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1 Editorial

The immune system of all living organisms has developed in order to preserve the
integrity and functionality of the organism in the face of external invaders such as viruses,
bacteria or pollutants. This encompasses a homeostatic role of patrolling and controlling the
body tissues and organs, and a defensive role to face an external environment filled with
microorganisms, particles and molecules of different nature, block the entry of potential
threats and adapt to changes in the environment (Murphy et al., 2022).

1.1 History of exposure

Pollutants of different origins and nature can have an impact on immunity (e.g.,
Glencross et al., 2020). Alterations in immune responses caused by air and water
pollutants can hamper human and environmental health, both in terms of inadequate
reactivity (immunosuppression, increased susceptibility to infections and diseases) and in
terms of excessive response (pathological inflammation, allergies, autoimmunity) (e.g.,
Reinmuth-Selzle et al., 2017). The recent concept of the exposome, the measure of all
exposures experienced by individuals through their lifetime (Rappaport, 2011), fully applies
to the interaction between pollutants and immunity, since the immune system has a memory
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(in vertebrates both innate and adaptive immune memory develop),
which biases immune reactions to new challenges. Notably, the
effect on immunity of the individual history of exposure
(immunobiography) is a leading concept in the efforts of
predicting possible inadequacy in immune reactivity to future
challenges (Franceschi et al., 2017). Abundant cross-sectional and
some longitudinal information is available on the immune effects
caused by a number of individual pollutants, based mainly on
experimental in vitro and in vivo models, in which animals or
cells are exposed to the polluting agents (Joubert et al., 2020).
However, much less is known regarding the more realistic
circumstance of exposure to a combination of contaminants, in
which we expect the combined exposure to have effects substantially
different from the sum of individual pollutant’s effects. Studies on
mixtures usually focus on a group of related substances (Holmstrup
et al., 2010; Orr et al., 2020; Fair et al., 2021; Tooker et al., 2021),
while the environment provides co-exposure to many substance
pollutant classes at the same time (Soares et al., 2022).

1.2 Combined exposure to nanomaterials
and other agents

In the case of engineered nanoparticles and nano/microplastics,
carryover effects (i.e., effects arising from traces of chemicals used in
previous synthesis runs) are common both in the case of chemicals
used for particle synthesis, as for instance during additive
manufacturing (Alijagic et al.), and from plasticizes added to
plastic products (Hirt and Body-Malapel., 2020). Particles released
into the environment can come into contact with different biotic and
abiotic agents and adsorb them on their surface, giving rise to hybrid
entities whose interaction with living organisms will depend on the
new characteristics of the hybrid particles (Wheeler et al., 2021). A
relevant example of hybrid entities are combustion-derived
nanoparticles, e.g., soot and diesel exhaust particles, consisting of a
nanosized carbon core with surface-adsorbed chemicals such as
polycyclic aromatic hydrocarbon. The surface reactivity of the
carbon particle can be modified by bioactive compounds, which
might develop their toxicity only after cellular uptake by enzyme-
mediated biotransformation (Stoeger et al., 2009). Thus, nanoparticles
in the environment can have different impacts on the immune
responses of all living organisms, following an interaction biased
by the presence of an acquired biomolecule coating (Saptarshi et al.,
2013; Boraschi et al., 2020; Pinsino et al., 2020; Wheeler et al., 2021),
which can result in pathological reactions (Radauer-Preiml et al.,
2016). Similarly, MPs can adsorb chemicals, getting coated with
proteins and other biomolecules (biocorona) and interact with
bacteria and viruses in the environment and within the organism,
and consequently induce immune reactions that pristine
microplastics cannot provoke (Yang et al., 2022a; Yang et al.).
Notably, the type of particle makes a difference in the immune
reaction elicited by the adsorbed agent. As an example, adsorption
of SARS-CoV-2 on MPs does not change the viral structure or
capacity to interact with target cells and, by promoting its
transport, binding to MPs leads to enhanced infection of ACE2-
positive cells and animals (Zhang et al., 2022a). By contrast,
adsorption on a two-dimensional metal-based nanomaterial leads
to structural alterations of the virus and its inactivation and, in

addition, it promotes virus uptake and degradation by
macrophages (Zhang et al., 2022b). Thus, although the interaction
with biological systems occurs with the substances adsorbed on the
nanoparticle surface, it is nevertheless important to assess the particle
physico-chemical characteristics, because such characteristics dictate
the type and amounts of adsorbed molecules and the strength of their
interaction with the particle surface. Also, the binding affinity may
change in different environments (e.g., in the acidic environment of
lysosomes after uptake) and promote the interaction with the naked
particles, or result in displacement (exchange) by proteins from the
new environment with a higher surface affinity, Thus, the shed
biomolecules now present in a biological compartment they do not
normally reside in may affect cellular responses such as cellular
proteostasis (Cai et al., 2022) potentially leading to immune response.

