysis

The transcriptional profiling data, consisting of

Log2 transformed gene expression data, was obtained from

the appropriate raw data provided by BioSpyder. FASTQ files

from the Illumina standard sequencing instrument software were

provided by the vendor. Each FASTQ file was aligned using the

Bowtie algorithm by vendor to generate a count table with each

column representing a sample and each row representing a gene.

The count table generated from each cell line was used for gene

expression analysis using DESeq2 v1.30.0 (Love et al., 2014)

package in R software (v4.0.3). Probes with count of 5 or more in

at least 3 samples were kept in prefiltering step. DESeq2 default

parameters and size factor estimation were used for

normalization. Negative binomial model was used for

computing the differential expressed genes (DEGs) compared

to vehicle controls. Fold change shrinkage was applied for each

concentration versus related controls to compute moderated

L2FC values for each probe. Probes with adjusted p-value

(FDR) ≤ 0.05 were considered as differentially expressed. The

100 most up- and down-regulated genes with smallest p values

induced by each chemical treatment (concentration vs. control

within each cell line) were selected as gene signatures to query the

connectivity map (cMAP) database.

Gene ontology and canonical pathway
analysis

Gene Ontology (GO) and canonical pathways of DEGs were

analyzed in the Molecular Signature Data Base (MSigDB version

7.1) of the Gene Set Enrichment Analysis (GSEA) website (http://

www.gsea-msigdb.org) (Subramanian et al., 2005). The separated

list of up-regulated and down-regulated DEGs identified

following chemical exposure were used to assess which

pathways were affected by each chemical using MsigDB. In

this case, each transcriptional profile was evaluated using the

50 gene sets under the Hallmark gene sets (H) using the

appropriate human gene symbols for each gene being queried.

Enrichment of GO terms, KEGG pathways, and Reactome

pathways was considered significant when the FDR q value

was less than 0.05 and at least 5 up- or down-regulated genes

were part of the pathway.

Connectivity map (cMAP) analysis

In order to identify similarities in biological activity across

the different chemicals evaluated in the different cell lines, we

used the cMAP approach, originally described by Lamb et al.

(2006), and the updated Library of Network-Based Cellular

Signatures (LINCS; Subramanian et al., 2017) database using

the CLUE Touchstone 1.1.1.43 ((clue.io)) database. This

approach allows to validate the transcriptional profiling data

as well as to discover connections between the chemicals being

evaluated and chemicals already evaluated using pattern-

matching recognition of their expression profiles. This

database includes 8,969 well studied and annotated small-

molecule compounds and genetic reagents tested in nine

human cell lines. After raw data preprocessing, the log2 gene

expression data from each chemical, at each concentration, was

used to calculate fold-change for each gene evaluated and whose

expression is affected by each chemical treatment with respect to

the average control of the corresponding batch. The fold-change

of each gene was used to produce a gene expression profile or

signature for the chemical being evaluated (at each concentration

tested) using the standard method described in the original

cMAP paper (Lamb, et al., 2006). To generate signatures for

each chemical (independently for each concentration), a two-

sample t-test paired for instances tested in the same batch is run

using the Limma software (Smyth, 2005; Wettenhall et al., 2008).

A 5% false-discovery rate (FDR) cut-off is used to generate up-

regulated (positive fold-change) and down-regulated (negative

fold-change) signatures. This gene expression signature of each

chemical that generated significant gene expression changes (at

any concentration), combining both up-regulated and down-

regulated gene expression changes, was compared with each

signature represented in the cMAP database at the Broad

Institute ((clue.io)) and scored to determine the degree of

similarity between the signature being evaluated and the

“matched” signature of chemicals identified in the data base.

The connectivity score provides three measures of confidence: 1)

a nominal p-value derived by comparing the similarity between

the query and reference signature, using the Kolmogorov-
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Smirnov enrichment statistic (Subramanian et al., 2005), to a null

distribution of random queries; 2) a false discovery rate (FDR)

that adjusts the p-value to account for multiple hypothesis

testing; and 3) Tau (τ), which compares an observed

enrichment score to all others in the database. cMAP scores

range from +100, representing similar gene expression signature

between the two chemicals being compared, to −100 representing

opposite signatures. The premise in this analysis is that

transcriptional signatures with high similarity (cMAP scores

close to +100) represent similar biological activity. We also

compared the transcriptional response of the active chemicals

from this case study to each other, as well as to other chemicals

we have evaluated in our lab (De Abrew et al., 2019).

Results

Parabens

The number of genes whose transcriptional response was

affected by exposure to MP, EP, BP and PP, as well as by its

main metabolite pHBA, at each of the concentrations tested, on

each of the cell lines assessed, and with an FDR≤0.05, is shown
in Table 1. Each of the parabens elicited changes in the

expression of a number of genes, as compared to controls,

particularly at the highest concentration tested. The most

robust and consistent response was observed in the

MCF7 cells (Figure 1). Since the transcriptional response of

the MCF7 cells to 500 μM BP was too strong (judged by the

number of genes affected), as compared to the other 3 parabens

(Table 1) and to better visualize the similarities across the

group, in Figure 1 the response of the cells to 50 μM BP was

included and compared to the response of the cells to the

highest concentrations of the other parabens. The

transcriptional profile elicited by each of the parabens shares

a high degree of similarities across the group of chemicals.

