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Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result
of natural cellular processes, intracellular signaling, or as adverse responses associated
with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of
ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS),
has recently become highly relevant in a number of adverse outcome pathways (AOPs)
that capture, organize, evaluate and portray causal relationships pertinent to adversity or
disease progression. RONS can potentially act as a key event (KE) in the cascade of
responses leading to an adverse outcome (AO) within such AOPs, but are also known to
modulate responses of events along the AOP continuumwithout being an AOP event itself.
A substantial discussion has therefore been undertaken in a series of workshops named
“Mystery or ROS” to elucidate the role of RONS in disease and adverse effects associated
with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing
radiation. This review introduces the background for RONS production, reflects on the
direct and indirect effects of RONS, addresses the diversity of terminology used in different
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fields of research, and provides guidance for developing a harmonized approach for
defining a common event terminology within the AOP developer community.

Keywords: adverse outcome pathway (AOP), oxidative stress, reactive nitrogen species (RNS), disease, reactive
oxygen species (ROS)

1 INTRODUCTION

Exposure to various types of stressors (e.g., allergens, ionizing
radiation, chemicals) can induce cellular-level oxidative damage
to macromolecules such as DNA, proteins, and lipids. This is a
result of oxidative stress from an imbalance in the production of
reactive oxygen species (ROS) in a wide sense. One of the
difficulties in the field of ROS research is the use of
terminology whose meaning is interpreted differently in the
different areas of expertise. To overcome the problems, the
Mystery of ROS, an international consortium for creating
harmonized Key Events (KEs) on ROS in the Adverse
Outcome Pathway (AOP) framework has been established
(Tanabe et al., 2022). This review aims to provide some
guidance on the definition of the harmonized KEs on ROS in
the AOP framework.

The field of ROS in a broad sense has previously been reviewed
by Sies et al. (Sies et al., 2017). Non-radical species function as
second messengers to regulate life (Sies et al., 2017). Two main
types of radicals can be produced including ROS in a narrow
sense and reactive nitrogen species (RNS), which are regulated by
antioxidant defense response (ADR) that might be defined as
radical scavenging mechanisms and oxidant reduction. The ADR
constitutes the totality of the activation of processes that protect
the cells against ROS. These radicals can be long- and short-lived,
depending on their reactivity with other molecules. In order to
handle ROS (in a narrow sense) and RNS formation, antioxidant
defense mechanisms are recruited to manage the damage. These
processes can be classified as enzymatic [e.g., glutathione-S-
transferase (GST), catalase (CAT), glutathione-peroxidase
(GPX), and superoxide dismutase (SOD)] and non-enzymatic
systems (e.g., uric acid, vitamin C and E and lipoic acid).
Normally, these are the first line of defense and these can act
as oxidant scavengers. Oxidative stress is defined as a condition
where the ROS production is sustainably excessive beyond ADRs
and plays a central role in pathological processes including
cancer, diabetes, chronic kidney disease, neurodegenerative
disease, cardiovascular disease, chronic obstructive pulmonary
disease (Dröge, 2002; Liguori et al., 2018). ROS are also crucial in
generating immune responses, signaling injury, and upregulating
inflammatory responses, thereby strongly affecting various
disease pathogenesis, including cancer and bacterial and viral
infection including severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) causing the current global
pandemic coronavirus infectious disease (COVID-19) (Liou
and Storz, 2010; Cecchini and Cecchini, 2020; Saleh et al.,
2020; Shenoy, 2020; Alam and Czajkowsky, 2021;
Kalyanaraman, 2021). ROS and oxidative stress have been
implicated as potential key contributors to toxic effects
mediated by pollutants, radiation, and nanoparticles.

Environmental stressors such as pollutants and radiation often
contribute to the exaggeration of oxidative stress (Table 1).

2 INTRACELLULAR SOURCESOFROSAND
INITIATING EVENTS

ROS can be both KEs in the AOP leading to the Adverse Outcome
(AO) or associated where their formation is a consequence of the
AO rather than a cause of that AO. For all environmental
stressors, it is crucial to make this distinction. This can be
achieved by determining the temporal relationship of ROS
formation relative to the AO or examining the Molecular
Initiating Event (MIE). Where for example, the MIE is likely
to generate ROS such as a redox cycling or effect on complex I
there is a higher probability of ROS being a KE in the AOP than
where the MIE is something unrelated to ROS such as direct
reaction with protein or DNA.

