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As toxicologists and risk assessors move away from animal testing and more toward using
in vitro models and biological modeling, it is necessary to produce tools to quantify the
chemical distribution within the in vitro environment prior to extrapolating in vitro
concentrations to human equivalent doses. Although models predicting chemical
distribution in vitro have been developed, very little has been done for repeated dosing
scenarios, which are common in prolonged experiments where the medium needs to be
refreshed. Failure to account for repeated dosing may lead to inaccurate estimations of
exposure and introduce bias into subsequent in vitro to in vivo extrapolations. Our
objectives were to develop a dynamic mass balance model for repeated dosing in
in vitro systems; to evaluate model accuracy against experimental data; and to
perform illustrative simulations to assess the impact of repeated doses on predicted
cellular concentrations. A novel dynamic in vitro partitioning mass balance model (IV-MBM
DP v1.0) was created based on the well-established fugacity approach. We parameterized
and applied the dynamic mass balance model to single dose and repeat dosing scenarios,
and evaluated the predicted medium and cellular concentrations against available
empirical data. We also simulated repeated dosing scenarios for organic chemicals
with a range of partitioning properties and compared the in vitro distributions over
time. In single dose scenarios, for which only medium concentrations were available,
simulated concentrations predicted measured concentrations with coefficients of
determination (R2) of 0.85–0.89, mean absolute error within a factor of two and model
bias of nearly one. Repeat dose scenario simulations displayed model bias <2 within the
cell lysate, and ~1.5-3 in the medium. The concordance between simulated and available
experimental data supports the predictive capacity of the IV-MBM DP v1.0 tool, but further
evaluation as empirical data becomes available is warranted, especially for cellular
concentrations.
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1 INTRODUCTION

Currently, there are over 85,000 potentially toxic chemicals on the
market, with more entering every year (Krimsky, 2017). However,
health hazard information is lacking for a significant majority of
commercial chemicals. Whole animal models are considered the
traditional “gold standard” to investigate both deleterious
endpoints and determine points of departure for risk
assessment and regulatory decision-making. Unfortunately, the
use of animal models comes with multiple limitations. In vivo
animal testing requires a large number of laboratory animals to
assess a single chemical and is a heavy strain on financial- and
time-related resources, as well as a cause of ethical concern.
Providing necessary safety assessments for all these chemicals
within an acceptable time frame is impractical, leaving many
chemicals data poor.

Furthermore, the scientific community has long been aware of
the flaws in the predictive power and wide range of uncertainties
associated with animal models, which even lead to removing
certain drugs from the market (Blaauboer, 2010; Hartung, 2013).
The influential report from the National Research Council (2007)
recommended using in vitro data based on human-derived cells
and organoids as initial models for chemical safety assessments.
In addition, Europe has already banned the use of whole animal
models for cosmetic testing, and the US EPA announced in 2019
that it aims to stop conducting and funding all mammal-based
experiments by 2035 (Regulation, 2016; Grimm, 2019). Interest in
the field of in silico predictive tools has increased to bypass the use
of animal models. However, there are still obstacles to overcome
on the way to raising confidence in in silicomodels for regulatory
decision-making purposes.

In the interest of moving toward regulatory decisions based on
in vitro data arising from human-derived cells and organoids, it is
necessary to hone and perfect models relating to chemical
biokinetics of the in vitro environment (Blaauboer, 2010; Bell
et al., 2018; Zhang et al., 2018). Researchers commonly report a
dose (concentration)-response relationship between the toxic
effect and the nominal concentration (i.e., initial medium
concentration), which may not correctly describe the effective
concentration eliciting the biological response. The description of
the kinetic behavior of the chemical within the in vitro system
relates to the compound’s interaction with tissue/cells and the
medium, binding to plastic and proteins, and volatilization
(Blaauboer, 2010; Groothuis et al., 2015; Proença et al., 2021).
Another factor to consider in the kinetics of the system is
facilitated transport. It has been shown that through the use of
proteins in media such as albumin and other dissolved organics,
diffusive mass transfer of hydrophobic contaminants across
unstirred aqueous boundary layers can be increased (Kramer
et al., 2007; Mayer et al., 2007; Mayer et al., 2005; ter Laak et al.,
2009a; ter Laak et al., 2009b). Due to facilitated transport, the
chemical under investigation may therefore be transported into
the cell at a faster rate in relation to the concentration of protein
in the medium. Facilitated transport can also influence the
kinetics of exchange across other interfaces (e.g., air-water).
Furthermore, it may be important to take into account
additional chemical mass which may be added to the system

when medium is refreshed during longer-lasting experiments.
Any miscalculation of the point of departure (PoD) at the level of
chemical biokinetics in the in vitro system will translate into error
when undergoing in vitro to in vivo extrapolation for human
equivalent dose estimation.

