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Biologically active environmental pollutants have significant impact on ecosystems, wildlife,
and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are
present in the terrestrial and aquatic ecosystems at virtually every level of the food chain.
Moreover, recently, airborne microplastic particles have been shown to reach and
potentially damage respiratory systems. Microplastics and nanoplastics have been
shown to cause increased oxidative stress, inflammation, altered metabolism leading
to cellular damage, which ultimately affects tissue and organismal homeostasis in
numerous animal species and human cells. However, the full impact of these plastic
particles on living organisms is not completely understood. The ability of MPs/NPs to carry
contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine
disrupting chemicals, present an additional risk to animal and human health. This review
will discusses the current knowledge on pathways by which microplastic and nanoplastic
particles impact reproduction and reproductive behaviors from the level of the whole
organism down to plastics-induced cellular defects, while also identifying gaps in current
knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode
Caenorhabditis elegans provides an advantageous high-throughput model system for
determining the effect of plastic particles on animal reproduction, using reproductive
behavioral end points and cellular readouts.
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MICROPLASTICS ANDNANOPLASTICS POSE HEALTH RISKS FOR
ANIMALS AND HUMANS

Plastics (long polymer chains) are widely used due to their versatility and durability, which has led to
the accumulation of substantial plastic waste in the environment (MacLeod et al., 2021). The most
common plastic polymers found in the environment are polyethylene (PE), polystyrene (PS),
polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) (Bratovcic,
2019). Macroplastics (1 cm and larger) present ecological problems due to entrapment and
entanglement, digestive tract congestion, and physical barriers for food supply (Chapron et al.,
2018; Gündoğdu and İYeşilyurtErbaş, 2019). Plastic polymers could be also transformed in size
(macro-, micro-, and nanoplastics) and in shape (spheres, fibers, and fragments) upon exposure to
UV light, heat, or waves in the aquatic environment, or by biological degradation. These processes
lead to environmental weathering of MPs/NPs, which, similarly to aging of plastic particles (Liu et al.,
2020a), enhances the leaching of chemicals from these pollutants (Yousif and Haddad, 2013).
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Endocrine disrupting chemicals (EDCs) used as additives to
create these plastics, such as the estrogenic and anti-estrogenic
phthalates, polychlorinated biphenyls, and bisphenol A, also
interfere with the biology of animals and humans, (Campanale
et al., 2020a; Darbre, 2020). Furthermore, because of their large
surface area to volume ratio, MPs and NPs can absorb various
environmental pollutants, such as polycyclic aromatic
hydrocarbons (PAHs), which also act as EDCs (Zhang et al.,
2016; Lara et al., 2021), or hydrophobic persistent organic
pollutants (POPs), pesticides, heavy metals, and
microorganisms (Frias et al., 2010; Curren and Leong, 2019;
Yu et al., 2019; Liu et al., 2021a; Coffin et al., 2018), all of
which could further aggravate the toxicity of plastics particles.

Nanoplastic particles and microplastic particles, which are less
than 100 nm, or less than 5 mm in diameter, respectively, have
been found in sewage, soil, oceans, seafood, drinking water, and
even table salts (Mason et al., 2018; Hartmann et al., 2019; Lee
et al., 2019). Since MPs are too small to be removed by sewage
filtration, they can wash into the sea where they accumulate in
most bodies of water. MPs have unique properties which can
facilitate internalization by biota. They provide visual stimulus for
ingestion by animal species (Carpenter et al., 1972; Gramentz,
1988; David and Robert, 1994), or chemical cues for other
foragers for preferential ingestion of MP-containing food
(Savoca et al., 2016; Savoca et al., 2017; Savoca et al., 2018;
Procter et al., 2019). Accumulation of MPs and NPs have been
widely recorded in various aquatic (Lusher et al., 2013; Avio et al.,
2015; Frydkjær et al., 2017; Gambardella et al., 2017; Critchell and
Hoogenboom, 2018; Lo and Chan, 2018; Naidoo and Glassom,
2019; Masiá et al., 2021; Stienbarger et al., 2021; Liu et al., 2022a)
(reviewed in: (Akdogan and Guven, 2019; Wang et al., 2019a;
Franzellitti et al., 2019)) and terrestrial animals (Huerta Lwanga
et al., 2017; Maaß et al., 2017; Souza Machado et al., 2018;
Panebianco et al., 2019; Lu et al., 2020; Mackenzie and
Vladimirova, 2021). These studies have reported significant
detrimental effects on animal development and health,
including intestinal defects, decreased body size, decreased
survival rate and reproduction, decreased motility, altered
behavior, neurotoxicity, increased inflammation, oxidative
stress, genotoxicity, altered fat and energy metabolism, and
changes in the microbiome (Tosetto et al., 2016a; Lu et al.,
2016; Lei et al., 2018a; Jin et al., 2018; Fackelmann and
Sommer, 2019; Poma et al., 2019; Qiao et al., 2019; Li et al.,
2020a; Araújo and Malafaia, 2020; Crump et al., 2020; Hirt and
Body-Malapel, 2020; Prüst et al., 2020; Solleiro-Villavicencio
et al., 2020; Yong et al., 2020; Li et al., 2021a; Lear et al., 2021;
Tagorti and Kaya, 2022). MPs and NPs also pose health risks for
humans. MPs and NPs are taken up through inhalation, ingestion
and via skin contact (Leslie, 2014; Gasperi et al., 2018; Pivokonsky
et al., 2018; Prata, 2018; Hantoro et al., 2019; Koelmans et al.,
2019; Toussaint et al., 2019; Vianello et al., 2019; Campanale et al.,
2020b; Danopoulos et al., 2020; Prata et al., 2020; Rahman et al.,
2021; Senathirajah et al., 2021; Vethaak and Legler, 2021), and
these plastic particles have been found in the human lung (Pauly
et al., 1998; Vianello et al., 2019), intestine (Schwabl et al., 2019)
and placenta (Ragusa et al., 2021). Recently, NPs have been
shown to be transmitted to offspring of NP-exposed zebrafish

mothers (Wang et al., 2019a), suggesting that MPs and NPs have
an impact on the health of multiple generations of animals and
potentially humans (Pitt et al., 2018; Ragusa et al., 2021). This
review aims to detail common effects of MPs/NPs on
reproduction compared across several model organisms and
provide evidence that C. elegans is an advantageous model to
study the effects of MPs/NPs on animal health.

REPRODUCTIVE EFFECTS OF
MICROPLASTICS AND NANOPLASTICS
EXPOSURE
Fertility is the ability to produce offspring and is critically
dependent on gonad tissue integrity, as well as egg and
sperm quality. In aquatic models such as Brine shrimp
(Artemia franciscana) (Gambardella et al., 2017), the water
flea (Daphnia magna) (An et al., 2021a; Liu et al., 2021b;
Trotter et al., 2021), the pacific oyster (Crassostrea gigas)
(Sussarellu et al., 2016; Tallec et al., 2021), marine medaka
(Oryzias melastigma) (Chisada et al., 2021; Wang et al., 2021),
sea urchins (Sphaerechinus granularis) (Gambardella et al.,
2018), marine copepods (Cole et al., 2015; Heindler et al.,
2017; Zhang et al., 2019; Yu et al., 2020a), and zebrafish
(Danio rerio) (Sarasamma et al., 2020; Qiang and Cheng,
2021), MP and NP-induced reproductive toxicity is
represented by production of fewer offspring or clutch, lower
number of spawned eggs per clutches, increased interval
between clutches, or the presence of lower number of gravid
females (Supplementary Tables S1, S2). In the following
sections we discuss some common effects of plastic particles
from studies where reproductive toxicity was shown upon MP
or NP exposure. We also provide an overview of how C. elegans
mechanistic studies can advance our knowledge on plastic-
mediated reproductive toxicity.