2.1 Direct Sources of ROS
Radiation can increase immediate and longer-term ROS.
Comprehensive mechanisms of ROS-dependent and independent
DNA damage induced by ionizing radiation and solar radiation have
been proposed (Cadet and Wagner, 2013; Helm and Rudel, 2020).
Radiation can also increase antioxidants such as SOD, CAT, and
peroxidase (POD) (Seen and Tong, 2018; Ahmad et al., 2021).
Radiation-induced DNA damage and ROS can also lead to cell
death and autophagy and are utilized for this reason in cancer
treatment (Ma et al., 2021; Yamamoto et al., 2021). The
differences between high and low linear energy transfer (LET)
should be considered in terms of ROS production and DNA
damage in the radiation fields of cancer since high LET deposits
dense clusters of energy closer to the tissue surface and creates more
complex DNA damage (Goodhead, 1988).

2.2 Indirect Sources of ROS
ROS are commonly involved in the mode of action (MoA) of
various classes of environmental chemicals including metals such
as lead, chromium, arsenic, mercury, nickel, and cadmium (Renu
et al., 2021), pesticides such as pyrethroids, carbamates and
organophosphates (Medithi et al., 2021), and other industrial
chemicals such as bisphenol A (Steffensen et al., 2020). ROS
production contributes to a large variety of environmentally-
induced diseases (Omidifar et al., 2021), e.g., oxidative stress is
one of the most important mechanisms of action of pesticides in
acute and chronic poisoning (Lukaszewicz-Hussain, 2010), and of
metals in hepatotoxicity (Renu et al., 2021). Mitochondria are one
of the main producers of ROS in eukaryotic cells. The sources of
ROS include mitochondria in muscle cells, nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX), phospholipase
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A2 (PLA2), xanthine oxidase, monoamine oxidase (MAO),
dehydrogenase, and immune cells such as macrophages,
eosinophils, monocytes or neutrophils (Powers and Jackson,
2008; Vargas-Mendoza et al., 2021). Free adenosine diphosphate
(ADP), inorganic phosphate (Pi), and O2 activate the electron
transport chain (ETC) in mitochondria (Hargreaves and Spriet,
2020; Vargas-Mendoza et al., 2021). Other sources are also
important as ROS producers. Angiotensin II (Ang II), the main
product and effector of the renin-angiotensin system stimulation, is
a regulator of blood pressure and produces ROS by stimulating
NOX (Nguyen Dinh Cat et al., 2013; Forrester et al., 2018; Pothen
and Balligand, 2021). Ang II-induced ROS production leads to
mitogen-activated protein kinase (MAPK) activation, where ROS
play a role as a second messenger (Nishida et al., 2005; Forrester
et al., 2018). When excess Ang II binds to the Ang II Type 1
Receptor (AT1R), several signaling pathway cascades, including the
ROS signaling. The formation of ROS through NOX activation
further regulates AT1R through a feed-forward mechanism, which
amplifies the ROS production with a feed-forward mechanism
(Datla and Griendling, 2010; Frazziano et al., 2014). There are
varying NOX isoforms that could possibly be engaged in this
mechanism which includes NOX 4 isoform located in
mitochondria (Veith et al., 2019; Fukai and Ushio-Fukai, 2020).
The NOX-derived ROS stimulates peptides and cell-surface
receptors to initiate intracellular signaling pathways. Both the
ROS formulation and Ang II/AT1R stimulations regulate MAPK
pathways, modulating the transcription factors. Multiple MAPK-
mediated transcription factors drive the accumulation of
myofibroblasts and the development of lung fibrosis (Zhao
et al., 2007; Hardie et al., 2009). In the case of alveolar cells,
Ang II accumulates at the cellular level resulting in inflammation
and lung fibrosis as an AO (Parimon et al., 2020; Shi et al., 2021).
Still, the non-converted Ang II, induced by angiotensin converting
enzyme (ACE) II downregulation, could circulate to other parts of
the body, such as the live heart, skin, kidneys, blood vessels, skeletal
muscles, and brain, causing similar AT1R activation results in other
organs to induces ROS mediated vasoconstriction, proliferation,
inflammation, and fibrosis. In addition, some nanomaterials,
especially carbon-based nanomaterials, are efficient ROS
producers (Jacobsen et al., 2008).