To calculate the biologically effective dose in in vitro systems,
mass balance models relying on empirical data and various
quantitative structure-property relationships can be used.
Proença et al. (2021) have grouped the available mass balance
models into two types: static and kinetic (Proença et al., 2021).
The static models are defined as models utilizing partition
coefficients to calculate the compound concentrations in all
phases present in the system at chemical equilibrium. Such
models include the mass balance models by Gulden and
Seibert (Gülden and Seibert, 2003), the Kramer model
(Kramer, 2010), and the Fischer model (Fischer et al., 2017).
Another static mass balance model is the IV-MBM EQP tool
(Armitage et al., 2014), which has been applied in multiple studies
(Casey et al., 2018; Hatherell et al., 2020; Zhang et al., 2020).
Recently, the IV-MBM tool was updated and evaluated using
available empirical data (Armitage et al., 2021). While all these
models are very useful, they are limited in the sense that they
effectively assume the in vitro system immediately achieves
equilibrium, while it may take several hours or longer.
However, it is possible that a response may be recorded prior
to equilibrium, and the intracellular concentration at equilibrium
predicted by the mass balance model has not yet been reached.
Kinetic models are defined as utilizing differential equations
parameterized with rate constants to simulate the distribution
of chemical over time within the in vitro system. One of the
earliest known kinetic models is the one developed by Zaldivar
and colleagues (Zaldívar et al., 2010; Zaldivar Comenges et al.,
2011). Another available kinetic mass balance model is by Fischer
et al. (2020). While all these kinetic mass balance models predict
medium and intracellular concentration over time, there is a

FIGURE 1 | Schematic representation of the chemical biokinetics in vitro
environment as described by the IV-MBM DP v1.0 model.
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general lack of model evaluation in relation to the growing
number and diversity of chemicals that have been tested in
in vitro systems. To increase the use of in vitro data for
regulatory decision-making, current available in silico methods
relating to the determination of a relevant dose metric need to be
examined.

Here, we aimed to develop a novel dynamic partitioning mass
balance model (IV-MBM DP v1.0) for in vitro repeated dosing
experiments that accounts for volatilization, exchange within the
medium, and facilitated transport. We also aimed to evaluate
model accuracy against available experimental data, and to
conduct illustrative simulations to assess the impact of
repeated doses on predicted cellular concentrations for organic
chemicals spanning a range of partitioning properties.

2 METHODOLOGY

2.1 Chemical and System Property Inputs
The IV-MBM DP v1.0 model (Figure 1) is implemented in a
Microsoft Excel file and programmed using the Visual Basics for
Applications (VBA) language. The user is required to define a set
of physicochemical property inputs within the model, and is also
able to enter degradation half-lives (HL) in air, medium and cells
in hours (h) if available. In the absence of degradation rate
estimates, the model code automatically assigns an arbitrarily
long half-life such that the overall mass balance is not influenced
by the rate. Quantitative structure-property relationships (QSPR)
within the model are used to calculate the membrane-water,
serum albumin-water, plastic-water partitioning coefficients, and
the Setschenow constant (salting out constant); however, these
estimated properties can be overridden by user entries. Similarly,
the cell-water partition coefficient is calculated based on the
proximate composition of the cell (i.e., lipid, protein, and
water content) or defined by the user (Armitage et al., 2014).
For more detail, please refer to the Supplementary Material.

There is an input sheet for system property inputs entitled
“Well plate characteristics” that provides a selection of commonly
used well plates with default dimensions listed or allows the user
to input the dimensional parameters of the well plate. Next, the
“Input system properties” sheet allows the user to define the
in vitro system. For more detailed information, please see the
Supplementary Material.

2.2 Intermedia Exchange, Degradation/
Biotransformation, and Advective Transport
Intermedia exchange, degradation, and biotransformation, as
well as advective transport are calculated using the well-
established fugacity approach (Mackay, 2001) which takes into
account information on flow rates and sorption capacities of the
various phases. Intermedia exchange occurs between air and
water, cells and water, and the vessel (plastic) and water.
Degradation is calculated for the chemical in the headspace,
the medium, and in the cells as a function of their respective
reaction rate constants [k = ln (2)/HL, h−1], volumes, and
sorption capacities. For all chemicals and simulations,

degradation was assumed to be negligible in all phases and
assigned an arbitrary half-life of 1e+10 h. For further
explanation regarding calculations for degradation, please refer
to Supplementary Material Section S1.3 of the Supplementary
Material. Advective transport, i.e., the transport out of the
headspace, is calculated as a function of volume of the
headspace, the sorption capacity of air, and the rate constant
describing exchange with air above the well plate. This rate
constant is based on the residence time specified by the user.
For more details, please see the Supplementary Material.