Comparison of the MCF7 cells’ response to the group, resulted

in the identification of 133 common genes whose expression is

modified by each of the parabens in a significant manner in the

same direction. pHBA shared only 17 genes in common with

the group. Comparing the transcriptional response to each

paraben, at the highest concentration tested (500 μM), with

the response to PP we determined that the highest number of

genes commonly affected by the parabens was found between

BP and PP, where 634 genes were affected in the same direction

by PP and BP, of which the expression of 319 genes was up-

regulated while the expression of 315 genes was down-

regulated. Doing the same comparisons using the percent of

genes that are commonly affected by the exposure to the PP and

the other parabens, the highest similarity in the response was

also between PP and BP, with 36% common genes affected by

both parabens. The overlap of the response between MP and PP

is 20%, while between ET and PP is 24%.

Pathway enrichment analysis (MSigDB v7.5.1) of the

transcriptional profile for each paraben indicated a significant

overlap in the regulated pathways across the four parabens. For

this analysis the up-regulated and down-regulated gene sets were

analyzed separately. The top individual pathways affected by

exposure to BP and PP inMCF7 cells is shown in Table 2. The top

Hallmark pathways being regulated by genes whose expression

was up-regulated by these two parabens are: estrogen response

early and late, and TNFA signaling via NFKB. While the top

Hallmark pathways that are regulated by genes whose expression

was down-regulated by both BP and PP are: G2M checkpoint,

bile acid metabolism, and hedgehog signaling. These pathways

were also enriched with the individual sets of genes affected by BP

(at 50 or 500 μM) or PP were used for the analysis.

The similarity in biological activity among the four parabens

is also shown in the cMAP analysis using the most robust

responsive genes identified in the MCF-7 cells exposed to MP,

EP, BP or PP (at the highest concentrations tested, 500 μM) in the

Clue Touchstone database 1.0 set (Figure 2). This similarity is not

existent between any paraben and their metabolite pHBA. The

transcriptional profile elicited by each paraben is highly similar to

the one elicited by chemicals known to act as estrogen receptor

agonists (i.e. estradiol, estradiol benzoate and estrone).

Methylxanthines

The number of significant genes (FDR ≤0.05) whose

transcriptional response was affected by exposure to CA, TB,

TP or PX, at each of the concentrations tested, on each of the cell

lines assessed, is shown in Table 3. All the cell types evaluated

respond to each methylxanthine, showing significant changes in

the expression of multiple genes, as compared to controls,

particularly at the highest concentration tested (Figure 3). CA

and TP seem to be the most active, with robust and consistent

response in the four cell types. Comparing the transcriptional

response across the four cell types, the response of the

cardiomyocytes is the most similar between CA and TP, with

604 genes affected in the same direction by these two

methylxanthines. Interestingly, the majority of the genes

whose expression is affected by both CA and TP are up-

regulated (545 genes), the same results were also determined

in the transcriptional profile elicited by CA or TP in the four cell

types exposed to these methylxanthines, the up-regulated genes

outnumber the down-regulated genes. Comparing the response

of the cardiomyocytes to the four methylxanthines based on the

percent of genes that are commonly affected by the exposure, the

highest similarity in the response was also between TP and CA,

with 61.8% common genes whose transcriptional response was

affected in the same direction by both methylxanthines.

The up-regulated and down-regulated gene sets identified for

each of the methylxanthines were used separately for pathway

enrichment analysis (MSigDB v7.5.1) to identify the pathways
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that were particularly affected by each set of genes. This analysis

was done with the gene sets for each methylxanthine

independently, as well as with the set of genes commonly

affected by both CA and TP. When the common set of genes

whose expression was affected by both CA and TP was used for

the pathway enrichment analysis, the highest similarity in

biological activity was found between the individual responses

to CA or TP (Table 4). The top Hallmark pathways that are most

regulated by genes up-regulated by these two methylxanthines in

cardiomyocytes are: TNFA signaling via NFKB, hypoxia, UV

response and mitotic spindle, while the most regulated pathways

by genes down-regulated are: E2F targets, DNA repair, apoptosis

and interferon gamma response.

For the cMAP analysis, the transcriptional profile elicited by

each of the methylxanthines in MCF-7 cells as well as in

cardiomyocytes was used. The cMAP analysis of the MCF-7 cells

set of data for the 4 methylxanthines (Figure 4A) indicates that this

data seems to have better connectivity than the data from the

cardiomyocytes (Figure 4B), this could be due to the fact that

cardiomyocytes are not represented in the Clue database while

the MCF-7 cells are. The similarity in biological activity among

the four methylxanthines is shown in the connectivity map analysis

using themost robust responsive genes identified in either theMCF-

7 cells or the cardiomyocytes exposed to TP, PX or TB (at the highest

concentrations tested, 1,000 μM) in the Clue Touchstone database

1.0 set (Figure 4). Based on the connectivity results, it is clear that the

transcriptional profile elicited by each methylxanthine is similar

among each other, however the highest similarity is between CA and

TP. The transcriptional response to both CA and TP in eitherMCF-

7 cells (Figure 4A) or cardiomyocytes (Figure 4B) is very similar to

the one elicited by chemicals known to act as inhibitors of the PI3K

and mTOR pathway, as well as with ATPase and inhibitors of

nuclear factor kappa-B kinase (IKK) inhibitors.