1.3 Immune response to exposure: Role of
cell death and alarm signals in determining
resolving vs. persistent inflammatory
responses

Particle toxicity in human beings is the consequence of uptake
by three main routes, inhalation, ingestion and skin contact (Alijagic
et al.). The barrier function of immunity at the entry sites is mainly
performed by innate immune cells, in particular phagocytic cells
such as tissue-resident macrophages and, if particles induce an
inflammatory reaction, neutrophils and monocytes coming from
blood (Boraschi and Duschl, 2014). Along with the danger theory
(Matzinger, 2002), the defensive inflammatory reaction can be
initiated by exogenous PAMPs (pathogen-associated molecular
patterns), or endogenous DAMPs (danger-associated molecular
patterns), which activate an inflammatory reaction through
innate receptors. Several types of nanoparticles, for instance
crystalline silica, can kill immune cells, mostly assessed in
in vitro models, by inducing membrane destabilisation and a
chain of effects on organelle functions (Pavan and Fubini, 2017;
Leinardi et al., 2022). We should remember that silica has been used
by immunologists since the 1950s for macrophage depletion. The
death of immune cells and in particular of the innate immune cells
involved in a defensive reaction is critical to our immunity. Necrosis
and immunogenic cell death (ICD), often triggered by the uptake of
toxic particles by phagocytes (Galluzzi et al., 2020; Leinardi et al.,
2022), are an important source of DAMPs and a source of
inflammatory and immunostimulatory cytokines, such as
inflammasome-generated master cytokine IL-1β. The importance
of IL-1β is well established for the initiation and maintenance of
inflammation, particularly upon infection (Dinarello, 2018) but also
as part of the “fibre pathogenicity paradigm”: High aspect ratio
particles can trigger IL-1β release from phagocytes similar to the
known response to asbestos (Palomäki et al., 2011). The alarmin
cytokine IL-1α, which shares the receptor with IL-1β but is
inflammasome-independent, can amplify the response as shown
for quartz and fibre inhalation-elicited inflammation, where IL-1α is
released by lung macrophages injured upon particle uptake (Rabolli
et al., 2014). On the other hand, IL-1 also facilitates the adaptive
immune responses, and IL-1β is mostly an immunostimulatory
factor, rather than a pure inflammatory mediator (Boraschi,
2022). Recent insights have confirmed and highlighted an
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important yet largely disregarded notion, i.e., that IL-1β has a role in
decreasing and resolving inflammation (Giesbrecht et al., 2017) and
in tissue repair (Choi et al., 2020), indicating that IL-1-initiated
pathways are required for the rapid resolution of nanoparticle-
(Ganguly et al., 2009), and fibre-triggered lung inflammation
(Nikota et al., 2017). Persistent cell death, as observed upon
inhalation of slowly cleared and highly cytotoxicity particles, such
as quartz and certain rigid CNTs, will cause persistent release of
alarmins and DAMPs, which will recruit more inflammatory
leukocytes to the site of injury and thus eventually exacerbate the
pathology (Leinardi et al., 2022). Many DAMPs have been
described, mainly nuclear and mitochondrial peptides and
proteins such as N-formyl peptides, histones or HMGB1, and
also nuclear and mitochondrial DNA, which is sensed as DAMP
if released into the cytoplasm or extracellular space, thereby serving
as an injury signal. Self-DNA sensing via Toll-Like Receptors,
inflammasomes and the cGAS/STING pathways have become a
hot Research Topic for a better mechanistic understanding of lung
inflammatory diseases in general (Benmerzoug et al., 2019) and
particle-elicited lung inflammation in particular (Benmerzoug et al.,
2018).