2.3 Facilitated Transport
The approach to estimate facilitated transport described by
Kramer et al. (2007) was implemented in the IV-MBM DP
v1.0 model as documented in the Supplementary Material. In
brief, facilitated transport of the chemical across the unstirred
aqueous boundary layer is a function of the concentration of
serum albumin and other dissolved organics in solution, the
corresponding partition coefficients and assumptions regarding
the diffusivity of the bound and unbound form. Default
parameter values included in the current implementation of
the model can be overridden by the user. Note that facilitated
transport is assumed to occur across all unstirred boundary layers
and therefore influences the kinetics of cell-water exchange, air-
water exchange and vessel (plastic)-water exchange.

As documented in the SupplementaryMaterial, the facilitated
transport factor (FTF) for bovine serum is calculated as:

FTF � 1 + L p
DB

DU,i
pKSaW pCSaW

where L is the lability factor (range = 0 to 1, default = 1), DB is the
diffusivity coefficient of the bound form in the aqueous phase
(m2/h), DU,i is the diffusivity coefficient of the unbound form of a
given chemical in the aqueous phase (m2/h), KSaW is the bovine
serum albumin partition coefficient (L/L) and CSaW is the
concentration of serum albumin in the medium (L/L).

2.4 Repeat Dosing Exposure Scenarios
The IV MBM DP v1.0 model includes a worksheet titled “Input
Exposure Scenario” which allows the user to input the test
duration, the days on which medium is refreshed, the fraction
of medium refreshed, and the nominal concentration of chemical
in the new medium. For more detail, please refer to the
Supplementary Material.

2.5 Model Parameterization and Evaluation:
Single Dose Scenarios
The IV-MBM DP v1.0 model was parameterized and applied to
simulate the chemicals and single dose scenarios described in
Tanneberger et al. (2013) and Dupraz et al. (2019) The
observations being compared to are the ratios of measured
medium concentration at the end of the 24 or 96 h exposure
period (C24 or C96) to the initial medium concentration (C0)
(i.e., C24/C0 or C96/C0). Cellular concentrations were not
measured in these studies.

Frontiers in Toxicology | www.frontiersin.org August 2022 | Volume 4 | Article 9111283

Bloch et al. Dynamic Mass Balance Modeling

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


The chemicals simulated for the Tanneberger et al. (2013)
study (n = 27) and the Dupraz et al. (2019) study (n = 13) along
with the required property data and initial nominal doses are
compiled in the Supplementary Material. The simulated
chemicals cover a wide range of hydrophobicity and volatility
[e.g., the octanol-water partition coefficient (log KOW) and the
air-water partition coefficient (log KAW) estimates span more
than ten orders of magnitude] and thus are expected to behave
very differently in in vitro test systems. The Tanneberger et al.
(2013) study was conducted using a fish gill cell line (RTgill-W1)
whereas the Dupraz et al. (2019) study was conducted using
marine microalgae (Tisochrysis lutea and Skeletonema marinoi).
Parameter values for the well plate characteristics, medium
characteristics and cell line characteristics are also summarized
in the Supplementary Material.

2.6 Model Parameterization and Evaluation:
Repeat Dose Scenario
2.6.1 Case Study 1: Data on Amiodarone
Experimental data was obtained from Pomponio et al. (2015). In
the article, the team used mouse neurons isolated from frontal
cortex tissue. They subsequently built a 2D mouse model of
neurons. In addition to the physico-chemical information
retrieved from PubChem, relevant information retrieved from
the methods section of the article includes the plate
measurements (6-well plate), working volume of 3 ml, medium
composition (Primary Growth Medium SingleQuots catalogue
No. CC-04462 and Primary Neuron Basal Medium calalogue No.
CC-3256 from Lonza Sales AG, Viviers, Belgium), and the 14-
days exposure scenario (amiodarone treatment of 1.25 μM, whole
medium changes daily). The medium was not supplemented with
serum lipids or albumin. However, the concentration of other
dissolved constituents was calculated as 6 g/L, composed of
dextrose at a concentration of 5 g/L, an approximate
concentration of 0.7 g/L of amino acids, and 0.3 g/L of
L-glutamine.

In comparison to serum lipids and albumin, it is more
uncertain to what extent the presence of sugars such as
glucose and other substances in solution can interact with test
compounds added to the system. To simulate the potential
influence of these dissolved substances on the distribution of
the chemical, they were treated as dissolved organic matter
(DOM) and assigned a partition coefficient scaled to KOW

using a proportionality constant (i.e., KDOM = p KOW). The
proportionality constants for KDOM are based on the study by
Burkhard (2000), which estimated the proportionality constant of

KDOM (p) to be equal to 0.08, and have 95% confidence limits of a
factor of 20 in either direction. In addition, we also conducted
simulations using the proportionality constant of 0.35 for organic
carbon from Seth et al. (1999). For the Pomponio et al. (2015)
study, the results using various KDOM proportionality constants
are found in the Supplementary Material, and the results below
reflect only the default proportionality constant of p = 0.08. The
partitioning properties compiled for amiodarone are summarized
in Table 1.