Discussion

Traditionally a RAX assessment is based on the premise that

chemicals with similar structure will either have similar reactivity,

and thus have similar biological activity or be metabolized to the

same active intermediate. Much work has been done to identify the

chemical features that convey analog suitability, including structure,

metabolism, reactivity and physicochemical properties (e.g., Wu

et al., 2010; Lester and Yan, 2021). However, even if all these features

are considered to select the best candidate(s) to RAX, the similarity

in biological activity of this chemical has to be substantiated. There

are multiple instances where empirical data shows that similar

compounds do not interact with the target macromolecule(s) in

TABLE 1 Number of genes whose expression was significantly (FDR<0.05, FC ± 1.2) modified by MP (CAS# 99–76-3), EP (CAS# 120–47-8), BP (CAS# 94–26-8)
and PP (CAS# 94-13-3), as well as the main metabolite of these parabens, pHBA (CAS# 99-96-7), in each of the cell types evaluated.

Chemical Concentration (μM) Number of genes whose expression was modified by each
chemicala

A549 iCAR HepG2 MCF7

Methylparaben 500 25 4 17 637

Methylparaben 50 974 1 1 1

Methylparaben 1 0 0 1 0

Ethylparaben 500 31 5,436 22 577

Ethylparaben 50 0 0 1 47

Ethylparaben 1 0 1 1 0

Butylparaben 500 5,817 3,767 3,988 5,111

Butylparaben 50 5 2 3 135

Butylparaben 1 0 1 0 0

Propylparaben 500 182 56 6 1755

Propylparaben 50 1 1 1 161

Propylparaben 1 0 0 0 0

p-Hydroxybenzoic acid 500 0 8 0 17

p-Hydroxybenzoic acid 50 0 2 3 1

p-Hydroxybenzoic acid 1 0 0 0 1

aFDR <0.05.
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similar ways and thus display differences in biological activity

(Martin et al., 2002; Redžepović and Furtula, 2022). Different

approaches have been suggested for demonstrating similar

biological activity, with transcriptomic profiling showing great

potential (De Abrew et al., 2016; De Abrew et al., 2019; Harrill

et al., 2021). The comprehensive transcriptional profile associated

with the exposure of a sensitive cell type to chemicals being

considered for RAX can be used to define their biological

activity, determine the mode of action used to cause a potential

adverse event, and thus help to distinguish the most similar

analogues to support the RAX. In this study we have

substantiated the value of using transcriptional profiling to

identify biologically similar chemicals within a group to be usable

in a RAX assessment with two unrelated set of chemicals: four short

alkyl chain parabens and caffeine and three of its main metabolites.

Short alkyl chain parabens case study

For the purposes of the case study, we assumed there was a

data gap for PP with respect to reproductive and developmental

toxicity. A full description of this case study has been recently

FIGURE 1
Gene expression profile elicited by MP, EP, BP and PP, as well as the main metabolite of these parabens, pHBA (at the highest concentrations
tested, 500 μM, except for BP, shown 50 μM response) in MCF-7 cells. The genes showing a robust response after exposure to each paraben
(FDR<0.05 and at least 1.2 fold change, up- or down-regulated) are shown in this diagram. Each cell is represented as a color-coded rectangle in
which the color indicates the expression value (fold change) of unaffected (white), up-regulated (red) or down-regulated (blue) genes. The
hierarchical clustering is based upon the concentration-response, and the positioning has been established according to the similarity in response of
these genes to each paraben evaluated. The length of the lines in the tree indicates the similarity in regulatory pattern for each gene, with shorter
length indicating more similarity.
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published (Ouedraogo et al., 2022). A category approach was

taken for its assessment, defining PP as the target chemical and

MP, EP and BP identified as the most relevant structural

analogues from which to read across. In our assessment, we

included pHBA since it is the major and primary metabolite of

the four parabens after ester hydrolysis and could be involved in

the elicitation of the biological activity of these short alkyl chain

parabens. The objective was to use transcriptional profiling to

demonstrate the biological activity similarities between the

category members and determine which of the parabens was

the most suitable analogue to read across in the assessment of the

target PP. Each of the parabens elicited changes in the expression

of a number of genes, as compared to controls, particularly at the

highest concentration tested, and this transcriptional profile is

unique for each of the parabens; however there is a common set

of genes whose expression is modified by the four parabens

assessed here. By looking into the number of genes whose

expression is significantly affected by each of the parabens, as

a potency read-out, it can be concluded that the parabens exhibit

a predictable potency trend in observed effects across category

members with increasing alkyl chain length: MP < EP < PP < BP.