CHARACTERISTICS OF MPS AND NPS
THAT CAUSE REPRODUCTIVE TOXICITY

The Impact of Size, Shape or Chemical
Composition of Plastic Particles on
Reproductive Toxicity
Researchers have looked at the impact of a large size range of
NPs/MPs and tested the effects of various plastic types and shapes
in a wide variety of animal species. As shown in Supplementary
Tables S1, S2, it is clear that in most cases small MPs are more
toxic than larger ones. For example, PS-MPs sized from 0.05 µm
(NP) to 6 µm (MP) applied to marine medaka larvae led to
decreased hatching rate, with the lowest values observed upon the
smallest particle exposure. Paradoxically, this smallest sized NP
induced higher expression level of the low choriolytic enzyme
(LCE) (Chen et al., 2020a), a hatching enzyme, which could be a
compensatory mechanism to counteract MP/NP induced
reproductive inhibition. Similarly, in the pacific oyster, PS-NP
(50 nm) reduced gamete fertilization, larval development, and
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embryo hatching, and this occurred regardless whether or not the
PS-NPs were amino or carboxyl modified. On the contrary, PS-
MPs of 2 µm had no effect on oyster reproduction (Tallec et al.,
2018). A similar study using 50 nm amino-modified PS-NP
showed no effect on reproduction in the oyster at lower NP
concentrations, while higher concentrations of plastic particles
reduced sperm motility due to sperm aggregation (Tallec et al.,
2020), suggesting that concentration is a critical parameter in
MP/NP-induced reproductive toxicity. In marine rotifer species,
PS-NPs increased reproductive time and led to oxidative stress to
a greater extent that PS-MPs did (Jeong et al., 2016). Exposure to
smaller PE-MPs resulted in lower numbers of broods per female
in the water flea (Daphnia magna), when compared to exposure
to larger PE-MPs (Ogonowski et al., 2016). In C. elegans
hermaphrodites 20 nm NPs caused greater transgenerational
oxidative stress with greater induction of stress-responsive
genes in the offspring of treated mothers than 100 nm NPs
(Liu et al., 2021c), indicating that the smaller the NPs size is,
the greater the observed reproductive defects are. Microplastic
fibers were typically more toxic than beads. In the amphipod,
Hyalelia azteca, and in the water flea a greater decrease in
reproduction was observed with lower number of broods at
lower MP concentrations upon fiber exposure than with
plastic beads (Au et al., 2015; Ziajahromi et al., 2017). In the
earthworm (Lumbricus terrestris) (Huerta-Lwanga et al., 2021)
and springtail (Folsomia candida), microfibers decreased
reproduction by inhibiting spermatogenesis (Jemec Kokalj
et al., 2021). In the earthworm Eisenia andreii, PE-MP
breakdown into NP induced sperm damage and decreased
number of sperm bundles but did not cause damage to the
oocyte in females, showing sexually dimorphic reproductive
toxicity (Jeong et al., 2021). These data suggest that smaller
particles are more toxic than larger ones, independent of the
chemical composition of the MPs/NPs.

Smaller particles may be toxic because they might be
preferentially ingested and thereby decrease ingestion of food.
In the marine copepod, PS-MPs were preferred to food, and
this led to decreased ingestion of food and increased time to
egg hatching (Li et al., 2020b). However, MP ingestion does not
preferentially occur if there is an excess of natural food, as can be
seen with Daphnia magna (Aljaibachi and Callaghan, 2018),
marine medaka (Cong et al., 2019), and marine rotifers (Xue
et al., 2021). This suggests that active avoidance of plastic
particles is possible, though this phenomenon appears to be
reported in aquatic rather than in terrestrial species. When C.
elegans was exposed to PS-MPs reproductive toxicity has been
observed, even though the plastic particles were not detected in the
reproductive tissues. However, reproductive toxicity were not due
to styrenemonomers leaching from the beads as their levels used in
the study were far below toxicity and PS-MPs do not have to be
ingested to have a toxic effect on the worms (Mueller et al., 2020).
PS-MPs might indirectly affect reproduction in C. elegans, limiting
food availability, as is suggested for copepods (Cole et al., 2015),
since the inhibitory effects of PS increased with decreasing bacterial
densities. In C. elegans, PS-MPs up to 3 µm could be ingested, but
all sizes from 0.1 to 10 µm decreased the number of offspring.
Indeed, the reproductive toxicity correlated with decreased food

ingestion (Mueller et al., 2020), suggesting that the presence of PS-
MPs interfered with feeding. In the pearl oyster and the planktonic
doliolid, decreased feeding and lower ingestion of MPs have been
observed instead (Gardon et al., 2018; Paffenhöfer and Köster,
2020); this led to gamete apoptosis to conserve energy for survival
in the pearl oyster (Gardon et al., 2018). Smaller sizes of plastics
may be more toxic due to longer periods of action, staying in the
gut for a longer period of time (Mueller et al., 2020), or easier and
preferential ingestion. Furthermore, when ingested, smaller
particles could be taken up more easily by cells, using the
cellular endocytic machinery or phagocytosis (Rejman et al.,
2004; Xia et al., 2008; Ekkapongpisit et al., 2012; Monti et al.,
2015). This could lead to cellular internalization and translocation
of NPs from exposure site to distant tissues (Rubio et al., 2020).

Combining MPs with other pollutants could also alter the
effect of MPs on reproduction due to change in particle size. For
example, aggregation of PS-MPs caused by dibutyl phthalate
(DBP) led to the formation of very large size particles which
could not be ingested by the marine copepod. Hence, the presence
of DBP decreased reproductive toxicity of PS-MP, measured as
time to hatch, while PS-MP absorbed DBP and decreased DBP
toxicity (Li et al., 2020b).

Surface Modification of MPs or NPs Could
Affect Their Toxicity
In C. elegans hermaphrodites, a study utilizing unmodified and
amino-modified polystyrene NPs revealed that amino-modified
NPs were more toxic to reproduction at both 10 μg/L and 100 μg/L
concentrations across multiple (F0–F3) offspring generations.
Amino modified NPs caused greater and dose dependent
reduction in the number of germline cells, fertilized eggs and
overall brood size, than pristine, unmodified NPs. The germline
defects were due to an upregulation of the pro-apoptotic ced-3 and
ced-4 genes and a concomitant decrease in the anti-apoptotic ced-9
gene expression (Sun et al., 2021). Overall, positively charged
amino-modified nanoplastics were more toxic in C. elegans than
neutral NPs, which however were more toxic than the negatively
charged carboxylated NPs, possibly due to differential interaction
of these compounds with membranes and organelles (Schultz et al.,
2021). However, at short-term exposure (i.e., 24 h) and using
polystyrene MPs rather than NPs, decreased number of progeny
was seen independent of surface modification, although neutral PS
particles had larger impact than amino- or carboxy-modified
particles on another MP-altered pathway, purine metabolism
(Kim et al., 2020). This reinforces the idea that in case of
smaller sized particles, such as NPs, amino-modified plastic
particles are the most toxic under chronic exposure.

Plastic Particles of Various Chemical
Properties Cause Reproductive Defects
In Daphnia magna, exposure to various doses (10–500 mg/L) of
MPs (<60 µm) over 21 days revealed the greatest reduction in the
number of offspring in the PVC MP treated group, when
compared to polyurethane and polylactic acid particles
(Zimmermann et al., 2020). However, in C. elegans and
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zebrafish, a comparison of PS, PVC, poly (p-phenylene oxide)
(PPE), polyamide (PA) MPs at very low doses (0.001–10 mg/L)
and sizes (0.5, 1, 10 μM) showed decreased growth and
reproduction rate, independent of dose and chemical property
of the particles applied. MP exposure caused intestinal damage
and increased gluthathione-S-transferase (GST) levels in a
particle size dependent manner (Lei et al., 2018a). PS-MPs
also decreased sperm fertilization rate in the sea urchin to a
greater extent than polymethyl-methylacrylate (PMMA) particles
(Trifuoggi et al., 2019). In general, PS-MPs appear to be more
reproductively toxic that other MPs in both aquatic species and in
C. elegans, although this might be a consequence of most studies
using PS particles and the general lack of comparative studies.

Combinations of MPs or NPs With Other
Pollutants Could Aggravate Toxicity on
Reproduction
When investigating the impact of MPs/NPs on living organisms,
we need to consider that bioactive compounds are almost always
present on and readily released from plastic particles.MPs andNPs
can carry various toxic pollutants, however, whether these act
synergistically, additively or have no impact on effects of MPs/NPs
is currently a controversial topic, due to the use of a diverse range of
animal species, types of MPs/NPs and pollutants, as well as
assessing various physiological or molecular readouts. Some
reports indicate that MPs/NPs and their leached EDCs modify
each other’s effects on animal survival, reproduction, stress or other
signaling pathways, while others report the lack of these (Eder et al.,
2021). For example, the pesticide deltamethrin caused delayed first
brood production and decreased fertility in Daphnia magna, and
similar impact was observed on the juvenile larvae number per
surviving adult upon PE-MP exposure. The combined exposure to
deltamethrin and PE-MPs led to a synergistic detrimental effect on
brood number and survival in this species (Felten et al., 2020).
However, addition of the insecticide and endocrine disruptor
dichlorodiphenyltrichloroethane (DTT) (Kelce et al., 1995) to
PE-MPs had neither additive nor synergistic effect on the larval
yield of inland silversides (Menidia beryllina).