2.6.2 Case Study 2: Data on BDE-47
Experimental data was obtained from Schreiber et al. (2010). To
determine the neurological effects of PBDEs, primary human
fetal neural progenitor cells (hNPCs) were cultivated in the form
of neurospheres and exposed to BDE-47. Neurospheres were
exposed to BDE-47 over a period of 7 days, with half the
medium (with a chemical concentration of 1 μM) being
refreshed every second day. Exposure occurs in the Lab-Tek
II Chamber slide (Thermo Fisher Scientific), which has a flat,
square-based format. Culture area is reported at 0.7 cm2/well,
with a total well volume of 907 μl and a working volume of
500 μl.

The medium used in these experiments was a mixture of
Dulbecco’s modified Eagle medium (DMEM) and Ham’s F12 (3:
1) with no supplementation with additional serum. Fischer et al.
(2017) determined the lipid and protein concentrations within
the DMEM solution as approximately 0.2 ml/L and 0.75
(0.69–0.86) ml/L respectively. The bulk medium in the model
simulations was therefore parameterized to match these volume
fractions. Again, we simulated the potential influence of other
dissolved organics on the distribution of the chemical following
the same approach as described in Case study 1. The
partitioning properties compiled for BDE-47 are summarized
in Table 1.

2.7 Model Parameterization: Illustrative
Repeat Dose Scenarios for Selected Case
Study Chemicals
To simulate the time-variant chemical distribution of chemicals
displaying different physical and chemical properties, a group of
chemicals with varying volatility and hydrophobicity were
selected. For the “input chemical data” sheet, the chemical’s
respective minimally required information were compiled and
entered: the molecular weight (MW), the melting point (MP), the
octanol-water coefficient (logKOW), the air-water coefficient
(logKAW), and the water solubility at 25°C (CSAT,W). The input
exposure scenario for all chemicals detailed on the “Input
Exposure Scenario” sheet was for a duration of 7 days with an
initial nominal medium concentration of 1 μM and half of the
medium being replaced on days 2, 4, and 6 also with a nominal
concentration of 1 μM. In the “well plate characteristics” sheet,
the 96 well plate with a flat bottom was selected, with a bulk
medium volume of 150 μl. Default serum characteristics of 24 g/L
albumin and 1.9 g/L lipids were chosen, with only the volume
fraction of serum varying from 0.02 to 0.20. To assess the
potential importance of facilitated transport, the simulations

TABLE 1 | Properties of case chemicals used in repeat dose scenarios. Data
retrieved from Pubchem https://pubchem.ncbi.nlm.nih.gov/ and the UFZ
LSER database https://www.ufz.de/.

MW MP LogKow LogKaw Csat,w

Amiodarone 645.3 156.0 7.57 −8.52 2.69E-03
BDE-47 485 82 6.81 −2.83 6.40E-02

MW is molecular weight (g/mol); MP is melting point (°C), and Csat,w is the water solubility
at 25°C (mg/L).
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assuming a serum volume fraction of 0.20 were repeated while
disregarding facilitated transport (option available in input
chemical data sheet).

For the study, we selected the following seven chemicals:
acetone (very hydrophilic and volatile), dichloromethane
(hydrophilic and volatile), 7-ethylbicyclooxazolidine (EBCO,
hydrophilic and semi-volatile), D5 siloxane (very hydrophobic
and semi-volatile), BDE-47 (very hydrophobic and non-volatile),
disulfoton (moderately hydrophobic and non-volatile), and
tetrachloroethylene (moderately hydrophobic and volatile).

Physicochemical properties of the chemicals were retrieved
from PubChem (https://pubchem.ncbi.nlm.nih.gov/). In the case
where the empirical value of a property was not available, such as
logKaw or Csat,w, values were estimated using the online UFZ
LSER database (https://www.ufz.de/). The partitioning properties
for the case study chemicals are summarized in Table 2.

2.8 Metrics of Model Performance
2.8.1 Single Dose Scenarios
Model bias (MB), mean absolute error (MAE) and the coefficient
of determination (R2) from linear regression models of measured
vs. simulated levels were used to quantify the performance of the
IV-MBM DP v1.0 model for the single dose scenarios. MB and
MAE are calculated as shown below. Coefficients of
determination (R2) are calculated following the standard
approach.

MB � ∑log10
P
O

n

MAE � ∑ABS(log10
P
O)

n

where P is a predicted value, O is the corresponding observed
value, and n is the number of comparisons. As described above,
the predicted and observed values are concentration ratios in the
test medium between the end (24 or 96 h) and beginning of the
exposure period (e.g., predicted vs. observed C24/C0). For ease of
interpretation, MB and MAE are expressed as Factors of
Agreement (FoA), i.e., 10MB and 10MAE.

2.8.2 Repeat Dose Scenarios
Model performance for repeat dosing aimed to compare
experimentally derived results with those generated by the
model for two case studies. For the interpretation of case

study 1 (Pomponio et al., 2015), the MB expressed as FoA and
the mean relative error were used.