2.3 Methodologies for Measuring Oxidative
Stress
ROS can be detected by intracellular ROS assay and in vitro ROS/
RNS assay. Nitric oxide can be detected in intracellular nitric
oxide assay. ROS detection in biological systems includes
spectrophotometry methods, fluorescence and
chemiluminescence methods, and electron-spin resonance
(ESR), which requires probes that produce stable products
(Dikalov and Harrison, 2014; Zhang et al., 2018). Adducts
produced by covalent binding with free radicals can be
detected by ESR (Dikalov and Harrison, 2014). Hydroxyl,
peroxyl, or other ROS can be measured using a fluorescence
probe, 2′, 7′-dichlorodihydrofluorescein diacetate (DCFH-DA),
at fluorescence detection at 480 nm/530 nm. Recent progress in
ROS measurement includes the development of a standard
operating procedure (SOP) for DCFH-DA acellular assay
(Boyles et al., 2022). Chemiluminescence analysis can detect
the superoxide, where some probes have a wider range for
detecting hydroxyl radical, hydrogen peroxide (H2O2), and
peroxynitrite (Fuloria et al., 2021). ROS in the blood can be
detected using superparamagnetic iron oxide nanoparticles
(SPION)-based biosensor (Lee et al., 2020). H2O2 can be
detected with a colorimetric probe, which reacts with H2O2 in
a 1:1 stoichiometry to produce a bright pink colored product,
followed by the detection with a standard colorimetric microplate
reader with a filter in the 540–570 nm range. The levels of ROS
can be quantified using multiple-step amperometry using a
stainless steel counter electrode and non-leak Ag|AgCl
reference node (Flaherty et al., 2017). Singlet oxygen can be
measured by monitoring the bleaching of
p-nitrosodimethylaniline at 440 nm using a spectrophotometer
with imidazole as a selective acceptor of singlet oxygen (Onoue
et al., 2013).

The level of CAT, GPX, or SOD can be measured as enzymes
in the cellular oxidative defense system. CAT is an anti-oxidative
enzyme that catalyzes the resolution of H2O2 into H2O and O2.
The chemiluminescence or fluorescence of HRP catalytic reaction
can be detected with residual H2O2 and probes [DHBS + AAP, or
ADHP (10-acetyl-3, 7-dihydroxyphenoxazine)]. Anti-oxidant

TABLE 1 | Stressors and diseases related to reactive oxygen species and oxidative stress.

Stressors Diseases/Toxic Effects

Autoimmune disorders and allergens Tissue damage Valko et al. (2007); Di Florio et al. (2020); Seebacher et al. (2021), Respiratory disease Racanelli
et al. (2018)

Chemotherapy and xenobiotics Cell death Conklin. (2004), Tumor formation Henkler et al. (2010); Seebacher et al. (2021)
Tobacco and alcohol Pulmonary disease Chen et al. (2019); Seebacher et al. (2021), Breast cancer Wang et al. (2017)
Ionizing and non-ionizing radiation Multiple cancers, including breast cancer, gastric cancer and liver cancer Sauvaget et al. (2005); Bhattacharyya

et al. (2014); Yusefi et al. (2018); Helm and Rudel. (2020); Kuo et al. (2021), Erythema Clydesdale et al. (2001);
Seebacher et al. (2021)

Bacterial and viral infection Organ damage and malignancy Ivanov et al. (2017); Seebacher et al. (2021), Liver disease Đorđević et al.
(2021)

Severe acute respiratory syndrome coronavirus- 2 (SARS-
CoV-2)

Hyperinflammation/cytokine storm Frisoni et al. (2021); Kaidashev et al. (2021), Thrombosis and disseminated
intravascular coagulation Aid et al. (2020); Connors and Levy. (2020); Mackman et al. (2020)

Nanoparticles Lung injury, including inflammation, fibrosis and cancer Huh et al. (2010); Lu et al. (2014); Halappanavar et al.
(2020); Nymark et al. (2021), Liver toxicity Yao et al. (2019)

Frontiers in Toxicology | www.frontiersin.org July 2022 | Volume 4 | Article 8871353

Tanabe et al. Mystery of ROS

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


capacity is also one of the oxidative stress markers. Oxygen
radical antioxidant capacity, hydroxyl radical antioxidant
capacity, total antioxidant capacity, the cell-based exogenous
antioxidant assay can be used for measuring the antioxidant
capacity. Oxidation of protein can be measured by the detection
of protein carbonyl content (PCC), 3-nitrotyrosine, advanced
oxidation protein products, or BPDE protein adduct. DNA
oxidation can be detected with 8-oxo-dG/8-hydroxy-2′-
deoxyguanosine (8-OHdG) by ELISA. Lipid peroxides
decompose to form malondialdehyde (MDA) and 4,
hydroxynonenal (4-HNE), natural bi-products of lipid
peroxidation. Lipid peroxidation can be monitored by
thiobarbituric acid (TBA) reactive substances in biological
samples. MDA and TBA form MDA-TBA adduct in a 1:2
stoichiometry and are detected by colorimetric or fluorometric
measurement. While direct ROS determination, a promising
oxidative stress biomarker, is challenging due to the short
half-life and high reactivity of ROS, detection of the resulting
oxidative damage to biomolecules (DNA, lipids, and proteins)
and antioxidant status (enzymatic antioxidant activities and non-
enzymatic antioxidant levels) is more reliable in biological setting
(Katerji et al., 2019).