Sex-specific differences in sensitivity towards MP-pollutant
mixtures have also been observed. For example, in the female
Japanese medaka (Oryzias latipes), a decrease in estrogen receptor
(ERα) expression, and expression of the egg proteins, vitellogenin
and choriogenin was recorded after 2-months dietary exposure to
virgin or marine-weathered PE-MPs (Rochman et al., 2014),
indicating possible adverse effects on oogenesis (Murata et al.,
1997). However, in the male Japanese medaka, only virgin PE-
MPs influenced gene expression, andmarine-weathered PE-MPs did
not cause significant alterations in the measured outputs (Andrady,
2011; Rochman et al., 2014), suggesting sexual dimorphism in this
response. When the medaka was exposed to UV-treated or marine-
weathered MPs at larvae stage, it showed greater induction of
vitellogenin expression, an in vivo biomarker of estrogen action
linked to reproductive effects, than what was measured in larvae
exposed to virginMPs. This suggests that early developmental stages
of marine species may be more sensitive to a combination of MPs
and their leached EDCs, than toMPs alone, consistent with the long-

lasting impact of EDCs alone in early development of animals
(Patisaul and Adewale, 2009). This could indicate that timing and
length of MP-pollutant treatment would be crucial in determining
impacts of these relevant to environmental exposure. The synergistic
effects of MPs/NPs and their pollutants might be the consequence of
enhanced cellular uptake of the particles, as shown in mouse cell
culture experiments performed with weathered MPs (Ramsperger
et al., 2020). Interestingly, MPs and NPs could also act
antagonistically with persistent organic pollutants, by absorbing
and therefore decreasing bioavailability of EDCs. For instance,
exposing the crustacean Gammarus roeseli to MPs mixed with
the EDC phenanthrene led to less detrimental effects than
observed by exposure to phenanthrene alone (Bartonitz et al., 2020).

Systematic Analysis Under Strictly Defined
Experimental Conditions Are Vital to
Determine Reproductive Effects of MPs
and NPs
It should be noted that there are a number of studies, mostly
performed on aquatic species, where there were no negative effects
observed on reproduction upon MP/NP exposure. In Daphnia
pulex, NPs caused no difference in the offspring number/clutch
or female and the number of clutches in exposure during F0 or F1
generations (Liu et al., 2020b). In another study, Daphnia magna
exposure to a mix of NPs and MPs showed no reproductive effects
despite uptake of these plastics (Rist et al., 2017). In quagga mussels
(Dreissena rostriformis), MP had no effect on reproduction perhaps
due to an acute and short (24 h) exposure (Pedersen et al., 2020).
Similarly, exposure of MP in Danio rerio (zebrafish) for a short
period (2 days) had no effect on egg fertilization (Pitt et al., 2018). In
some cases, such as in the blackworm, ingested PE-MPs over a
longer, 28-day exposure increased ROS and decreased aerobic
energy production but did not alter reproduction (Silva et al.,
2021). In two studies, PS-MP exposure in Java and Japanese
medaka over 21 days (Assas et al., 2020) or in Daphnia magna
over 100 days (Kelpsiene et al., 2020) caused no reproductive defects.
It is possible that the used MP doses in these experiments, lying in
the lower end of environmental concentrations (i.e., 107 particles/l
equivalent to 44 μg/L for the medaka and 0.32 mg/L for Daphnia
magna), were too low to induce overt defects in the reproductive
function of these animals. In one case, MPs could be used as a
substrate for egg deposition which led to an increase in the numbers
of water strider adults and juveniles in the North Pacific (Goldstein
et al., 2012;Majer et al., 2012). It is therefore important to use a range
of concentrations of plastics over both acute and chronic durations
in a systematic way to test toxicity.

C. ELEGANS AS A MODEL FOR
COMPARATIVE STUDIES OF
PLASTICS-INDUCED REPRODUCTIVE
TOXICITY

From the studies considered above, it is clear that there are not
enough systematically performed comparative analysis that assess
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the impact of various shapes, types, and sizes of MPs/NPs as well
as sex or developmental stage at exposure on reproduction. In
addition, few studies have compared the adverse effects of virgin
plastic particles to plastic particles carrying pollutants, such as
EDCs (Eder et al., 2021), due to the complexity of chemical
mixtures found on MPs and NPs (Rochman et al., 2015; Bhagat
et al., 2021). The nematode C. elegans model has several
advantages that this research area could benefit from, in
particular its potential to serve as a high throughput screening
system, due to its small size, short lifespan, completely sequenced
genome and transparent body. C. elegans has been extensively
used in environmental toxicology research since it is sensitive to
multiple environmental toxins, including organic pollutants and
nanomaterials (Leung et al., 2008; Zhao et al., 2013; Jung et al.,
2015). C. elegans may even be a more sensitive indicator of
toxicity than other model organisms since they show
significant reproductive disruption in response to lower
concentrations of drugs or MPs when compared to other
organisms (Zhang et al., 2019; Yu et al., 2020b). Toxicology
screens performed in C. elegans show good correlation with
toxicity assays in the classical vertebrate models (Hunt, 2017).
Moreover, endpoints in C. elegans are similar to that examined in
vertebrates. For example, MP and NP intake by C. elegans is
linked to shorter lifespan, decreased survival rate, decreased
progeny number, decreased body size, altered motility, and
increased oxidative stress (Leung et al., 2008; Boyd et al., 2010;
Zhao et al., 2013). Therefore, C. elegans provides a cost-effective
promising model for testing varying types and sizes of plastics,
and the combination of these and chemically complex pollutant
mixtures. C. elegans offers high-throughput, whole animal
screening assays that can be performed under controlled
exposure conditions (Wittkowski et al., 2019), providing high
level of reproducibility due to widely established standardized
protocols. This is particularly important when comparing effects
that may occur when many pollutants act synergistically to the
impact of pollutants acting alone. In contrast to many in vitro
cellular systems or more expensive rodent models with longer
lifespans, high-throughput C. elegans toxicology assays using
reporter genes readily expressed in worms can quickly assess
the reproductive and endocrine response of the whole living, and
metabolically active animal (Boyd et al., 2012; Boyd et al., 2016;
Harlow et al., 2016). Results obtained in the C. elegans model

could perhaps be translated to humans, since 83% of the C.
elegans proteome has human orthologues (Lai et al., 2000).

The strong conservation of gene/protein structure and
function, and molecular pathways between humans and C.
elegans as well as the ease of gene deletion in worms makes
the worm an attractive candidate to investigate the impact of
environmental pollutants on organismal reproductive outputs
and link these outputs to signaling pathways. However, it must be
noted that C. elegans requires higher concentration of the
chemicals to note a similar effect to that observed in rodents
or in cell culture, due to their robust cuticle that forms a barrier to
chemical uptake (Leung et al., 2008; Xiong et al., 2017;
Wittkowski et al., 2019).

IMPAIRMENT IN GONADAL INTEGRITY
AND GAMETE QUALITY COULD GIVE RISE
TO MP/NP-INDUCED REPRODUCTIVE
DEFECTS

Exposure to MPs/NPs was widely reported to alter gonadal
morphology and decrease gamete number and quality in both
sexes of aquatic and terrestrial species (Supplementary Tables
S1, S2). Following exposure to PS-MPs, the pacific oyster showed
significant decrease in sperm velocity similar to that of observed
inMP-exposed male mice (Sussarellu et al., 2016; Xie et al., 2020).
This may lower the ability of sperm to fertilize oocytes as lower
sperm motility has been linked to decreased success in
fertilization (Malo et al., 2006). What are the mechanisms
underlying lower sperm quality? MPs affect gonad
morphology by increasing cell death or apoptosis. MPs
accumulate in the testes of mice (Jin et al., 2021) and rats (Li
et al., 2021b) and disrupt the arrangement of the spermatid cells
in the testicular seminiferous tubules (Hou et al., 2021a) leading
to apoptosis of spermatogenic cells (Li et al., 2021b). These cells
show pyknosis, nucleus rupture, and cell detachment upon MP-
exposure, with widespread dose-dependent apoptosis in the
testicular tissue. Similarly, male marine medaka (Oryzias
melastigma) testes showed clear histological changes after MP
exposure, with an increase in the interstitial tissue and disordered
seminiferous lobules (Wang et al., 2019b). In mice and rats, MPs

TABLE 1 | | Comparison of male sexual behavior steps in C. elegans, rats, and Japanese quail.