Relative Error � 100 p
|Estimated −Measured|

Measured

The mean relative error was used to measure the precision of
the predicted data to the observed data. Case study 2 (Schreiber
et al., 2010) was interpreted through comparison of the
enrichment factor (EF) experimentally derived and the one
calculated by the model, where

EF � Intracellular Concentration

Nominal Concentration

As mentioned above, we wanted to explore the sensitivity of
the model results to the proportionality constant of the KDOM (p)
(Seth et al., 1999; Burkhard, 2000). We therefore generated EFs in
accordance with each p and determined which p resulted in an EF
closest to the empirical EF.

3 RESULTS

3.1 Model Performance: Single Dose
Scenarios
The performance of the IV-MBM DP v1.0 model for the
Tanneberger et al. (2013) and Dupraz et al. (2019) data sets
are summarized in Figure 2. As shown, the coefficients of
determination (R2) were 0.89 and 0.85 for the two studies, and
the mean absolute error (MAE) for medium concentrations
corresponds to agreement within a factor of two for both data
sets. The model bias (MB) is nearly one, indicating no systematic
tendency to over- or underpredict the observed concentration
ratios.

3.2 Model Performance: Repeat Dose
Scenarios
3.2.1 Case 1 on Amiodarone
Figure 3 shows the observed data points in relation to predicted
data calculated by themodel. Predicted data points appear to have
higher accuracy for both the medium and the cell lysate on day 0
compared to day 13. Furthermore, there seems to be higher
accuracy for the prediction within the cell lysate than within
the medium where an underprediction of chemical content
is seen.

For the cell lysate (Figure 3, solid triangles), the model bias
(MB) on day 0 and day 13 were −0.21 and 0.26, respectively. The
MB within the lysate over the whole experiment was 0.027 due to
overestimation of the concentration in the cell lysate on day 13.
The mean relative error on days 0 and 13 were 72% and 83%
respectively.

For the mass of amiodarone in the medium (Figure 3, open
triangles), theMB on day 0 and day 13 were calculated at 0.18 and
0.47, respectively. The MB over the whole experiment within the
cell lysate was 0.37. The mean relative error on day 0 and day 13
were 50% and 210%, respectively. However, due to measured data

TABLE 2 | Chemicals used for illustrative model applications and their properties.

MW MP LogKow LogKaw Csat,w

Tetrachloroethylene 165.8 −22.3 3.40 0.36 206
Acetone 58.08 −96.55 −0.24 −2.58 1000000
BDE-47 485.79 82 6.81 −2.83 0.05
Siloxane D5 370.77 −38 8.06 2.87 0.017
Disulfoton 274.4 −25 4.02 −4.05 16.3
Dichloromethane 84.9 −95.1 1.25 −0.88 1.3E+04
7-ethylbicyclooxazolidine 143.19 15.43 0.4 −4.55 374600

MW is molecular weight (g/mol); MP is melting point (°C), and Csat,w is the water solubility
at 25°C (mg/L).
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FIGURE 2 | Model performance of the IV-MBM DP v1.0 model for the Tanneberger et al. (2013) (n = 27 chemicals) and Dupraz et al. (2019) (n = 13 chemicals)
data sets.

FIGURE 3 | Comparison of measured data points and simulations of the IV-MBMDP v1.0 model for amiodarone (nmol/well) found in cell lysate and medium, given
the experimental parameters described in the paper. Top left panel compares measured vs. predicted for day 0, top right panel depicts measured vs. predicted for day
13; bottom panel displays model performance of the predicted and the measured points of amiodarone mass throughout the experiment.
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being below the LOD, there were only two points for day 0, and a
total of six points in respect to the medium.

3.2.2 Case 2 on BDE-47
Figure 4 presents the measured cellular enrichment factors (EF,
concentration in cell divided by initial nominal medium
concentration) and modeled EFs under different assumptions
regarding the potential influence of medium constituents in
addition to serum lipids and albumin. As seen in Figure 4, the
enrichment factor (EF) observed by Schreiber et al. (2010) was
approximately 60. The EFs calculated by the model on the final day
were 482 (p = 0), 424 (p = 0.004), 165 (p = 0.08), 52 (p = 0.35), and
12 (p = 1.6). The proportionality constant described by Seth et al.,
(1999) yielded the EF prediction closest to the empirical value.
However, these results do not provide conclusive evidence that
sorption to additional medium constituents such as sugars and
amino acids are responsible for the discrepancy under the scenario
where these considerations are ignored (i.e., p = 0). As discussed
below, there are other model uncertainties that must be considered
when simulating the in vitro distribution of very hydrophobic
chemicals.