3 RELATIONSHIPS BETWEEN ROS AND
PATHOGENESIS

3.1 The Roles of ROS in Diseases
Prolonged ROS and oxidative stress mediate a variety of diseases
(e.g., cancer, neurological disorders, cardiac diseases, pulmonary
diseases), indicating that ROS and oxidative stress can be causal
factors as well as biomarkers of diseases (Annesley and Fisher,
2019; Kay et al., 2019; Climent et al., 2020; Ghezzi, 2020). ROS can
be classified as free radicals (Table 2) and non-radical (Table 3)
ROS. The term RNS refers to both nitrogen-centered radicals and
other reactive molecules, which can induce nitrosative stress (e.g.,
nitric oxide, nitrogen dioxide, nitrous acid, peroxynitrite,
dinitrogen trioxide) (Powers and Jackson, 2008). In general,
the timely detection of “live-ROS” is difficult since ROS have
an extremely short half-life (t½ in seconds). On the other hand,
the level of antioxidant enzymes and products of oxidation can be
detected as indicators of redox state and oxidative stress,

respectively (Gornicka et al., 2011). For instance, 7, 8-dihydro-
8-oxo-2′-deoxyguanosine or 7, 8-dihydro-8-oxoguanosine can be
detected as a DNA damage biomarker in cancer, and advanced
glycation end products or MDA are biomarkers in diabetes
(Liguori et al., 2018). An antioxidant enzyme NAD(P)H
quinone dehydrogenase 1 (NQO1) is up-regulated while CAT
is down-regulated in nonalcoholic steatohepatitis livers
(Gornicka et al., 2011).

3.1.1 ROS and DNA Damage
ROS cause a variety of DNA lesions and the resulting cellular
responses involve complex crosstalk between multiple repairs and
signaling pathways (Kay et al., 2019). ROS induce DNA damage such
as the formation of 8-oxoguanine (Kay et al., 2019; Schaich and Van
Houten, 2021), the most abundant oxidative DNA lesion, and other
types of nucleotide oxidation, deamination, and lipid peroxidation-
derived adducts. DNA repair pathways for oxidative DNA lesions
include base excision repair and to a lesser extent, nucleotide excision
repair (Freudenthal et al., 2017). Failure to repair oxidative lesions
prior to replication can lead to mutations (Sasaki et al., 2020).
Alternatively, ROS can produce single-strand DNA breaks directly
or indirectly (through repair intermediates), replication stress, and the
formation of double-strand breaks (DSBs) (Kay et al., 2019). DSB
repair occurs by the error-prone non-homologous end-joining
pathway or by homologous recombination repair (Kay et al.,
2019). Upon the occurrence of DSBs induced by ROS, histone
H2AX nearby DSBs is phosphorylated, and phosphorylated
H2AX (γ-H2AX) induces DNA damage responses (Ishida et al.,
2014). Polyphenols and flavonoids protect DNA from ROS-induced
oxidative damage (Khalil Alyahya et al., 2021). DNA damage
response networks including pathways leading to the formation of
mutations and chromosomal aberrations are involved in cancer
(Tanabe et al., 2021).

3.1.2 ROS and Cancer
Cancer is the first or second leading cause of death before the age
of 70 years in 112 of 183 countries, according to estimates from
the World Health Organization (WHO) in 2019 (Organization,
2020; Sung et al., 2021). While ROS can be a cause of cancer, they
can also have a protective effect: e.g., promotion of oxidative
stress-induced cancer cell death caused by excessive ROS-induced
oxidative damage, and tumor formation in redox-dependent and

TABLE 2 | Free radicals.

Name Molecular formula

Superoxide anion O2
·-

Hydroxyl radical ·OH
Nitric oxide ·NO
Nitrogen dioxide ·NO2

Organic radicals R·
Peroxyl radicals ROO·
Alkoxyl radicals RO·
Thiyl radicals RS·
Sulfonyl radicals ROS·
Thiyl peroxyl radicals RSOO·
Disulfides RSSR

TABLE 3 | Non-radical ROS.