Steps C. elegans Rat Japanese quail

1 Contact Search and Contact Search and Contact/Head grab
2 Scanning Rooting Attempted mounting
3 Turning
4 Vulva location Mounting
5 Prodding Mounting with thrusting Successful mount
6 Spicule insertion Intromission during mounting Cloacal apposition
7 Ejaculation Ejaculation Sperm transfer

Mating behavior can be divided into analogous components (anticipatory or consummatory) for each species shown. C. elegans mating is described by 7 sub-behaviors, the rat mating is
characterized by 6 sub-behaviors, and in the Japanese quail there are 5 steps described. These model organisms all begin mating behavior with searching and contacting the female/
hermaphrodite at any place of the body. C. elegans and rat males then engage in a search for the vulva of the mate either through scanning and turning (C. elegans) or rooting (a form of
chemo-investigation in rats). Upon location of the vulva, all three species begin mounting/prodding to locate the vulva precisely. Once this has been achieved, they position their sexual
organs in order to aid ejaculation into the mate (Hull and Dominguez, 2007; Barr, 2014; dkins-Regan, 2014).
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caused disruption of the blood testis barrier (BTB), with
downregulation of the expression of associated junction
proteins (Li et al., 2021b; Jin et al., 2021). Therefore, MP-
driven direct testicular injury impedes spermatogenesis and
decreases fertility in many species. Exposure to MPs also alters
a testicular immune response, with increased expression of
inflammatory factors and cytokines, suggesting increased
testicular inflammation which may in turn also drive apoptosis
and disruption of gonadal morphology. Due toMP accumulation,
Nuclear factor-κB (NF-κB) was activated initiating apoptosis of
the affected cells (Hou et al., 2021a). At higher MP
concentrations, in male marine medaka there was dissolution
of the basal membrane and spermatocytes became disorganized,
perhaps due to the upregulation of chronic inflammation and
oxidative stress (Wang et al., 2019b). Hence, in males of many
species, a combination of an increase in apoptosis, oxidative stress
and inflammation upon MP exposure appear to be instrumental
in the detrimental changes to gonadal morphology and sperm
quality.

Parameters that are used as a predictor of oocyte quality, such
as number and diameter of oocytes, were significantly lower in
MP treated female mice than in unexposed females (Sussarellu
et al., 2016) (Supplementary Table S1). MPs entered the ovary
of rats and decreased the volume of growing follicles when
compared to the control animals (An et al., 2021b). Similarly,
oysters exposed to MPs for 2 months showed a significant
decrease in oocyte diameter and number (Sussarellu et al.,
2016). As larger oocytes positively correlate with larval
survival and growth, these studies suggest that MP exposure
decreases the viability of the oocytes (Baynes and Howell, 1996).
Consistent with this, in PS-exposed oyster females larval yield
decreased compared to controls, suggesting that MPs cause low
quality oocytes which in turn produce less larvae (Sussarellu
et al., 2016). Additionally, female ovaries in the marine medaka
had a lower number of mature spawning follicles and an
increase in early vitellogenic oocytes in response to MP
exposure. An MP-caused decrease in estrogen levels could be
responsible for the impaired oogenesis with smaller oocytes
(Wang et al., 2019b) and lead to delayed ovarian development in
the fish (Bourguiba et al., 2003; Wang et al., 2019b). Similarly to
its effect in testes, MPs caused apoptosis in the ovary and
triggered oxidative stress, causing downregulation of Bcl-2
and upregulation of Bax in the granulosa cells. This can have
an impact on female fertility as MP-triggered apoptosis may
effectively decrease the available ovarian cells for oocyte
development (Johnson et al., 2004; Johnson et al., 2005;
Dunlop et al., 2014).

THE EFFECTS OF MICROPLASTICS AND
NANOPLASTICS ON REPRODUCTIVE
BEHAVIORS
Reproductive behavior is a useful output since it is ethologically
relevant, possible to observe directly and reflective of both
alterations in the brain and in the whole animal. It is one of
the most sensitive indicators of toxin exposure of the central

nervous system (Melvin and Wilson, 2013), as it can be observed
using sublethal concentrations of the relevant toxins.

The EDCs’ effect on behavior was extensively investigated in
vivo, including on behaviors that pertain to anxiety, feeding
behavior or cognition (Frye et al., 2012; Palanza et al., 1999).
Some studies also investigated exploration, aversion to novelty,
partner preference and social interaction (Gillera et al., 2020;
Krentzel et al., 2021). The impact of plastic particles on behavior
is much less established, with only few studies reporting altered
predator-prey interactions and hiding responses, decreased
motility or changes to social interactions upon MP exposure
of fish (Sarasamma et al., 2020; de Sá et al., 2015; Chagas et al.,
2021; Wen et al., 2018; Yin et al., 2018; Chen et al., 2020b; Santos
et al., 2021) or crustaceans (Gambardella et al., 2017; Tosetto
et al., 2016b; Rehse et al., 2016; Suwaki et al., 2020; Bai et al.,
2021). Given the reproductive deficit seen with MPs/NPs and the
alterations seen in sex steroid hormone levels (as discussed below
in MPs/NPs Alter Nuclear Hormone Signaling and
Biotransformation), an interesting question is whether and to
what extent MPs and NPs disturb related complex social
behaviors, such as sexual behavior. The process of extensively
studied vertebrate sexual behavior can be split into anticipatory
and consummatory elements (Table 1), which are regulated by
sensory systems, reward circuits and hormone signaling
(particularly estrogen and androgens) in a sexually dimorphic
manner in the male and female brain (Pfaus et al., 1990; Agmo
et al., 2008; Swaney et al., 2012; Rebuli and Patisaul, 2016).
Estrogens and androgens signal by binding nuclear hormone
receptors i.e. the estrogen receptor (ER) and androgen receptor
(AR), respectively. These receptors play a critical role in sexual
differentiation of the brain in utero, to give rise to sexually
dimorphic neural circuitry that drives reproductive behaviors
in adulthood (McCarthy and Arnold, 2011). When signaling by
the ER and AR are disrupted, alterations in sexually dimorphic
behaviors are seen. Therefore adult behavioral “readouts” such as
sex behavior in rodents have often been used to showcase the
effect of prenatal exposure to low-dose EDCs (Patisaul and
Adewale, 2009) that disrupt nuclear hormone receptor
signaling, particularly if the exposure occurs during a critical
prenatal or perinatal window. The potential interaction of MPs
and NPs with nuclear hormone receptor signaling, such as
regulated by ER and AR, is a possible entry point where
plastic particles could affect a repertoire of complex
reproductive behaviors in adulthood or via acting during
development. Furthermore, as MPs and NPs show neurotoxic
effects (Prüst et al., 2020), it is possible that disturbing neuronal
circuits of reproductive/sex behaviors also contribute to
decreased fertility and reproduction observed in animals. The
emerging evidence supporting these theories are presented in the
following sections.

The Impact of MPs/NPs on Sexual
Behaviors
Sexual motivation is the first step of reproductive behavior and is
part of the anticipatory component. As mating is key to species
survival, animals are naturally motivated to perform this
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behavior, and this is intrinsically rewarded by the release of
dopamine (Melis and Argiolas, 1995; Wise, 2004; Hull and
Dominguez, 2007; Udupa and Chen, 2016). The dopaminergic
meso (cortico)limbic system regulates the motivation for female
sexual behavior and this circuit is regulated by estrogen signaling
via the ER (Meisel andMullins, 2006; Micevych andMeisel, 2017;
Sanna et al., 2020).

When the effect of MPs on reproduction was examined after
exposure to high levels of plastic particles, the planktonic
crustacean Daphnia magna showed increased inter-brood
periods and decreased average brood production, suggesting
they had decreased motivation for reproduction (Ogonowski
et al., 2016). In the zebra mussel (Dreissena polymorpha)
exposure to different sizes of virgin PS-MP for 6 days
increased dopamine levels (Magni et al., 2018), which could
alter the motivation for reproduction. In echinoderms and
bivalve molluscs, dopamine drives oogenesis (Khotimchenko,
1991). Since MP exposure causes dopaminergic neurotoxicity,
a decrease in dopamine may influence oocyte quality in oysters
(Hoelting et al., 2013). Similarly to what is observed in female
mice, PS-MPs cause neurotoxicity in dopaminergic neurons and
decreases dopamine levels in C. elegans. As dopamine also
promotes egg-laying (Nagashima et al., 2016), PS-exposure
leads to reduced egg-laying in the nematode model (Lei et al.,
2018b). Supporting this, after exposure to and internalization of
NPs, cultured human dopaminergic neurons developed
neurospheres with increased oxidative stress (Hoelting et al.,
2013). Given that MPs can alter the brain’s dopamine
chemistry, possibly via ROS-induced apoptosis of
dopaminergic neurons, the impact on reproductive motivation
during and after exposure would be important to study.

Though the impact of MPs/NPs on consummatory
components of sexual behavior has not yet been investigated,
toxicity of EDCs that could leach from plastics have been widely
studied, typically in rodents. For example, female rats and mice
exposed to bisphenol A (BPA) as adults have increased plasma
estrogen levels, which are linked to increased lordosis and
reduced rejective behaviors during mating (Ribeiro et al., 2012;
Wang et al., 2014). This may increase preference for less fit males
(Patisaul and Adewale, 2009). In male rats, chronic adult
exposure to BPA causes increased latencies to anticipatory and
consummatory behaviors, including first mount, pelvic thrust,
intromission, and ejaculation, and fewer intromissions when
compared to the control animals (Picot et al., 2014). New,
targeted studies assessing microplastic-induced alterations in
nuclear-hormone-receptor signaling driving reproductive
behaviors could shed light on their potential toxicity.