3.3 Illustrative Model Applications: Repeat
Dose Scenarios for Selected Case Study
Chemicals
Figure 5 displays results for predicted cellular concentration over
time (μM) for the different case study chemicals assuming a
serum volume fraction 0.02 and 0.20 with facilitated transport,
and 0.20 while disregarding facilitated transport. Figure 6
displays the calculated facilitated transport factors (FTFs) for
the different chemicals chosen as illustrative case chemicals in the
presence of serum at volume fractions of 2% and 20%.

Of the different chemicals analyzed, acetone,
dichloromethane, and EBCO were unaffected by serum
content and facilitated transport, due to the low log Kow of
these chemicals. This is illustrated through the FTFs of
approximately 1 in Figure 6.

Chemicals with high lipophilicity such as Siloxane D5 and BDE-
47 are strongly affected by both serum content as well as facilitated
transport. However, as BDE-47 is non-volatile and Siloxane D5 is
volatile, the accumulated dose for BDE-47 is relatively stable when
FTF is included, while the accumulated dose for Siloxane D5 is
unstable and constantly increasing with FTF. As seen in Figure 6,
Siloxane D5 has calculated FTFs of 253 and 2,520 at a serum
volume fractions of 0.02 and 0.20, respectively. Due to repeat
dosing and serum volume fractions, there is a higher cellular
concentration at 0.02 vs. 0.20 volume fraction when taking FTF
into account (9.37× higher). Furthermore, an increase by a factor of
1.74 is calculated for a 0.20 volume fraction due to FTF. For BDE-
47, the FTFs calculated at volume fractions of 0.02 and 0.20 were 26
and 247, respectively. Due to repeat dosing and serum volume
fractions, there is a higher cellular concentration at 0.02 vs. 0.20
volume fraction when taking FTF into account (7.55× higher). In
addition, an increase by a factor of 1.46 is calculated for 0.20
volume fraction due to FTF.

Disulfoton which is moderately hydrophobic and non-volatile
is strongly influenced by serum content, though not as strongly by
facilitated transport. FTF ratios for disulfoton calculated at 0.02
and 0.20 serum volume fractions were 1.04 and 1.43, respectively
(Figure 6). Due to repeat dosing and serum volume fractions,
there is a higher cellular concentration at 0.02 vs. 0.20 volume
fractions when taking FTF into account (3.86× higher).

Finally, tetrachloroethylene (log KAW = 0.36) rapidly volatilizes
out of the test medium, thus rendering cellular concentration close to
null until the next exposure, when the chemical again accumulates in
the cells. Facilitated transport has a very low influence on this
chemical. FTF ratios for tetrachloroethylene assuming serum
volume fractions of 0.02 and 0.20, were 1.02 and 1.15,
respectively (Figure 6). There is a lower cellular concentration at
0.02 vs. 0.20 serum volume fraction when taking FTF into account (a
factor of 4.3E-3) because substantially more chemical is lost from the
medium via volatilization over time assuming the lower serum
volume fraction. This trend in cellular concentration versus serum
volume fraction is opposite to what occurs for themore hydrophobic
chemicals (BDE-47, D5 siloxane) included here. For those chemicals,
the influence of serum volume fraction on bioavailability and uptake
into the cells is more important than the influence of bioavailability
on air-water exchange. Furthermore, there was a decrease by a factor
of 0.55 for the cellular concentration calculated for 0.20 serum
volume fraction due to FTF after repeat dosing.

4 DISCUSSION

As the scientific community advances toward in vitro-in vivo
extrapolation (IVIVE) to increase resource efficiency and reduce
ethical concerns in the context of human health risk assessment, it
is necessary to advance tools aimed at the estimation of the
effective dose/concentration in single dose and repeated dosing
in vitro experiments. The IV-MBMDP v1.0 dynamic partitioning
mass balance model developed herein can simulate chemical
distribution in the in vitro system for single and repeat dosing,
while taking into account volatilization and facilitated transport.
This is necessary for longer-running experiments where medium

FIGURE 4 | Enrichment factor (EF) on day 7 as calculated by the IV-MBM
DP v1.0 model for Schreiber et al., 2010 with varying KDOM proportionality
constants (p). Where p = 0.004 and p = 1.6 are the lower and upper limits of
the 95% confidence interval of p = 0.08 (Burkhard, 2000), and p = 0.35 is
the proportionality constant to dissolved organic carbon (Seth et al., 1999).
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is refreshed, especially when the chemical of interest is added with
the refresher medium.

4.1 Model Performance: Single Dose
Scenarios
The results comparing measured and predicted medium
concentrations are encouraging and demonstrate the utility
of the IV-MBM DP v1.0 model to predict chemical

concentrations in medium over time. The additional
advantage of the IV-MBM DP v1.0 model over the IV-MBM
EQP v2.0 version (Armitage et al., 2021) is that concentrations
in all compartments over time are generated as output,
providing deeper insight into the dynamics within the
in vitro system over the time course of exposure. The
dynamic partitioning (DP) version is more computationally
intensive and much lower throughput however. Comparisons
between model output generated by the equilibrium (EQP) and

FIGURE 5 |Graphic illustrations of simulations for chemicals with logKOW < 2: Acetone, EBCO, and Dichloromethane; and illustrations of simulations for chemicals
with logKOW > 2: Tetrachloroethylene, Disulfoton, BDE-47, and Siloxane D5.
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dynamic partitioning (DP) versions of the model would provide
insight into when use of the DP version is warranted but are
outside the scope of the current study.