A recent study described immune deregulation and stress
response as a shared feature across taxonomic groups (Danio rerio,
Daphnia magna and Chironomus riparius) exposed to lithium cobalt
oxide nanomaterials, revealing species-specific responses to the
nanomaterials associated with sensitivity, both in the number and
types of differentially expressed genes, and in the pathways impacted
with expression (Curtis et al., 2022). There is a clear conservation of
the cytokine network throughout vertebrates, with many of the key
cytokines important for inflammation, innate and adaptive immunity
present from fish to mammals (Zou and Secombes, 2016). However,
in many cases, the genes are not true homologues and may be related
to ancestral genes that have diverged independently in different
vertebrate lineages. Similarly, most eukaryotic transcription factors
are members of ancient protein families, and many are conserved
across divergent evolutionary lineages, with the exception of the
C2H2 zinc finger (ZNF) family for which, at several points in
evolutionary history, novel gene types have arisen to encode
proteins in which DNA-binding ZNF motifs are tethered to
different types of chromatin-interacting or “effector” domains (see
Liu et al., 2014). Thus, it has recently been hypothesized that C2H2-
ZNF could mediate nanomaterials-induced transcriptomic responses
in other species of eco-toxicological interest (del Giudice et al., 2022)
including plants, where resistance protein-mediated activation of
defence is based on an “altered-self” mechanism of recognition
(Sanabria et al., 2010). Analysis of seventeen datasets of
nanomaterials exposures to D. rerio, Caenorhabditis elegans,
Enchitraeus albidus and Arabidopsis thaliana indicated that also in
non-mammal organisms the adaptation response to nanomaterials is
regulated by the C2H2-ZNF transcription factors family, with the
relative proportion of C2H2-ZNF members decreasing down the
phylogenetic tree, suggesting a possible association with organismal
complexity (del Giudice et al., 2022).

Inflammation caused by particles inhalation is generally a
transient defensive reaction that declines with the elimination of
the nanomaterial without causing serious damage to the organism
(Ganguly et al., 2009; Chen et al., 2016). It is only in a few cases, such
as when the particles persist and cannot be eliminated, that the

inflammatory reaction can become chronic and have pathological
consequences (Boraschi et al., 2017; Leinardi et al., 2022). The use of in
vivo animal models or the evaluation of human exposure is therefore
the most reliable ways of assessing particle toxicity despite the ethical
challenges and the drive towards alternative approaches. Selection of
models is however very important. For instance, mice, which walk on
four legs, are not a good model for inhalation exposure in humans,
who stand on two, because of the completely different orientation of
the lungs and consequent difference in particle localization upon
inhalation. Thus, “the best model for humans is human”, but when we
need alternative models, it is important that the animal species
selected shares with humans the anatomical/biological
characteristics we are interested in, to avoid misleading results.

Human exposure to contaminated indoor and outdoor
environments naturally includes co-exposure with other pollutants
present in the same environment. Among such pollutants, many can
act as PAMPs (for instance bacterial and viral components), thus
particles coated with PAMPs can cause inflammation by activating
innate receptors of immune cells, while naked particles may show no
direct effect (Li et al., 2017). The question whether nanomaterials can
affect adaptive immune responses, without acting as inflammatory
agents in general, can be studied by looking at type 1 allergic reactions.
Type 1 (or immediate-type) allergic responses depend on Th2 cells
and are thus part of adaptive immunity. There is so far no indication
that nanomaterials can be true allergens (Himly et al., 2017), however,
their presence may affect the sensitization process, and the degree or
duration of exposure. Uptake into and processing in antigen-
presenting cells is essential for loading allergen-derived peptides
into the MHC-II complex, and specific nanomaterials can affect
these processes (Joubert et al., 2020; Johnson et al., 2023). Thus,
co-exposure to nanomaterials and allergens may have direct effects on
Th2-driven adaptive immune responses. This can be relevant, for
example, in the food processing industry, where airborne allergens are
known to be a health issue.