Is C. elegans a Good Model to Explore the
Impact of MPs/NPs on Reproductive
Behaviors?
While C. elegans is a widely used model in investigating
toxicology of MPs in eukaryotic multicellular organisms, our
knowledge on the impact of MPs on reproductive behaviors even
in this extensively studied species is limited. As in rodents, C.
elegans male reproductive or sex behavior is a well-documented

sequential mating behavior, with the males actively performing
most of the sensory and motoric behaviors during the process
(Figure 1) (Barr and Garcia, 2006). As in mammals, mating
behaviors in C. elegans result from sexually dimorphic nervous
systems. The hermaphrodite has 8 sex-specific neurons, whereas
the male has 91 sex-specific motor, inter and sensory neurons, of
which all but 4 are associated with the tail (Breedlove, 1986; Liu
and Sternberg, 1995; Barr et al., 2018).

Experimental testing of reproductive capacity and mating
behaviors so far has measured the time taken by the male to
find the hermaphrodite, male spicule insertion, or measuring
brood size to assess mating success (Barr, 2014). As in mammals,
male mating effectivity in C. elegans decreases with age due to
defects in mating execution rather than diminished sperm
quality, suggesting that C. elegans infertility develops similarly
to mammals (Chatterjee et al., 2013). Since there is a differential
requirement for protein products across the mating sequence, the
vulnerability of some behavioral mating stages to MPs/NPs may
enable the identification of genes and pathways that are targeted
by these pollutants. Due to the short lifecycle of C. elegans, which
reaches reproductive stage in just 3 days post-hatching, along
with the ease of obtaining replicates, and accuracy of behavior
“scoring” parameters (Figure 1), C. elegans provide a cost-
effective and rapid system for reproductive behavior testing
when compared to rodents. Furthermore, C. elegans can
provide insights into how early-life exposure to MPs/NPs
might lead to deleterious consequences in later life. Due to its
short lifespan, this nematode is ideal for studying the long term
impacts of MP/NP exposure during the course of the whole
lifetime (Litke et al., 2018). This is particularly relevant for the
longer-lived human populations. Therefore, we propose that C.
elegans is particularly suitable to investigate the impact of single
environmental pollutants or combinations of these on the male
mating behavior model (Figure 1) and resulting brood size in a
longitudinal manner. In addition, investigating this will clarify if
reproductive behavior and/or damage to the oocytes or sperms is
the critical driver underlying decreased reproduction rate in
animals upon exposure to plastics.

Dopamine signaling is well-conserved between vertebrates
and C. elegans, and its function has been characterized in
detail in the nematode model. C. elegans uses dopamine to
react to environmental conditions, adjust its physiology and
generate appropriate behaviors (McCloskey et al., 2017). The
hermaphrodites have eight dopaminergic neurons that
coordinates locomotion with egg-laying behavior (Cermak
et al., 2020). The males have dopamine expression in the male
ray sensory neurons, which enable them to respond to the
presence of the hermaphrodite by moving towards and begin
mating (Lints and Emmons, 1999), relevant to overall
reproductive success of males. In C. elegans the expression of
the dopaminergic neuron reporter dat-1pr::GFP shows decreased
fluorescence upon exposure to polystyrene nanoplastics (PS-NP).
This was also associated with decreased mitochondria function
and increased oxidative stress (Liu et al., 2020c), suggesting
dopaminergic specific toxicity upon PS-MP exposure. The
exposure to UV-aged PS-MPs caused more severe
dopaminergic defects than virgin MPs, probably due to the
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leaching of toxic materials (Chen et al., 2021a). Interestingly, PS-
NP exposure in C. elegans causes significant increase in the
expression level of intestinal dop-1, a gene encoding for a
dopamine receptor (Qu et al., 2020a), further supporting the
idea of MP-driven interference with the dopaminergic system in
nematodes.

Changes of dopamine levels induced by MPs/NPs could affect
a number of different dopamine-dependent behaviors that could
be used to screen the toxic effects of MPs and their pollutants. For
example, in C. elegans hermaphrodites touch response
habituation is dependent on the availability of food. In the
absence of food animals are habituated faster to the touch-
triggered escape reflex than in the presence of food (Kindt
et al., 2007). This response is regulated by dopamine (Kindt
et al., 2007). Dopaminergic signaling is also required for the
transition between locomotory gaits and slowingmovement upon
mechanosensation of food (Vidal-Gadea and Pierce-Shimomura,
2012; Sawin et al., 2000). Exposure to MPs decreased thrashing
frequency when swimming in liquid and crawling speed on solid
surface (Chen et al., 2021b) in a size and concentration dependent
manner (Lei et al., 2018b). These behavioral assays could be used
as high-throughput readouts upon exposure to plastic particles,
prior to testing these in reproductive behavior assays (discussed
in details in C. elegans is a Promising Model to Investigate
Molecular Pathways Mediating MP/NP-Induced Reproductive
Toxicity). Though reproductive motivation regulated by the
dopamine system has not been studied in C. elegans,
dopamine is involved in fine-tuning the activity of sensory-
motor neurons and muscles during male copulation (Correa
et al., 2012) and is a conserved candidate pathway. Hence,

using dopamine synthesis or signaling worm mutants in these
studies would be invaluable in understanding the contribution of
dopaminergic neurons to reproductive behaviors as well as
pinpointing possible action mechanisms for plastic pollutants.

SIGNALING PATHWAYS INVOLVED IN MP/
NP-INDUCED REPRODUCTIVE TOXICITY

As seen above, MPs/NPs have been shown to induce
reproductive toxicity in a wide range of aquatic and
terrestrial animals. As might be expected, when MPs/NPs
are ingested, their primary target site is the gut and
stomach, as shown in the zebrafish (Sarasamma et al., 2020),
pacific oyster (Sussarellu et al., 2016), mouse (Park et al., 2020),
Daphnia sp. (De Felice et al., 2019), amphipods (Au et al.,
2015), but eventually they could also spread to the liver, heart
and brain (Pitt et al., 2018; Deng et al., 2021; Kwak and An,
2021). In C. elegans, NPs can be found in various tissues of the
body, including the gut, pharynx, and vulva. Prolonged
exposure to PS-NPs caused acs-22 mutant worms to
accumulate NPs in the gonad due to the dysfunctional
intestinal barrier of this mutant (Kage-Nakadai et al., 2010).
Gonad accumulation of NPs is also seen in wild-type
nematodes albeit when exposed to 10-fold higher
concentration of plastic particles (Qu et al., 2018). Within
the cells of C. elegans, MPs/NPs have been found to localize
in lysosomes (Chu et al., 2021). C. elegans is proven to be an
ideal platform to study MP/NP accumulation due to its
transparency, enabling fluorescently labelled MPs to be

FIGURE 1 | Steps in mating behavior ofC. elegans. (A) First contact: the male contacts the hermaphrodite with its head. (B) Scanning: the male presses the ventral
side of his tail against the hermaphrodite’s body then moves backwards while pressed against their body. (C) Turning: the male reaches the head or tail of the
hermaphrodite and engages in turning behavior. The tail is in contact with the hermaphrodite. (D) Vulva location: the male locates the vulva and stops forward
locomotion. Themale’s tail is in contact with the hermaphrodite’s vulva. (E) Prodding: themale moves forward and backwards in small movements over the vulva to
locate the vulva opening precisely. The tail is in contact with the hermaphrodite’s vulva. (F) Spicule insertion: the male inserts his spicules to open the lips of the vulva and
allow sperm to flow freely into the uterus. The tail is in contact with the hermaphrodite’s vulva. (G) Ejaculation lasts for approximately 4 s and the spicules remain inserted
for approximately a minute, however, due to scoring, ejaculation is determined as the time point when the male loses complete contact with the hermaphrodite as it is
unclear when exactly ejaculation occurs (Barr and Garcia, 2006). The black arrow shows the position of the male’s head.
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observed in the worm without need for dissection (Zhao et al.,
2017). The mechanism by which MPs translocate from the
primary sites to the secondary sites are unknown, but at cellular
level endoctytosis or phagocytosis have been suggested as
relevant cellular uptake mechanism (Rejman et al., 2004; Xia
et al., 2008; Ekkapongpisit et al., 2012; Monti et al., 2015).