Importantly, the transcriptional profile elicited by each of the

parabens tested here shares a high degree of similarities across the

category members. We identified 133 genes whose expression is

TABLE 2 Pathway enrichment analysis using the transcriptional profile identified in the MCF-7 cells exposed to BP and PP at 500 μM. For this analysis the
Molecular Signatures Database (MSigDB v7.5.1) was utilized, and only the top enriched gene sets identified with the up-regulated or down-regulated genes
(FDR <0.05, and fold change of 1.2 >) by both BP and PP (common genes affected in the same directions) are shown in the table.

Regulated pathways by up-regulated genes by BP and PP at 500 μM in MCF7 cells

Gene Set Name (# Genes (K)) Description # Genes in
Overlap (k)

p-value FDRq-
value

HALLMARK_ESTROGEN_RESPONSE_EARLY (200) Genes defining early response to estrogen 25 7.63 e-37 3.81 e-35

HALLMARK_ESTROGEN_RESPONSE_LATE (200) Genes defining late response to estrogen 23 5.06 e-33 1.26 e-31

HALLMARK_TNFA_SIGNALING_VIA_NFKB (200) Genes regulated by NF-kB in response to TNF
(GeneID = 7,124)

7 3.92 e-7 6.54 e-6

HALLMARK_IL2_STAT5_SIGNALING (199) Genes up-regulated by STAT5 in response to
IL2 stimulation

5 9.4 e-5 1.18 e-3

HALLMARK_UNFOLDED_PROTEIN_RESPONSE (113) Genes up-regulated during unfolded protein response,
a cellular stress response related to the endoplasmic
reticulum

4 1.32 e-4 1.32 e-3

HALLMARK_UV_RESPONSE_UP (158) Genes up-regulated in response to ultraviolet (UV)
radiation

4 4.74 e-4 3.64 e-3

HALLMARK_APOPTOSIS (161) Genes mediating programmed cell death (apoptosis)
by activation of caspases

4 5.09 e-4 3.64 e-3

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
(200)

Genes defining epithelial-mesenchymal transition, as
in wound healing, fibrosis and metastasis

4 1.14 e-3 5.19 e-3

HALLMARK_G2M_CHECKPOINT (200) Genes involved in the G2/M checkpoint, as in
progression through the cell division cycle

4 1.14 e-3 5.19 e-3

HALLMARK_GLYCOLYSIS 200) Genes encoding proteins involved in glycolysis and
gluconeogenesis

4 1.14 e-3 5.19 e-3

Regulated pathways by down-regulated genes by BP and PP at 500 μM in MCF7 cells

Gene Set Name [# Genes (K)] Description # Genes in
Overlap (k)

p-value FDRq-
value

HALLMARK_G2M_CHECKPOINT (200) Genes involved in the G2/M checkpoint, as in
progression through the cell division cycle

4 9.79 e-5 4.9 e-3

HALLMARK_BILE_ACID_METABOLISM (112) Genes involve in metabolism of bile acids and salts 3 3.33 e-4 8.33 e-3

HALLMARK_HEDGEHOG_SIGNALING (36) Genes up-regulated by activation of hedgehog
signaling

2 8.58 e-4 1.43 e-2

HALLMARK_HEME_METABOLISM (200) Genes involved in metabolism of heme (a cofactor
consisting of iron and porphyrin) and erythroblast
differentiation

3 1.78 e-3 2.23 e-2
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FIGURE 2
Connectivity map analysis using the most robust responsive genes identified in the MCF-7 cells exposed to MP, EP, BP and PP (at the highest
concentrations tested, 500 μM) in the Clue Touchstone database 1.0 set. The genes showing the most robust response after exposure to each
chemical (top 100 up- or down-regulated genes with the smallest p values) were used for the cMAP analysis. Only the top 40 chemicals identified
from the Broad Institute’s CLUE Touchstone data base, with similar transcript profile to each chemical (positive connection) are shown. The
same chemical could be listed multiple times (i. e. estradiol), since the individual transcript profile was obtained in different cell types, and or
concentrations. The solid blue block on the “type” column represents connectivity to the indicated class of chemicals (i.e. Estrogen receptor
agonists).

TABLE 3 Number of genes whose expression was significantly (FDR<0.05, FC ± 1.2) (CAS# 58–08-2), TB (83–67-0), TP (CAS# 58–55-9) or PX (CAS# 611–59-6) in
each of the cell types evaluated.

Number of genes whose expression was modified by each chemicala

Chemical Concentration (μM) A549 iCAR HepG2 MCF7

Caffeine 1,000 60 977 266 480

Caffeine 500 35 0 23 274

Caffeine 50 0 3 0 1

Theobromine 1,000 77 23 157 31

Theobromine 500 2 10 26 1

Theobromine 50 0 2 0 3

Theophylline 1,000 225 1,060 609 350

Theophylline 500 42 5 118 40

Theophylline 50 3 0 271 0

Paraxanthine 1,000 45 28 283 159

Paraxanthine 500 3 3 28 15

Paraxanthine 50 36 0 0 1

aFDR <0.05.