Empirical in vitro disposition data including cellular
concentrations as well as the amount of chemical sorbed to
plastic are not widely available. For this reason, the
experimental data used for evaluation was confined to
medium concentrations, which limited our evaluation. As with
the performance of the IV-MBM EQP model (Armitage et al.,
2021), the accuracy of the partitioning data, estimated cell
properties (e.g., mass, seeding density, and proximate
composition) and estimated surface area of plastic available for
sorption are key considerations. Given the dimensional
information, the estimated surface areas are relatively well
constrained; however, data on the proximate composition of
the numerous cell lines used for in vitro toxicity testing are
sparce, e.g., (Fischer et al., 2017; Henneberger et al., 2019;
Henneberger et al., 2020). Generating such data is relatively
straightforward and is considered a priority for future research
in order to increase confidence in mass balance model
applications.

4.2 Model Performance: Repeat Dose
Scenario
4.2.1 Simulations of Amiodarone
On the first day, the model showed a tendency to underestimate
the concentration within the cell lysate and overestimate the
concentration in the medium. However, although their MB was
low, their mean relative errors were high, and displaying lowered
precision. By the final day, the MB as well as the mean relative
error increased for both the lysate and the medium. The tendency
to overpredict product in the lysate and medium by the final day
may be due to the underprediction of depletion of chemical in the
in vitro environment. In the paper by Pomponio et al. (2015),
metabolism of amiodarone by the isolated neurons into MDEA
appeared to be insignificant, with no metabolism recorded on day

0 and a limited amount recorded on the final day. It may be
possible that amiodarone is being transformed into an
unmeasured metabolite, or perhaps it is being degraded in
solution. There is an option within the model to calculate
chemical degradation (input chemical data sheet); however,
degradation half-lives are required for this option, and this
information is not readily available and must be
experimentally derived for the specific medium used in the
experiment. Another possibility is the adjustment of the
proportionality constants for dissolved organic matter. This
constant would also need to be determined by the
experimenting laboratory.

4.2.2 Simulations of BDE-47
To cover a range of proportionality constants to octanol for
KDOM, a variety of p values based on published literature (Seth
et al., 1999; Burkhard, 2000) were assumed for these simulations.
The proportionality constant with the result closest to the
empirical value was p = 0.35 (Seth et al., 1999). However,
confidently predicting the EF is difficult due to multiple
reasons and these results do not prove that these assumptions
regarding sorption to dissolved organics are accurate. One
unknown factor is the growth of the neurospheres over the
course of the experiment. Without knowing the exact volume
of the neurospheres, it is more difficult to accurately predict the
intracellular concentration of the chemical. A second unknown
factor is the actual lipid content of the hNPCs cells provided by
Lonza Verviers SPRL. This factor is very important given the
lipophilicity of BDE-47 (log KOW = 6.81). Moreover, Schreiber
et al. (2010) reported that at the end of the experiment, 91% of the
BDE-47 present within the in vitro environment was adsorbed to
the plastic vessel. In contrast, a similar experiment by Mundy
et al., (2004) with BDE-47 determined a fraction bound to plastic
closer to the one produced by the IV-MBM DP v1.0 model. Our
model produced a fraction bound to plastic of 0.4% (p = 1.6) to
11.9% (p = 0), while the empirical fraction bound to plastic
determined by the investigation of Mundy et al. (2004) produced

FIGURE 6 | Facilitated transport factors (FTFs) for the different chemicals chosen as illustrative case chemicals in the presence of 2% (black) and 20% (grey) serum
albumin.
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a fraction associated with the tissue culture plate of 20% to 40%.
Adjusting the default estimated plastic-water partition coefficient
to better match the reported distribution from Schreiber et al.
(2010) yields a cellular EF within a factor of two of the observed
value. However, whether the difference between the empirical EF
and predicted EF is due to the bias in plastic-water partitioning,
the presence of other dissolved organics such as sugars and amino
acids in the medium, or any of a multitude of undetermined
factors is unknown.