MPs/NPs Alter Nuclear Hormone Signaling
and Biotransformation
One commonly identified signaling pathway regulated by MPs
and NPs appears to be steroid hormone signaling, whereby
altered expression levels of steroidogenic enzymes impact
levels of steroid hormones, leading to possible changes in
feedback of the hypothalamic-pituitary gonadal axis
(Vadakkadath Meethal and Atwood, 2005) (Supplementary
Table S1). This could potentially alter social behaviors, with
detrimental consequences for reproduction.

As might be expected, cytochrome P450 enzymes involved in
xenobiotic transformations are upregulated uponMP/NP exposure
in some species. Long term PS-exposure in the marine medaka
(Wang et al., 2021) and Daphnia pulex (Liu et al., 2020b) induced
the expression of P450 enzymes. The P450 enzyme families also
contain steroidogenic synthesis enzymes, some of which are
affected by MPs or MP-EDC mixtures (Supplementary Table
S1). In the medaka, exposure to PS-MPs decreased the number of
mature eggs in the female and sperm in the male, and increased
several steroidogenic enzymes including STaR, the rate limiting
enzymes of steroid hormone synthesis, as well as the 11β-HSD and
aromatase enzymes required for cortisol and estrogen synthesis,
respectively. This leads to a higher estrogen/testerosterone ratio,
which in some cases, could be due to MP carried EDCs. For
example, co-exposure of male medaka to ethinylestradiol (EE) and
MPs synergistically decreased the level of GnRH in the brain and
increased Cyp19a in the testis, suggesting that increased estrogen/
testosterone ratio led to lower sperm counts (Wang et al., 2022).
Higher levels of estrogen could perhaps negatively feedback the
level of the pituitary reproductive hormones, follicle stimulating
hormone (FSH) and lutenizing hormone (LH) (Wang et al., 2021).
Similarly, in the adult male Nile tilapia, irregular sized NPs
decreased sperm numbers, and this was correlated with lower
levels of LH and FSH (Ismail et al., 2021). In male rat (Amereh
et al., 2020; Ijaz et al., 2021) or mouse (Xie et al., 2020), there was
decreased testosterone and decreased LH/FSH (in rat only) upon
MP exposure, supporting demasculinisation of the hypothalamo-
pituitary-gonadal (HPG) axis. This was associated with altered
morphology and viability of sperms, with evidence for increased
DNA damage and tissue lesions (Amereh et al., 2020). In the adult
male zebrafish, reduced aggression and increased shoaling
behavior combined with increased vitellogenin synthesis and
aromatase expression (Sarasamma et al., 2020) is observed upon
MP exposure, suggesting possible demasculinisation of behavior,
possibly due to decreased dopamine levels. In some cases, sexual
dimorphism is seen in the hormone response to PS-MPs/NPs. For
example, in the marine medaka, unlike in the previous examples,
steroidogenic enzymes, estrogen, testosterone, LH and FSH
increased in males but decreased in females (Wang et al.,

2019b), though the mechanism that links MP/NPs to altered
steroidogenesis remains unknown.

IncreasedROSContributes to Reproductive
Dysfunction Upon MP/NP Exposure
Studies covering a wide range of aquatic and terrestrial animal
species indicated that oxidative stress, due to increased ROS
production in cells and tissues, is a major molecular event
triggered by MP/NP exposure (Supplementary Tables S1, S2).
Increased ROS levels and/or altered expression of oxidative stress
defense systemwere detected uponMP/NP exposure in themarine
rotifer Brachionus species, copepods (Tigriopus japonicus) (Xue
et al., 2021; Yoon et al., 2021), Daphnia species (Liu et al., 2021b),
green mussel (Perna viridis) (Hariharan et al., 2021), marine
medaka (Oryzias melastigma), zebrafish (Danio rero) (Qiang
and Cheng, 2021), Nile tilapia (Oreochromis niloticus) (Ismail
et al., 2021), as well as terrestrial organism including Eisenia sp.,
rat and mouse. In many instances, increased ROS content of cells
and tissues was associated with reproductive defects, defined as
decrease in viability, quality and number of oocytes or sperms, or
decreased tissue/gonad integrity, as discussed above. ROS in turn
induced apoptosis in the gonadal tissue leading to tissue damage,
indicated by histopathological changes in reproductive tissues/
gonads (Supplementary Table S1).

MPs/NPs could dysregulate the ROS scavenger system causing
decreased gene expression or activity of these enzymes.
Alternatively, higher ROS levels could deplete cellular ROS
scavenging molecules, by increased use of these in battling
oxidative stress. Increased oxidative stress in MP/NP exposed
organisms would be expected to drive upregulation of the
expression and/or activity of ROS-scavenging molecules and
detoxification enzymes, such as superoxide dismutase (SOD),
catalase (CAT), peroxidase, glutathione (GSH) and glutathione
peroxidase, or glutathione-S-transferase. However, depending on
the species, type of MP/NP used, exposure conditions and
presence of pollutants on the plastics, a range of different
responses were recorded. Studies found that expression levels
or activity of SOD, CAT, and some components of the
glutathione system decreased upon MP ingestion in worms
(Huang et al., 2021), in zebrafish brain and liver
(Umamaheswari et al., 2021), and the testes, ovaries and
fertilized eggs of marine medaka (Wang et al., 2021), as well
as in Daphnia pulex (Liu et al., 2020d), and Perna viridis
(Hariharan et al., 2021). On the contrary, in the Nile tilapia
nanoplastic particles of irregular shape caused increased serum
levels of SOD and CAT, although these enzyme levels were not
investigated in the reproductive organs of the fish, and the
observed male reproductive deficit was most probably due to
alterations in the serum luteinizing hormone and testosterone
levels (Ismail et al., 2021). PS-MPs caused decreased levels of
CAT and SOD in rats’ testes, which were associated with reduced
sperm count, sperm motility and viability, probably due to the
significant tissue damage seen in this tissue (Ijaz et al., 2021)
(Supplementary Table S1). It has been suggested that MP-
induced ROS could lead to DNA damage and defects in sperm
cells, such as observed in earthworms (Huang et al., 2021),
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leading to decreased fertility. Interestingly, the availability of
increased food supply in aquatic species could suppress the
reproductive toxicity of PS-NPs (50 nm diameter spheres)
(Yoon et al., 2021) or PE-MPs (10–22 μm) (Xue et al., 2021),
affecting ROS levels or the function of endogenous ROS
scavenging system altered by MPs and their pollutants.
Therefore careful experimental design and replicable
experimental conditions are vital for developing understanding
of the real-life impact of MP/NP pollution on wild-life
reproduction.

Increased ROS could be the consequence of enhanced ROS
generation by mitochondria, as MP/NP exposure has been
associated with altered mitochondria function. Decreased
mitochondria membrane integrity was observed in MP treated
rotifers (Jeong et al., 2016; Jeong et al., 2021), whereby increased
oxidative stress and concurrent upregulation of the MAPK stress
signaling pathway correlated with decreased fecundity (Jeong
et al., 2016). Transcriptome analysis of PS-MP treated marine
medaka also indicated the activation of MAPK pathways (Chen
et al., 2020a) alongside reproductive deficits observed in the fish.
Mice that ingested PS-MPs showed increased mitochondria
membrane potential with increased ROS content and
decreased GSH levels in oocytes, which were developing in
inflamed ovaries, leading to overall decrease in reproduction
(Liu et al., 2022b). A potential explanation for the observed
mitochondrial dysfunction in various species upon MP/NP
exposure could be lysosomal accumulation, and subsequent
escape of the plastic particles to the cytosol via lysosomal
rupture, which could lead to increased mitochondrial Ca2+

uptake and initiation of cell death, such as described in the
murine RAW264.7 macrophage cells (Xia et al., 2008).
Disruption of mitochondrial membrane potential was also
observed in PS-MP-treated human epithelial colorectal
adenocarcinoma cells (Caco-2) (Wu et al., 2019), suggesting a
universal mechanism that could lead to increased ROS
production and toxicity in animals upon plastic exposure. The
resulting oxidative stress could cause damage to the DNA, lipids
and proteins, ultimately leading to cell and tissue defects under
sustained high ROS levels. Thus, increased ROS-induced cellular
damage or mitochondria dysfunction-mediated cell death could
be a probable explanation for reproductive tissue damage
responsible to decreased fertility in animals.