Name Molecular formula

Hydrogen peroxide H2O2

Singlet oxygen 1O2

Ozone/trioxygen O3

Organic hydroperoxides ROOH
Hypochlorite ClO−

Peroxynitrite ONOO−

Nitrosoperoxycarbonate anion O=NOOCO2
−

Nitrocarbonate anion O2NOCO2
−

Dinitrogen dioxide N2O2

Nitronium NO2
+

Highly reactive lipid- or carbohydrate-derived carbonyl compounds
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pro-oncogenic signaling pathways (De Logu et al., 2021; He et al.,
2021). Many mechanisms are conserved in different types of
cancer and have similar carcinogenic effects (Kay et al., 2019).
ROS-induced DNA damage promotes inflammation and cancer
(Helm and Rudel, 2020). Epithelial-mesenchymal transition
(EMT), a transition of cells from epithelial to mesenchymal
state, is the main hallmark of cancer malignancy (Hanahan
and Weinberg, 2011; Tanabe et al., 2020; Tanabe et al., 2021).
ROS production is involved in the EMT process in cancer (Kozak
et al., 2020). Sustained chronic ROS is linked to the poor
prognosis of cancer. The expression of NOX4, one of the main
sources of ROS, is correlated with tumor size, lymphatic
metastasis, and vascular invasion, and thus poor prognosis in
gastric cancer (Du et al., 2019). Conversion of fibroblast growth
factor receptor 2b (FGFR2b) to FGFR2c induces EMT and
represses nuclear factor-erythroid 2 (NFE2) like basic leucine
zipper (bZIP) transcription factor 2 (NRF2)-mediated
detoxification of ROS, which leads to the progression of
cancer (Katoh and Katoh, 2009). ROS mediate the
transformation of the tumor microenvironment in
radiotherapy-resistant gastric cancer (Gu et al., 2018).
Chloroquine-induced ROS production inhibits autophagy and
promotes EMT and malignancy in estrogen receptor-positive
breast cancer cells (Rojas-Sanchez et al., 2021). Since
autophagy inhibition could be a potential cancer treatment,
cancer subtypes need to be considered in the application of
therapeutics (Rojas-Sanchez et al., 2021). The evidence
supports the involvement of ROS in treatment-resistant
cancer. Some controversy regarding the role of ROS in cancer
progression is ongoing; for example, heat shock protein 27
(HSP27), a stress-induced molecular chaperone, inhibits ROS
accumulation, while its expression is associated with metastasis
and poor prognosis in cancer (Nagata et al., 2013).

3.1.3 ROS and Infection
Similar to the double role in cancer, the roles of ROS in infection
represent the “double-edged sword” concept. The relationships
between oxidative stress responses and coagulation in terms of
SARS-CoV-2 infection are yet to be determined (Cecchini and
Cecchini, 2020). Mesenchymal stem cells (MSCs) are one of the
candidate therapies for COVID-19 to reduce inflammation and
promote lung regeneration in severe COVID-19 patients (Rocha
et al., 2020). MSCs express SOD, which converts superoxide
anion to H2O2 and free oxygen, preventing the destruction of
surrounding tissue by ROS from neutrophils and M1
macrophages (Jiang et al., 2016; Rocha et al., 2020). AOP379
regarding coronavirus infection and ROS has been developed as
an OECD project (https://aopwiki.org/aops/379), in
collaboration with an international consortium, the Modelling
the Pathogenesis of COVID-19 Using the AOP Framework
(CIAO) (Clerbaux, 2022). It is expected that research in this
field will develop in the future, including involvement in the
immune response of RNA signal networks.

3.2 ROS and Nanoparticles (NPs)
The AOPs leading to effects on the liver by titanium dioxide (TiO2)
have been developed, where ROS generation is a KE in the AOP

network (Brand et al., 2020). Exposure to TiO2 seems to trigger
ROS generation and oxidative stress (Brand et al., 2020). The
estimated cumulative dose of 102–104 mg/kg bw, or less than
103 mg/kg bw of TiO2 induces ROS generation, or oxidative
stress, respectively. In contrast, a wide range of the cumulative
concentration (102–1012 mg/kg bw) of TiO2 induces preneoplastic
lesions (Braakhuis et al., 2021). Prolonged inhalation of TiO2