Frontiers in Toxicology frontiersin.org09

Naciff et al. 10.3389/ftox.2022.1082222

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2022.1082222


modified by each of the parabens in a significant manner in the

same direction. pHBA elicited significant gene expression

changes at the highest concentration evaluated, however, these

changes are for the most different than the ones elicited by any of

the parabens. The pHBA transcriptional profile only shares

17 genes in common with the transcriptional response to the

four parabens evaluated here. The highest number of genes

commonly affected by the parabens was found between BP

and PP, where 634 genes were affected in the same direction.

The analysis of the transcriptional response of the MCF7 cells to

MP, EP or BP to the one elicited by PP, at the same

concentrations, on the bases of percent of overlap also

supports our conclusion that the highest similarity in the

transcriptional response is between BP and PP.

To determine the most relevant biological activities of each of

the parabens in the case study, the transcriptional profiles were

analysed for pathway enrichment. Pathway enrichment analysis

of the transcriptional profile for each paraben indicated a

FIGURE 3
Gene expression profile of iCell-Cardiomyocytes exposed to CA, TP, PX or TB (1,000 μM). The genes showing a robust response after exposure
to each methylxanthine (FDR<0.05 and at least 1.2 fold change, up- or down-regulated) are shown in this diagram. Each cell is represented as a
color-coded rectangle in which the color indicates the expression value (fold change) of unaffected (white), up-regulated (red) or down-regulated
(blue) genes. The hierarchical clustering and the positioning has been established according to the similarity in response of these genes to each
chemical evaluated. The length of the lines in the tree indicates the similarity in regulatory pattern for each gene, with shorter length indicating more
similarity.
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TABLE 4 Pathway enrichment analysis using the transcriptional profile identified in the cardiomyocytes exposed to CA or TP at 1,000 μM individually A) or by
both CA and TP B). For this analysis the Molecular Signatures Database (MSigDB v7.5.1) was utilized, and only the top enriched gene sets identified with the
up-regulated or down-regulated genes (FDR <0.05, and fold change of 1.2 >) either for CA or TP, individually or by both CA and TP (common genes affected in
the same directions) are shown in the tables.

Regulated pathways by up-regulated genes by both CA and TP at 1,000 μM in cardiomyocytes

Gene Set Name (# Genes (K)) Description # Genes in
Overlap (k)

p-value FDRq-value

HALLMARK_TNFA_SIGNALING_VIA_NFKB (200) Genes regulated by
NF-kB in response
to TNF (GeneID =
7,124)

15 2.96 e-8 1.48 e-6

HALLMARK_HYPOXIA (200) Genes up-regulated
in response to low
oxygen levels
(hypoxia)

12 7.3 e-6 1.83 e-4

HALLMARK_UV_RESPONSE_DN (144) Genes down-
regulated in
response to
ultraviolet (UV)
radiation

9 7.36 e-5 1.23 e-3

HALLMARK_MITOTIC_SPINDLE (199) Genes important
for mitotic spindle
assembly

10 1.82 e-4 1.9 e-3

HALLMARK_ESTROGEN_RESPONSE_EARLY (200) Genes defining
early response to
estrogen

10 1.9 e-4 1.9 e-3

HALLMARK_ANDROGEN_RESPONSE (101) Genes defining
response to
androgens

7 2.46 e-4 2.05 e-3

HALLMARK_MTORC1_SIGNALING (200) Genes up-regulated
through activation
of
mTORC1 complex

9 8.38 e-4 5.24 e-3

HALLMARK_P53_PATHWAY (200) Genes involved in
p53 pathways and
networks

9 8.38 e-4 5.24 e-3

HALLMARK_HEDGEHOG_SIGNALING (36) Genes up-regulated
by activation of
hedgehog signaling

4 9.44 e-4 5.24 e-3

HALLMARK_PROTEIN_SECRETION (96) Genes involved in
protein secretion
pathway

6 1.17 e-3 5.85 e-3

HALLMARK_IL2_STAT5_SIGNALING (199) Genes up-regulated
by STAT5 in
response to
IL2 stimulation

8 3.23 e-3 1.39 e-2

HALLMARK_KRAS_SIGNALING_UP (200) Genes up-regulated
by KRAS activation

8 3.33 e-3 1.39 e-2

HALLMARK_PI3K_AKT_MTOR_SIGNALING (105) Genes up-regulated
by activation of the
PI3K/AKT/mTOR
pathway

5 9.41 e-3 3.41 e-2

HALLMARK_ANGIOGENESIS (36) Genes up-regulated
during formation of
blood vessels
(angiogenesis)

3 9.54 e-3 3.41 e-2

(Continued on following page)
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significant overlap in the regulated pathways by either the up-

regulated or the down-regulated genes across the four parabens.