It has been suggested that MP/NP-disruption of the blood-
testis-barrier (BTB) leading to oxidative stress activates the p38/
MAPK-Nrf2 pathway and induces apoptosis of spermatogenic
cells, which could be responsible for the reduced reproductive
capacity of PS-MP treated Wistar rats (Li et al., 2021c). PS-MP
ingestion-induced elevated ROS in the testes of male Balb/c mice,
which in turn activated the p38/MAPK stress signaling pathway,
causing reproductive toxicity, seen by lower number and
decreased motility of sperms, and increased rate of sperm
deformity (Xie et al., 2020). Decreased BTB integrity following
PS-MP feeding of male Balb/c mice was also linked to ROS-
induced imbalance in mTORC1 and mTORC2 signaling,
resulting in altered expression of actin cytoskeleton
components, ultimately leading to spermatogenesis dysfunction
(Wei et al., 2021). Transcriptome and protein expression data of

PS-MP exposed mice also suggested an upregulation of the
inflammatory signaling pathways, orchestrated by NF-κB. This
was shown by increased expression of various inflammatory
factors, along with downregulation of the phase II
detoxification response regulator Nrf2 (Hou et al., 2021a; Jin
et al., 2021), resulting in lower sperm quality in males. The ovaries
of female rats fed with PS-MPs showed decreased GSH-Px, CAT,
and SOD and increased MDA activities, while the number of
growing follicles decreased with concurrent elevated levels of
ovarian granulosa cell apoptosis and increased ovarian fibrosis
(An et al., 2021b; Hou et al., 2021b). The latter process is thought
to be enhanced by ROS initiated activation of Wnt/β-Catenin
signaling pathway. Importantly, both ovarian apoptosis and
fibrosis could contribute to the depletion of ovarian reserve
capacity in female rats upon MP exposure.

Importantly, increased ROS content measured by in vivo dyes
or fixative staining of NP/MP affected tissues/animals is broadly
observed, even in studies which did not observe reproductive
phenotypes (Silva et al., 2021). Furthermore, while reproductive
deficits seen upon NP/MP exposure might require longer
exposure times to plastic particles, cellular readouts of
increased oxidative stress could be observed even after short
(24 h) exposure time (Supplementary Tables S1, S2). Most
studies reporting on reproductive deficits used polystyrene
NPs (Supplementary Table S1), although increased ROS
content, and consequently, upregulated oxidative stress
responses seem to be the uniform response to NPs and MPs
of various physicochemical properties. In support of the general
role of ROS and subsequent activation of MAPK signaling
pathway in mediating reproductive deficits of MPs/NPs, few
studies have shown that supplementing the MP/NP-treated
experimental models with antioxidants, such as
N-acetylcysteine (NAC), or specific inhibitors of p38 MAPK,
could lead to reversing or attenuating the deleterious effects of
MPs/NPs on reproductive function (Xie et al., 2020; An et al.,
2021b).

C. elegans is a Promising Model to
Investigate Molecular Pathways Mediating
MP/NP-Induced Reproductive Toxicity
C. eleganswas utilized widely to develop further understanding of
the molecular events associated with MP/NP exposure
(Supplementary Table S2). Taking advantage of tissue specific
RNAi silencing of individual pathway components as well as
utilizing readily available knockout mutants of virtually all genes
of its genome, MPs and NPs have been shown to affect a range of
signaling pathways in C. elegans. As shown by Shao et al. (Shao
et al., 2019), PS-NP exposure (1 μg/L) caused downregulation of
the insulin/IGF-1 signaling (IIS) pathway, decreasing expression
levels of daf-2 (insulin receptor gene) and increasing the
expression of daf-16, encoding for the FoxO orthologue in C.
elegans. DAF-16 is a key transcription factor integrating signals
from various pathways, including IIS, AMPK pathway, JNK
pathway, germline and TOR signaling, to modulate aging and
stress, via shuttling from cytoplasm to nucleus (Sun et al., 2017).
Decreased insulin signaling leads to altered expression of DAF-16
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target genes involved in detoxification response (Freedman et al.,
1993; Honda and Honda, 1999). Other studies showed the
activation on ERK/MAPK or p38/MAPK in the neurons
(Yang et al., 2021) and changes to the JNK/MAPK and the
insulin signaling in the intestinal cells of C. elegans upon PS-
NP exposure (Qu et al., 2020b; Liu et al., 2021d). These pathways
are all hallmarks of oxidative stress response. NP exposure
therefore has been linked to changes in the expression level
and activity of central transcriptional regulators in C. elegans
with well conserved functions and orthologues in mammals,
many of which are similarly involved in the MP/NP response.
Most of these transcription factors (TFs) are key mediators of
longevity and stress response pathways, that orchestrate the
organismal response to environmental stimuli and metabolic
status of the cells (Denzel et al., 2019). Although some of
these have been associated with regulation of reproduction,
currently there is no mechanistic link established between PS-
NP exposure, changes in TF signaling and altered reproduction
and fertility in C. elegans. A recent study using UV-aged PS-MPs
in C. elegans provided evidence of increased germline DNA
damage and consequent increased apoptosis of germ cells as
probable cause for declining reproduction rate in treated animals
(Chen et al., 2022). ROS content of worms indeed increased in
MP/NP-exposed hermaphrodites across numerous studies (Yu
et al., 2021). The incurred oxidative stress could lead to increased
germline apoptosis via activation of the MAPK pathway (Salinas
et al., 2006).

Altered oxidative stress response is an effect that is not only
universally observed in the treated animal populations, but can
also be transmitted to the offspring of MP/NP treated mothers
along with reproductive deficits, even in the absence of NP/MP in
the offspring generation (Zhang et al., 2019; Liu et al., 2020b;
Chen et al., 2021b; Liu et al., 2021c; Sobhani et al., 2021; Wang
et al., 2021). Long-lasting impact of MPs/NPs on the oxidative
stress defense pathways could potentially contribute to
neurotoxicity detected in the offspring of plastic treated C.
elegans mothers (Chen et al., 2021b; Liu et al., 2021c). In C.
elegans, supplementation of sulphate modified PS-NPs in the
food led to decreased reproductive rate in four subsequent
offspring generation, probably due to higher proportion of
aberrant chromosomes formed in the oocytes (Yu et al., 2021),
which might be the result of oxidative damage to the DNA of
plastic exposed mothers. Increased germline apoptosis was
observed in multiple offspring generations of PS-NP exposed
C. elegans hermaphrodites, suggesting enhanced germline
depletion as explanation for the decreased brood size in
offspring (Sun et al., 2021; Yu et al., 2021).

As for the impact of MPs and NPs on NHR signaling and
consequent defects in reproductive behavior in the C. elegans
model organism, limited research is available in the literature.
Even though typical vertebrate hormones that act by binding
NHRs have not been identified in C. elegans, this nematode has
284 nuclear hormone receptors, considerably more than humans
and mice (Sluder et al., 1999; Taubert et al., 2011; Zhang et al.,
2004). Additionally, C. elegans expresses an estrogen receptor (ER)
orthologue, NHR-14, and an androgen receptor (AR) orthologue,
NHR-69. Molecular docking simulations performed with NHR-14

or NHR-69 have shown that the endogenous hormone ligands of
the human ER and AR, 17β-estradiol and testosterone
(respectively), have similar binding activity to NHR-14 and
NHR-69 as to the human receptors (Jeong et al., 2019).
Therefore, these NHRs might be relevant to study in regard of
deficits in reproductive behaviors and fertility upon MP and NP
treatment, as disturbance in the level of estrogen and androgen
receptor ligands have been widely observed uponMP/NP ingestion
in other species (as discussed in MPs/NPs Alter Nuclear Hormone
Signaling and Biotransformation, Supplementary Table S1)
(Wang et al., 2019b; Amereh et al., 2020; Xie et al., 2020; Ijaz
et al., 2021; Jin et al., 2021; Wang et al., 2021; Wang et al., 2022). A
nuclear hormone receptor that has been investigated in relation to
MPs in C. elegans is the sterol-sensing NHR-8, which regulates fat
metabolism and stress responses (Jones et al., 2013; Magner et al.,
2013). PS-NP exposure significantly increased the expression of
nhr-8 in wild-type worms, while loss-of-function nhr-8 mutation
increased sensitivity towards PS-NP toxicity, decreased locomotion
and increased ROS production (Huanliang et al., 2020). PS-NP
exposure also increased the expressions of the intestinal linc-9 long
non-coding RNA, which targets the nuclear hormone receptor
NHR-77, linking nuclear hormone receptor signaling to MP/NP
toxicity. linc-9 RNAi treated C. elegans showed increased
susceptibility to PS-NP induced defects, which was diminished
upon RNAi knockdown of nhr-77, indicating a functional role for
NHR-77 in PS-NP toxicity (Zhao et al., 2021). This implies that
MPs and NPs could potentially intersect NHR signaling pathways
in worms, even without the additive effect of carried EDCs.
Uncovering the MP/NP-driven disruption of NHR signaling in
C. elegans may also give us clues as to what potential metabolic
defects could be expected in animals due to increased plastic
pollution in the environment and in the food chain, and what
implication for reproductive behaviors these might have. This will
allow us to generate new models of MP/NP action for behaviors
and cellular endpoints that might be common to most organisms
and for those that are specific for higher organisms.