4.3 Illustrative Model Applications: Repeat
Dose Scenarios for Selected Case Study
Chemicals
These chemicals chosen for the illustrative applications reflect the
ability of the model to predict the biokinetics of chemicals with
varying degrees of volatility and hydrophobicity. In addition, the
model was used to determine the effect of facilitated transport in
the presence of different concentrations of albumin in solution
(Figure 6). Overall, the model shows the effects of the physio-
chemical properties of the chemicals, as well as the FTF on the
predicted intracellular concentration. The model shows that in
the case of hydrophilic chemicals, whether they are volatile, semi-
volatile, and non-volatile (i.e., acetone, dichloromethane, and
EBCO), there is a freely dissolved volume fraction
approaching 100% regardless of serum volume fraction
assumptions, leaving sorption to serum lipids and albumin
insignificant. In the case of tetrachloroethyene, which is
classified as a low to moderately hydrophobic and volatile
substance, a decreased serum volume fraction as well as FTF
leads to a lower accumulated intracellular concentration due to
the increased loss of chemical into the headspace. In the case of a
non-volatile, low to moderately hydrophobic substance such as
disulfoton, the FTF has a limited influence on uptake kinetics
while the volume fraction of albumin has a greater effect. The very
hydrophobic and non-volatile BDE-47 is also strongly influenced
by the albumin volume fraction. As the serum volume fraction
increases, the system will reach a steady state more quickly due to
facilitated transport. However, more of the chemical will be
bound to serum lipids and albumin, resulting in a lower
bioavailable fraction. If facilitated transport is ignored, the
accumulation of BDE-47 in cells is much slower due to the
very small fraction of the chemical that is directly available for
diffusive uptake. In the case of siloxane D5 (log KOW = 8.06, log
KAW = 2.87), facilitated transport also results in much quicker
accumulation of the chemical by the cells. However, because
facilitated transport is also assumed to occur at the air-water
interface, volatilization of the chemical out of the test system is
more rapid and results in declines in predicted cellular
concentrations between the repeat doses. If facilitated
transport is ignored, uptake into the cells and losses due to
volatilization are both much slower, again because of the very
small fraction of the chemical that is freely-dissolved and directly
available for cell-water and air-water exchange. The patterns
predicted here regarding the relationship between medium
protein concentration and bioavailability are in agreement
with those seen in the study by Fischer et al. (2018). Studying

uptake kinetics in the in vitro environment through use of
fluorophores, Fischer et al. (2018) determined that increasing
fetal bovine serum (FBS) concentrations leads to increased
chemical partitioning to lipids and proteins found in the
medium, thus leading to decreased bioavailability.

The descending order of chemicals that appeared to be the most
highly affected by serum in solution were siloxane D5, BDE-47,
disulfoton, and tetrachloroethylene; for EBCO, dichloromethane,
and acetone, predictions were minimally influenced by albumin
content. In addition, it is important to note that the model
demonstrates that although the dosing regime is exactly the
same for all chemicals, the accumulated dose inside the cell at
the end of the simulation is different for every substance and can
vary by many orders of magnitude. Overall, the illustrative model
applications clearly demonstrate the variation in concentration for
different chemicals given identical nominal exposure scenarios and
highlight the problematic use of nominal concentrations for both
single and repeat dose scenarios.

4.4 Merits and Limitations
Current trends regarding data published by the in vitro toxicology
community are usually in the form of a relationship between the
studied toxic effect and the nominal medium concentrations. Such
datamay bemisleading as the nominal concentrationmay not reflect
the exposure experienced by the cells following chemical distribution
within the in vitro environment. The IV-MBM DP v1.0 model
presented herein can be used to estimate freely-dissolved and cellular
concentrations corresponding to reported nominal medium
concentrations in studies where these concentrations are not
measured. The model can also be used in a reverse dosimetric
fashion prior to an experiment to tailor the chemical concentration
within the cell and the medium to the needs of the study. However,
further efforts are required to increase confidence in the use of such
tools. Empirical in vitro disposition data for chemicals in cells,
medium and sorbed to plastic would help in the parametrization
and evaluation of the model. Specifically, more robust evaluations of
the model predictions for repeat dose scenarios require experiments
where the chemical is tested at multiple concentrations and
concentrations are measured at multiple time points in cells and
medium.Multiple concentrations are necessary for the identification
of saturation processes and the contribution of uptake and excretion,
as seen by the difference in kinetic profiles for saturation in Wilmes
et al. (2013). Furthermore, small but necessary details such as lipid,
protein, and dissolved organic matter content within the medium
used for the experiment need to be measured and/or reported.
Another limitation involves the lack of information regarding cell
cultures used for in vitro testing. Thoughmass and concentrations of
lipid, protein, and dissolved organic matter are necessary for more
reliable predictions, information regarding these constituents is not
always publicly available (OECD, 2018).

5 CONCLUSION

Through this study, we have shown the importance of the
components of the in vitro environment (e.g., albumin, lipids,
and plastic) when determining the effective dose-response
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relationship for both short- and long-term dosing scenarios. We
believe that a better understanding of the potential influence of
serum constituents other than lipids and albumin on in vitro
disposition would also be useful for future model applications.
This is particularly true for the various additives and supplements
used in repeat dose studies. As much of this is either confidential
or not reported, it may require regulatory authorities and peer-
reviewed journals to demand greater transparency.
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