This analysis provides evidence of strong concordance in the

biological activity of the short alkyl chain parabens and similar

potential mode of action. The highest degree of similarity at the

pathway level was found between BP and PP, the top Hallmark

pathways that are most regulated by up-regulated genes by these

two parabens are: estrogen response early and late, TNFalpha

signalling via NFKB and IL2-STAT5-signaling. While the top

Hallmark pathways that are most regulated by down-regulated

genes are: apical junction, NOTCH signalling, myogenesis, and

hedgehog signalling. These pathways’ similarities further support

the conclusion that these two parabens are the most similar

structural and biological analogues among the group and thus the

data from BP can be used to read-across and fill the data gap for

pP. The cMAP analysis of the transcriptional response for PP and

BP also points toward an estrogenic response after exposure to

these parabens, particularly pointing towards an estrogen

receptor agonist activity. The pathway enrichment analysis,

together with the cMAP results indicate that the parabens,

particularly at high concentrations, might have the ability to

impact the estrogen pathway by modifying the expression of

genes associated with this pathway, and thus potentially could

modify the estrogenic response. The results are consistent with

previous reports indicating that MP, EP, PP and BP have a weak

estrogenic activity in vitro (Routledge et al., 1998) as well as in

vivo (Routledge et al., 1998; Hossani et al., 2000; Lemini et al.,

2003; Lemini et al., 2004). The results from an in vivo assay

established as a reliable method to determine estrogenic activity

for chemicals of concern, the rat uterotrophic assay, indicate that

at the most MP, EP and BP have a weak estrogenic activity in vivo

(Routledge et al., 1998; Hossaini et al., 2000; Lemini et al., 2004);

TABLE 4 (Continued) Pathway enrichment analysis using the transcriptional profile identified in the cardiomyocytes exposed to CA or TP at 1,000 μM
individually A) or by both CA and TP B). For this analysis the Molecular Signatures Database (MSigDB v7.5.1) was utilized, and only the top enriched gene sets
identifiedwith the up-regulated or down-regulated genes (FDR <0.05, and fold change of 1.2 >) either for CA or TP, individually or by both CA and TP (common
genes affected in the same directions) are shown in the tables.

Regulated pathways by up-regulated genes by both CA and TP at 1,000 μM in cardiomyocytes

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION (200) Genes defining
epithelial-
mesenchymal
transition, as in
wound healing,
fibrosis and
metastasis

7 1.18 e-2 3.93 e-2

HALLMARK_APOPTOSIS (161) Genes mediating
programmed cell
death (apoptosis)
by activation of
caspases

6 1.44 e-2 4.51 e-2

Regulated pathways by down-regulated genes by both CA and TP at 1,000 μM in cardiomyocytes

Gene Set Name (# Genes K)) Description # Genes in
Overlap k)

p-value FDRq-value

HALLMARK_E2F_TARGETS (200) Genes encoding cell
cycle related targets
of E2F
transcription
factors

4 2.02 e-4 1.01 e-2

HALLMARK_DNA_REPAIR (150) Genes involved in
DNA repair

3 1.34 e-3 2.74 e-2

HALLMARK_APOPTOSIS (161) Genes mediating
programmed cell
death (apoptosis)
by activation of
caspases

3 1.64 e-3 2.74 e-2

HALLMARK_INTERFERON_GAMMA_RESPONSE (200) Genes up-regulated
in response to
IFNG (GeneID =
3,458)

3 3.04 e-3 3.04 e-2

HALLMARK_P53_PATHWAY (200) Genes involved in
p53 pathways and
networks

3 3.04 e-3 3.04 e-2
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FIGURE 4
Connectivity map analysis using themost robust responsive genes identified in theMCF-7 cells (A) or cardiomyocytes (B) exposed to CA, TP, PX
or TB (at the highest concentrations tested, 1,000 μM) in the Clue Touchstone database 1.0 set. The genes showing the most robust response after
exposure to each chemical (top 100 up- or down-regulated genes with the smallest p values) were used for the cMAP analysis. Only the top
40 chemicals identified from the Broad Institute’s CLUE Touchstone data base, with similar transcript profile to each chemical (positive
connection) are shown. The same chemical could be listed multiple times (i. e. wortmannin), since the individual transcript profile was obtained in
different cell types, and or concentrations.
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while PP does not display estrogenic activity in the same in vivo

assay, even at doses as high as 1,000 mg/kg/day (Sivaraman et al.,

2018). Routledge et al. (1998) tested MP, EP, PP, BP as well as

pHBA, in the in vitro recombinant yeast estrogen screen and

determined that these parabens are weakly positive in this assay,

with a relative potency of BP > PP > EP > MP, whereas pHBA

had no activity. It has to be stressed that in the in vitro

recombinant yeast estrogen screen assay used by Routledge

et al. (1998) the potencies of the parabens were several orders

in magnitudes weaker than the endogenous natural hormone

17 β-estradiol, e.g. approximately 2,500,000-fold below for MP.

This result also suggests that PP is less biologically active than BP

and that using the BP data to fill in data gaps for PP in the final

risk assessment, without refinement of potency estimates, will

result in a relatively conservative assessment for PP.