Altogether, these studies have shown that 1) C. elegans
responds to MP/NP toxic insult with altering a set of
conserved signaling pathways, including oxidative stress-
MAPK, IIS or JNK pathways, as observed in other animals;
and 2) nuclear hormone signaling is probably one conserved
target of MPs and NPs across species. This provides us with an
excellent opportunity to further develop the C. elegans model for
high-throughput screening to unravel the mechanistic links of
MPs/NPs and reproductive toxicity.

TRANSGENERATIONAL REPRODUCTIVE
EFFECTS OF MPS AND NPS

An emerging pattern seen now is that MPs/NPs and even EDCs
seem to give rise to transgenerational effects impacting one ormore
generations of offspring of exposed animals (Zhou et al., 2020)
(Supplementary Tables S1, S2). Therefore, the large quantities of
MPs and NPs accumulated in the environment and in the food
chain globally will continue to deliver adverse effects for a long
time, impacting many future generations. Transgenerational
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impacts of environmental pollutants have also been acknowledged
as critical contributors of many disease mechanisms (Skinner et al.,
2010; Ho et al., 2012; Nilsson et al., 2018). MPs and NPs cause
developmental and reproductive dysfunction in progeny of several
MP-treated aquatic species, including Daphnia magna (Martins
and Guilhermino, 2018), zebrafish (Pitt et al., 2018) (Lei et al.,
2018a) and the marine medaka (Wang et al., 2019b). The progeny
ofMP exposed C. elegansmothers were shown to containMPs and
had significant reduction in brood size, decreased locomotion, and
increased level of intestinal ROS (Zhao et al., 2017). These
transgenerational effects could be mediated by direct transfer of
MPs and NPs to the developing oocytes or to the embryos by the
mothers, such as seen in the zebrafish (Pitt et al., 2018). Conversely,
intestinal accumulation of NPs in exposed mothers could cause
brood size reduction in four subsequent generations of offspring
with no obvious accumulation of NPs observed in the germline or
gonad of mothers, suggesting maternal effect of reproductive
toxicity (Yu et al., 2021). Indeed, MP exposure could lead to
changes in the epigenetic marks of the genome in fruit fly (D.
melanogaster) (Zhang et al., 2020a).

Transgenerational effects have been well documented in C.
elegans and these are driven by conserved molecular mechanisms
involved in epigenetic regulation. MP/NP exposure could exert its
effect through maternal epigenetic changes as suggested by Yu
et al. (Zhao et al., 2017), who demonstrated that maternal NP
exposure led to altered expression of histone methyl transferase
genes and hypomethylation of the ced-3 promoter region,
encoding for the caspase 3 orthologue involved in apoptosis.
This led to decreased brood size due to increased germline
apoptosis in several offspring generations. Pointing to the
potential of the nematode model for investigating
transgenerational impacts of MPs on reproductive behaviors,
we note here, that a behavioral response, namely the C.
elegans pathogen avoidance behavior, has been transmitted
across multiple generations upon exposure of the parental
population to the pathogenic bacteria (Moore et al., 2019).
Interestingly, deletion of the C. elegans putative testosterone
receptor NHR-69 has recently been linked to loss of gentle
touch response upon testosterone supplementation (Fischer
et al., 2012). Remarkably, this impaired testosterone-mediated
touch response has been transmitted to multiple generations via
epigenetic alterations, a regulatory pathway that has also been
implicated in vertebrate testosterone signaling (Baum, 2009;
Murray et al., 2009). This provides further opportunities for
the utilization of behaviors as an assay in C. elegans system to
study the mechanisms underlying transgenerational reproductive
toxicity of MPs and carried pollutants (Baugh and Day, 2020).

CONCLUSION–WHAT CAN WE LEARN
FROM C. ELEGANS TO UNDERSTAND
MECHANISMS UNDERLYING MP/NP
TOXICITY

As we discussed above, male and female reproductive defects
upon MP/NP exposure are reported for many animal species

(Andersson et al., 2008; D’Angelo and Meccariello, 2021;
Blackburn and Green, 2021; Vo and Pham, 2021; Ji et al.,
2021; Sharifinia et al., 2020). Although in recent years some
mechanistic insights into MP/NP action have been uncovered,
only few pathways have been directly linked to reproductive
deficits and it is still unclear what the first, initiating steps are in
MP/NP toxicity. We discussed the potential of oxidative stress
and altered NHR signaling as common regulatory pathways
targeted by MPs/NPs to cause reproductive dysfunction.
Importantly, plastic polymers can directly cause tissue
damage and apoptosis in the reproductive organs of
animals, increase ROS production, interfere with hormone
and nuclear hormone receptor levels, or alter energy status
of cells. Interestingly, endocrine disrupting chemicals carried
by NPs and MPs also cause similar alterations, including
increased ROS and changes to hormone and NHR levels or
activity. All of these pathways could be and partly have been
explored in C. elegans (Supplementary Table S2) due to strong
conservation of molecular pathways existing in the
nematode model.

One consequence of MP/NP accumulation in the gut across
species appears to be the alteration of gut microbiota. For
example, in the marine medaka (Yan et al., 2020), the soil
nematode Enchytraeus crypticus (Zhu et al., 2018) and in the
soil springtail (Folsomia candida) (Ju et al., 2019), ingestion of
PS-MPs or PE-MPs decreased the diversity of gut microbiota. A
recent study in the springtail has suggested that gut microbiota
dysbiosis caused by MP exposure could explain the observed
decrease in reproduction rate, as healthy gut microbiome is
essential for proper nutrient supply and immune protection for
springtails (Ju et al., 2019). Germ-free Drosophila with no
microbiota had lower aggression levels and lower
reproductive fitness due to alterations in octopamine
signaling (Jia et al., 2021), demonstrating that microbiota-
influenced social behaviors can cause reproductive deficits.
Furthermore, as microbiota can increase free estrogen levels
of the host by deconjugation (Littman and Pamer, 2011),
reduction of gut microbiota diversity decreases this process
with a negative impact on host fertility (Plottel and Blaser,
2011). Gut microbiota also produce many bioactive small
molecules that may act as nuclear hormone receptor ligands
(Donia and Fischbach, 2015), directly interacting with the NHR
signaling pathways of the host (Duszka and Wahli, 2018).
Therefore, MP/NP-mediated interference with microbiota
composition can be detrimental to host reproductive
capacity. Being bacterivore species, this can be more easily
explored in a C. elegans model where gut microbiota can be
changed by feeding a defined single or a combinations of
bacteria strains to worms (Zhang et al., 2017). Interestingly,
in C. elegans, fecal microbiota transplants reversed oxidative
stress by inducing GSH via the PMK/SKN-1 pathway, leading to
attenuation of NP-mediated toxicity (Chu et al., 2021).

Reproductive behavior could also be utilized as an endpoint in
C. elegans for investigating the behavioral deficits that decrease
reproductive capacity upon MP/NP exposure. In the C. elegans
model the whole neuronal connectome is mapped and changes in
the dopaminergic neurons caused by MPs/NPs could provide a
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probe to understand how these circuits drive reproductive
behavior. Given that a Pubmed search using the search terms
(rodent AND (microplastics OR nanoplastics) AND behavior)
resulted in only 11 studies (accessed on 25th January 2022) with
most of these studies detailing the accumulation of MPs, it is clear
that this is a field ripe for investigation, using any model and any
behavior that is tractable to analyze. Since this behavior is sexually
dimorphic, it could also point to a shift towards one sex and
potential disturbance of the sex ratio upon MP/NP exposure.
For example, in Daphnia pulex (Zhang et al., 2020b), increase in
doublesex transcripts and lower energy reserve upon exposure to
PS-NPs shifts the population to contain more males in a typically
asexual population. This is a response to stressors to increase the
rate of genetic recombination in the affected population (Mitchell
et al., 2004). C. elegans populations show a similar increase in male
populations in response to stressors and could be used to investigate
how the shift in sex can occur to pinpoint molecular pathways that
may be similar to other species (Morran et al., 2009).

We propose that the male C. elegans mating behavior is a
model reproductive behavior that is ethologically relevant,
reproducible, quick to analyze and can give information about
genes and signaling pathways that are impacted by microplastics
and nanoplastics. Given that MPs/NPs are almost always present
with EDCs, these nematodes provide a promising platform with
high-throughput potential to develop understanding of the
reproductive effects of environmentally relevant pollutant-MP
mixtures. We also emphasize that some of the genes targeted by
MPs/NPs and leachates that disrupt the endocrine system will be
nuclear hormone receptors and study of environmental
pollutants in a simpler model has the potential to elucidate
novel aspects of NHR signaling in biology.
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