causes its deposition in the lung, which leads to ROS generation
(considered as a KE) and oxidative stress (considered as another
KE) in lung adenomas/carcinomas (Braakhuis et al., 2021). While
nanomaterials potentially induce ROS (Jacobsen et al., 2008) and
oxidative stress (Halappanavar et al., 2021), nanoparticle (NP)-
based ROS-scavenging approaches have also emerged as
nanomedicines for anti-inflammatory treatments (Huang et al.,
2021). These ROS-scavenging NPs include catalytic NPs that have
SOD-, CAT-, POD-, and glutathione-like enzyme activities, free-
radical trapper NPs such as fullerene that captures ROS via
conjugated double bonds, 2, 2, 6, 6-tetramethylpiperidinenoxyl
(TEMPO) that captures ROS via the single electron on nitroxide,
and redox ROS-scavenging NPs such as curcumin or bilirubin NPs
(Nash and Ahmed, 2015; Huang et al., 2021). Specific ROS-
targeting NPs as drug delivery systems, where solubility changes
by ROS or extended-release are utilized for anti-cancer therapy,
have been developed as well (Kim et al., 2015). Conversely, carbon
black NPs have been shown to induce ROS, oxidative DNA
damage, and a ROS-specific mutation spectrum (Jacobsen et al.,
2007; Jacobsen et al., 2008; Jacobsen et al., 2011; Modrzynska et al.,
2018). In addition, a SOP for assessment of ROS generation using
DCFH-DA acellular assay was developed (Boyles et al., 2022).
Future studies with stable detection of ROS induced by
nanoparticles would reveal the controversial effects of NPs in
terms of the relationship between ROS and pathological changes.

3.3 ROS and Radiation Toxicity
Low level radiation is omnipresent due to exposure to natural
radionuclides, cosmic and solar radiation and widespread use in
various industrial applications (Zdrojewicz et al., 2016). It comes
in different forms including both ionizing (e.g., alpha particles,
heavy ions, neutrons, beta electrons, gamma photons, X-rays and
UVC) and non-ionizing radiation (e.g., UVB, UVA, visible light,
microwave, radio and other low-frequency radiation). Ionizing
radiation arises from many sources including natural (e.g.,
Naturally Occurring Radioactive Materials (NORM) and
cosmic rays), medical (e.g., radiotherapy), diagnostic (e.g.,
computed tomography) and anthropogenic activities such as
mining and milling (e.g., Technologically Enhanced Naturally
Occurring Radioactive Material (TENORM)). Severe adverse
effects of ionizing radiation has predominantly been associated
with acute exposures to high radiation dose rates from nuclear
accidents and nuclear detonations, albeit prolonged exposure to
low radiation dose rate is considered relevant for a number of
chronic pathologies. Non-ionizing radiation such as solar UV
(UVA and UVB) and anthropogenic use of high-energy UVC
radiation in disinfection etc. are potential sources for both acute
and chronic effects. Although UV radiation is considered highly
relevant for human and environmental health, ionizing radiation
are often highlighted for its high ROS-inducing potential.
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When ionizing radiation interacts with the high-water
content of cells, the ionization events generate a variety of
molecular species from water radiolysis which include the
hydrated electron, radicals such as hydroxyl, hydride,
superoxide, and molecular species such as H2O2 and di-
hydrogen (Gebicki, 2016). The production of ROS from these
interactions is therefore secondary to the initial physical
interaction with biological matter (Alizadeh et al., 2015).
Once formed, these species can also induce damage, alter the
redox environment in proximity of the track and/or mimic
signaling pathways that involve ROS produced by other
mechanisms such as mitochondrial sources (Breitenbach and
Eckl, 2015; Sies, 2015; Tharmalingam et al., 2017). The extent of
ionization events and follow-on ROS-induced toxicity pathway
activation can be influenced by the particle size and initial
kinetic energy which is often a function of dose of exposure
and dose-rate of delivery. In the case of photons that have no
mass, the incident particle is an electron with an energy related
to the incident photon wavelength. The physiological
consequences are wide-ranging depending on the extent and
specific site of damage. Studies have shown oxidative stress from
radiation exposure can lead to neurotoxicity closely associated
with Alzheimer’s disease, developmental disorders (Cheignon
et al., 2018), reproductive disruption (Xie et al., 2019; Song et al.,
2020), growth inhibition (Xie et al., 2019) and cardiovascular
diseases (Ahotupa, 2017). However, studies have also shown
that ROS production is not necessarily detrimental and can have
an adaptive role, particularly at low levels, enhancing the
resistance of cells to oxidative damage from higher levels of
radiation exposure (Buonanno et al., 2011). Additionally, co-
exposure to radiation with other environmental stressors and
cellular toxins often causes augmented biological effects
mediated through ROS production (Salbu et al., 2019).
Additionally, factors such as endogenous production of ROS,
nutritional and antioxidant status, age, life stage differences and
individual as well as epigenetic variations are knownmodulators
of ROS formation and further influence radiation-induced
toxicity.