Caffeine and its metabolites case study

In the case of CA and its main metabolites, TP, PX and TB,

the assumption was that there was a systemic toxicity data gap for

CA and to objective was to determine which of its main

metabolites was the most suitable biological analogue which

could be used to read across with high confidence. Each of

the methylxanthines is able to elicit changes in the expression

of a number of genes in exposed cells, as compared to vehicle

treated controls, particularly at the highest concentration tested.

However, TP and CA are the most active of the group across the

cell types evaluated here, with the cardiomyocytes being

particularly susceptible to these methylxanthines. Further, the

transcriptional profile elicited by both CA and TP in

cardiomyocytes shares a high degree of similarity, with

545 genes being up-regulated and 59 being down-regulated by

these twomethylxanthines. The transcriptional profile of CA and

TP has been evaluated in human primary hepatocytes, at various

time points and concentrations, as part of the Japanese

Toxicogenomics Project consortium (TGP) work (Igarashi

et al., 2015), and this data is available for analysis (Open TG-

GATEs; available from http://toxico.nibio.go.jp/english/index.

html). However, the concentrations for CA and TP tested

under the TGP program are higher than the concentrations

we have evaluated, and a direct comparison with our data is

not possible. However, the analysis of this data comparing the

transcriptional response of the primary human hepatocytes to

CA (7,500 μM) and TP (10,000 μM) after 8 h of exposure clearly

indicates a robust overlap in the response. These similarities

further support our conclusion that TP is a biological relevant

analogue to read across for CA assessment.

Pathway enrichment analysis of the gene sets identified as being

susceptible to modify its expression after exposure of

cardiomyocytes to CA and TP, indicate that these

methylxanthines have the potential to upregulate the TNFA

signaling via NFKB pathway, hypoxia and UV responses, as well

as various kinases regulated pathways (i.e. p53, KRAS, Pi3K-AKT-

MTOR) among others. The cMAP analysis also indicate the

potential to modify the PI3K, IKK, MTOR pathways as well as

the ATPase activity, mostly acting as inhibitors. Research from

multiple authors indicate that methylxanthines act via different

mechanisms, including antagonism of purinergic P1 receptors,

mainly adenosine A1 and A2A receptors (Fredholm et al., 1999).

Theophylline has been used in the clinic since 1937 for the treatment

of respiratory diseases including asthma and chronic obstructive

pulmonary disease (COPD). However, inmost treatment guidelines,

xanthines have now been consigned to third-line therapy because of

their narrow therapeutic window and propensity for drug-drug

interactions. However, lower than conventional doses of TP

considered to be bronchodilator are now known to have anti-

inflammatory actions of relevance to the treatment of respiratory

disease. The molecular mechanism(s) of action of TP are not well

understood, but several potential targets have been suggested

including non-selective inhibition of phosphodiesterases,

inhibition of phosphoinositide 3-kinase (PI3K), adenosine

receptor antagonism and increased activity of certain histone

deacetylases. As indicated, our cMAP analysis clearly shows that

the transcriptional profile elicited by each of the four

methylxanthines evaluated has high similarity to the one elicited

by known PI3K and mTOR inhibitors such as wortmannin,

sirolimus, torin1 and 2, among others, as well as with IGF-1

inhibitors such as linsitinib, BMS-754807and BMS-536924

(Figure 4). It has been established that all methylxanthines

interact with adenosine receptors, acting as a non-selective

antagonist for A1, A2A, A2B and A3 adenosine receptors,

however, most of their effects appear to be dependent on the

interaction with A1 and A2A adenosine receptors (Yasui et al.,

2000). However, in our cMAP analysis no connectivity was

found with chemicals known to interact with adenosine

receptors, even though there are some adenosine receptor

antagonist represented in the Clue database, such as CGS-15943,

MRS-1334, PSB-1115, and MRS-1220. The cMAP analysis of the

genes whose expression was modified by CA or TP in human

primary hepatocytes (TG-GATEs) did not result in connections

with any of the adenosine receptor antagonist represented in the

Clue database either. This apparent discrepancy could be due to

differences in potency of these ligands and themethylxanthines, and

or the different transcriptome platforms used to generate the profiles

in the Clue database (L1000; Lamb et al., 2006) and the ones used in

our case (TemO-seq, Biospyder) and the TGP work (Affymetrix,

ThermoFisher). Methylxanthines also interact with some

phosphodiesterase isoforms (Lazzaroni et al., 1990), and are also

known to affect cell growth, proliferation, and energymetabolism by

inhibiting PI3K and the mTOR signaling pathways (Zhou et al.,

2010; Tariqul Islam et al., 2019). Our pathway enrichment and

cMAP analysis support these mechanisms of action for the

methylxanthines. The predominant mechanism of action of TP

has traditionally been ascribed to non-selective inhibition of

phosphodiesterase enzymes (Nicholson and Shahid, 1994), but
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there is increasing evidence that some of the clinical effects of TP

might be due to other mechanisms of action such as increasing

histone deacetylase enzyme(s) activity (HDAC; Ito et al., 2002), or

interference with certain intracellular kinases (To et al., 2010); the

lattermechanismhas also been suggested to account for the ability of

TP to reverse glucocorticosteroid insensitivity in patients with

COPD. TP exhibited an expected concentration dependent

antagonism of A1, A2A, A2B and A3 receptors (van Mastbergen

et al., 2012), and modest inhibition of phosphodiesterase PDE2, 3,

and 10, and particularly on PDE2A1 and only at relatively high

concentrations (10−4 M) (van Mastbergen et al., 2012). TP has also

been shown to inhibit PARP-1 in human pulmonary epithelial cells

(Mooren et al., 2005). Theobromine is a phosphodiesterase (PDE)

inhibitor and increases intracellular cyclic adenosine

monophosphate (cAMP) (Sugimoto et al., 2014). cAMP activates

the cAMP-response element-binding protein (CREB) which, in

turn, induces the expression of specific genes. TB inhibits the

Akt-mammalian target of rapamycin mTOR signal in vitro as

well as in vivo (rat) systems (Sugimoto et al., 2014). Mammalian

target of rapamycin (mTOR) is a serine/threonine protein kinase

that is activated by Akt. Our analysis is also concordant with this

activities associated with TB.

Concentrations of TP, TB PX or CA eliciting significant

toxicity in vivo do not seem to be due to the antagonistic effect on

purinergic receptors, but by an unknown mechanism of action

causing systemic toxicity. For example, the developmental

toxicity determined for TP, TB or PX such as reduction in

fetal body weight gain and changes in ossification such as

increased occurrence of supernumerary ribs, occurs only at

maternally toxic doses (NTP, 1984; Khera, 1985). The main

pathways involved in skeletal development are Notch,

Hedgehog, FGF, and canonical Wnt pathways (Long, 2011).

However, none of these pathways were particularly enriched

in our analysis. This could be due to the difference in

concentrations we have tested in our in vitro approach versus

the one used in vivo or to the unsurmountable differences

between the response of cultured cells versus an entire

organism. One of the limitations that are associated with the

methods and approaches that we have used in the current work is

related with the cell types we have evaluated. Although we have

tried to cover a relatively wide biological space with the four cell

types selected for the transcriptional response analysis, by no

means have we covered all the potential cell type-specific

response to chemical exposure. A larger palette of cell types

will have to be evaluated and integrated in the context of

individual cell type-response, as well as in the context of the

response of the entire set of cell types evaluated, in order to

accomplish this goal. A particular limitation of the cell types

evaluated here is their limited metabolic capabilities. For a more

comprehensive transcriptional response analysis of any given

chemical, the transcriptional response of the parent compound as

well as its main metabolites must be obtained. In our studies, we

have covered this limitation by including in the analysis the main

metabolite of the short alkyl parabens, p-Hydroxybenzoic acid, in

the first case study, and the main metabolites of caffeine in the

second case study. For other chemicals, metabolism of the parent

compoundmust be addressed, either by including ametabolically

competent set of cell types (i.e. HepaRG cells, 3D skin models), or

by assessing the response to each of its main metabolites. The

same must be true when gathering data from other types of

assays, such as pharmacological profiling.

In all, the pathway enrichment and cMAP analysis of the

CA, TP and TB transcriptional data we have generated in

cultured cells clearly indicates that the in vitro response is

highly similar to the response observed in vivo for these

methylxanthines, and that the approach of using

transcriptional profiling to define relevant biological activity

of chemicals being considered for a read across exercise result is

a reliable method to determine the most similar biologically

active analogue of a particular target chemical.

Conclusion

The results presented in this study, for both the short alkyl

chain parabens and caffeine and its metabolites case studies,

indicate that transcriptional profiling derived from exposure of a

limited panel of cell types to the chemicals of interest, provides a

practical solution to identify the most suitable analog for

chemicals of interest based on biological activity similarities

for RAX. In the case of the short alkyl chain parabens, the

target chemical was PP and the potential analogs to read across

were MP, EP and BP. Based on the number of genes whose

expression was modified by each paraben in each cell type

evaluated, with the MCF-7 cells being to most sensitive to

these parabens, the pathways affected and the connectivity to

other active chemicals, it can be concluded that the biological

activity of PP has the highest similarity the one of BP and thus the

data from BP can be used to read across and fill the hypothetical

data gaps for PP with high confidence. In the case of CA and its

main metabolites TP, PX and TB, CA was selected as the target

chemical while its main metabolites were considered as the

potential analogs to read across. The results indicate that the

most robust transcriptional response was elicited by CA and TP

in the four cell types evaluated, with the iCell cardiomyocytes

being the most susceptible to these methylxanthines. At gene

expression, pathway enrichment and cMAP analysis levels, the

highest similarities were identified between CA and TP. Thus,

these two methylxanthines are the closest biological analogs, and

it can be concluded that the data from TP can be used to read

across and fill the hypothetical data gaps for CA with high

confidence. Overall, the data demonstrates the utility of a

transcriptional profiling of structurally related chemicals to

provide one robust stream of data to characterize similarity in

biological activity among a given group of chemicals being

considered to cover data gaps.
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