3.4 Biomarkers of ROS
Biomarkers have been defined by the U.S. Food and Drug
Administration and the National Institutes of Health as
measurable characteristics, which are evaluated as indicators
of a biological process, pathogenic process, or pharmacological
response (Califf, 2018). Biomarkers of effect are crucial for
determining the formation of ROS in the AOP and their role
in the AOP as they can often serve as a readout for KEs or
associated events in the causal chain of events leading to an AO.
Macromolecular degradation products might serve as
biomarkers of the effect of ROS in a causal chain of events
leading to the AO such as cellular/organ structural degeneration.
In the case of gene expression alterations, it may be more suitable
to call the event an associated event rather than a KE, since the
genes induced may encode cytoprotective proteins that seek to
mitigate it. Thereby differences in organ-specific antioxidative
defenses and basic ROS levels need to be considered (Scandalios,
2005). Several biomarkers of ROS can be assessed in dependence

on in vitro or in vivo contexts, and at different levels of biological
organization (Ho et al., 2013). The products of in vivo ROS can
be measured in body fluids such as blood or urine. Examples of
such are biomarkers concerning lipid peroxidation like MDA,
protein damage like 3-nitro-tyrosine (3-NO2Tyr), DNA/RNA
damage like 8-OHdG or 8-nitro-guanine (8-NO2Gua) or general
biomarkers such as glutathione (oxidized/reduced ratio) (Porter
et al., 1995; Meagher and FitzGerald, 2000; Smith et al., 2011;
Steffensen et al., 2020). F2-isoprostanes, prostaglandin-like
compounds formed by non-enzymatic free radical-induced
peroxidation of arachidonic acid, can be biomarkers for
monitoring ROS and oxidative stress (Milne et al., 2011; Ma
et al., 2017). In addition, in vitro ROS can directly be measured
by using fluorescent dyes. Here, fluorescent probes such as
DCFH-DA detected cytosolic ROS (Xie et al., 2019; Song
et al., 2020), while dihydrorhodamine 123 (DHR123) and
C11-BODIPY were applied for the detection of mitochondrial
and lipid peroxidation-related ROS, respectively (Gomes et al.,
2017; Song et al., 2020). Also, changes in antioxidative gene
expression can serve as the first indication of exposure exceeding
basal defense levels. Differential expression of genes coding for
antioxidative enzymes such as SOD1, heme oxygenase 1
(HMOX1), oxidative stress-induced growth inhibitor 1
(OSGIN1), NQO1 or glutamate-cysteine ligase modifier
(GCLM) can be indicative, although there is no established
signature of differential gene expression profile for ROS
(Yang and Chitambar, 2008; Gornicka et al., 2011; Yi et al.,
2014; Tsai et al., 2017). There is not a consistent understanding
of how changes in expression of genes indicate ROS levels. For
instance, NQO1 is up-regulated while CAT is down-regulated in
nonalcoholic steatohepatitis livers (Gornicka et al., 2011).
HMOX1 is up-regulated and CAT is down-regulated by
gallium nitrate in human lymphoma cells (Yang and
Chitambar, 2008). Moreover, levels of antioxidant enzymes
[SOD, CAT, POD, GST, GPX or glutathione-reductase (GR)]
can be determined as indicators of redox state and oxidative
stress (Scandalios, 2005). Especially, gene expression changes
might be used as a first-line screening for a MoA of in vitro ROS.
This was recently exemplified in a study examining the MoA of
herbal medicines. Here, ROS-dependent induction of
antioxidative gene expression serves as an event in the
generated putative AOP “Disturbance of oligodendrocyte
differentiation/maturation leading to intellectual disability due
to alterations in white matter” (Klose et al., 2022). For the
determination of the role of ROS as a KE within an AOP, the
most sensitive biomarkers of ROS need to be utilized. Either a
direct measurement of ROS or the use of some of the most
sensitive gene expression biomarkers such as HMOX1 and
NQO1 would appear to be the optimal methods. These must
be measured in a time-based manner relative to the AO to
carefully distinguish whether the ROS formation is a key or
associated event in relation to the AO. Furthermore, care must
be taken with the biological system, and in particular in vitro
where the high partial pressure of oxygen can result in the
formation of ROS which may not be relevant in the low oxygen
partial pressure environment of the organ (Ortiz-Prado et al.,
2019).
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4 CREATION OF HARMONIZED
ROS-RELATED KES

TheMystery of ROS consortium aims to create harmonized ROS-
related KEs. One umbrella event capturing all components such
as “imbalance of oxidative stress processes” could be considered.
Alternatively, ROS and RNS could be combined to “reactive
oxygen and nitrogen species (RONS)” and ADR represented
separately, as the role of ADR in disease/adversity progression
is well-defined. There is an obvious challenge of providing
sufficient specificity in the KE description to balance
producing a general KE that can also be reused in the AOP
framework as a modular unit in different related pathways.
Similarly, another challenge is identifying which measurement
methods to include in the description such that the KE remains
broad and not overly specific. Directionality of KEs defined as
either “up” or “down” would also need consideration. It has been
considered whether the terminology of “up-regulation of ROS”
and “increase in ROS” is different or not, since “up-regulation of
ROS” rather means active production of ROS in cellular
mechanism, while “increase in ROS” captures both aspects of
the excessive production of ROS and decrease in ADR. Active
regulation of ROS, which the term “up-regulation of ROS” may
imply, may fit better to certain cellular or molecular reactions in
disease progression (e.g., inflammatory responses, immune
responses, etc.), however, may not always fit in the events of
ROS produced or formed directly due to the oxidative reactions
involving exogenous stressors. Naming such as “excessive RONS
production” would be another possibility, however, would need a
clearer definition of what “excessive” means and is highly
dependent on the ADR status, and therefore challenging to
determine without taking into account downstream events of

the AOP to define a threshold for what is considered “excessive”.
The consortium also discussed “Depletion of protective oxidative
stress response,” this term was not favored as it indicates that the
protective responses can be exclusively associated with one
mechanism of action. The ADR represents both depletion of
cellular antioxidants and induction of protective enzymes that
regenerate cellular reduction potential (e.g., reducing oxidated
proteins) or enzymatically reduce a radical species. The term
“depletion” therefore does not cover the diversity of the ADR
system, and terminology such as “exhaustion” or similar
terminology such as “diminished” may be more appropriate.
An alternative naming considered would be “insufficient
antioxidant defenses” which is defined in terms of a state or
condition that may not be easily determined. However, none of
these terms cohere well with defining the directionality for easy
integration into the AOP-Wiki (https://aopwiki.org). As both
depend on the RONS production (endogenous/exogenous) or the
demonstration of the onset/triggering of downstream KEs to
indicate a departure from the condition “sufficient”, they may
thus not be ideal terms for the complex or totality of the ADR. A
general term such as “increase, (protective) oxidative defense
response” (directional) or “altered (protective) oxidative defense
response” (undirectional) would capture the naming of events
crucial for the AOP itself (i.e., a KE) as well as modifying factors
that would not necessarily be considered as a KE in the AOP. The
main objectives of KE harmonization described in this
manuscript were to estimate existing knowledge of general
ROS regarding the AOP framework and its application and
gather ideas and input from the broader scientific community
that can help guide and direct further development of the AOP
framework. These initiatives of the workshop have provoked a
discussion among research scientists in moving the Science of

FIGURE 1 | Examples for the concept of the ROS as a KE and associative event in AOPs *DIC: disseminated intravascular coagulation.
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AOPs forward to consider how best to use and optimize the ROS-
driven oxidative stress in the regulatory AOP framework.
Therefore, it is relevant to hazard and risk assessment that
research and regulatory communities identify current
limitations of undefined ROS KEs and their qualitative and
quantitative implications to guide data curation to ensure
consistency for oxidative stress-specific AOPs and their
applications. Identification of the therapeutic targets or
prediction of adverse effects of therapeutics in diseases
utilizing the AOP framework would be one of the future
directions (Figure 1).

5 CONCLUSION

ROS produced in response to stimuli play various roles and have
many faces in human health and diseases. The beneficial roles and
adverse effects of ROS should be considered to solve the puzzles
of AOP constructs with existing insights in the ROS field. The
mystery of ROS consortium continues the effort to harmonize the
events in ROS-related networks. The aim of this review was to
clearly show where ROS are likely to be a KE within an AOP, and
the role of the ADR to mitigate the effect of ROS and thus
modulate the magnitude of the associated AO. There is a clear
need to differentiate in an AOP where ROS are a KE and where
they are associated events. This can be done by understanding the
temporal sequence of events associated with ROS and where they
occur relative to the AO and the KEs likely associated with the
MIE (Figure 1). Further discussion would continue in the
Mystery of ROS consortium in the future.
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