1.4 Exposure to airborne particles and
gaseous agents

A wealth of information is available on lung inflammation and
toxicity caused by airborne particles, in particular elongated mineral
particles (EMPs) and, more specifically, asbestos and carbon
nanotubes (Aust et al., 2011; Boyles et al., 2014; Glencross et al.,
2020). Notably, EMPs have in common their shape, which may
contribute to their mode of interaction with biological systems and
potential toxicity. However, their different chemical composition and
surface characteristics may hugely affect their toxic potential.
Likewise, weathering (i.e., changes in surface reactivity due to
persistence in the environment, including adsorption of
environmental agents) is expected to change the EMP effects on
the lung. However, more recently the interest of nanotoxicologists has
focused on airborne microplastics, which are abundantly present in
densely populated cities and in several other environments (Liu et al.,
2019; Chen et al., 2020; Li et al., 2020). The effects of airborne
microplastics (with their coating of other biotic and abiotic agents)
on patients with lung diseases, who have a weaker immune defensive
capacity, suggests a significant risk of exacerbating the pathological
symptoms, due to both mechanical and chemical impacts on lung
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tissue and immune reactions (Lu et al.). The gaseous composition of
air, in addition to the airborne particles, can also have a profound
effect on immune functions and underlie pathological derangements.
In mammals, atmospheric CO2 concentrations above 9% cause a
number of physical and neurological effects, including hypoxia and
acidosis (van der Schrier et al.). Both hypoxia and acidosis have
substantial effects in particular relative on innate immunity
(macrophages, neutrophils), which can result in pathological
immunosuppression (Lardner, 2001; Kellum et al., 2004; Riboldi
and Sica, 2016; Riemann et al., 2016; Taylor and Colgan, 2017).

Another important gaseous compound of urban air-pollution is
the ozone (O3). Current regulations limit single toxicant levels but do
not consider potential interactive effects of oxidant gases and
nanomaterials, where both are known to develop their respiratory
toxicity via the local generation of oxidative stress. While ozone is
already well known to cause injury to the fragile alveolar region of the

lungs, co-exposure can amplify single toxicant outcomes, as observed
in a mouse study from Hathaway and colleagues, where progressive
pulmonary mitochondrial dysfunction has been described (Hathaway
et al., 2021). Eventually, volatile organic compounds (VOCs) can be
released during manufacturing processes and are present in several
products (paints, solvents, glues, gasoline) (Alijagic et al.). While
many VOCs are known respiratory irritants, some have also shown
strong toxicity and carcinogenic potential (He et al., 2015; David et al.,
2021). Interaction of VOCs with nanomaterials can occur depending
on the material chemical composition, surface charge, size, porosity;
and nanomaterials have been used for adsorbing VOCs and also for
reducing their toxicity by catalytic or photocatalytic actions (Guerra
et al., 2018; Attia et al., 2019; David et al., 2021). Thus, it is might be
expected that the fortuitous interaction between VOCs and
nanomaterials in the environment may lead to mitigation of VOC
toxicity. Figure 1 illustrates the main features of the interaction

FIGURE 1
Interaction between particles and contaminants and their effect on immunity. Both vertebrates and invertebrates can be exposed to particles
present in the environment, mainly by ingestion, skin contact and inhalation. Micro- and nanoparticles, e.g., microplastics, engineered nanoparticles and
elongatedmineral particles, are present in the environment together withmany other agents, such as gases (O3, CO2), microorganisms (bacteria, viruses),
chemicals (volatile organic compounds -VOCs-, synthesis residues, additives, environmental contaminants) and many different biomolecules
(pollens, allergens, bacterial compounds). Depending on the particle characteristics and the environmental conditions, interaction can occur, thereby
giving rise to hybrid complexes. Innate immune cells (macrophages, neutrophils) at the barrier sites (skin, lung, gut) first come in contact with the particle/
contaminant complexes and react to them. Depending on the immune conditions (such as CO2-dependent acidosis or hypoxia, chronic diseases,
immunosuppression) and the nature of the complexes, the innate immune reaction can be successful (e.g., enhanced phagocytosis and clearance of
particles and microorganisms) or unsuccessful and detrimental (e.g., increased toxicity due to concentration of toxicants, increased hyperreaction/
infectivity due to excessive exposure to allergens/infectious agents). Artwork by W. Yang.
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between particles and contaminants and of their effects on immunity
in different types of living organisms.

2 Conclusion

Although the field is still in development, we can draw some
general conclusions, which can be the basis for future research
directions.

• Assessing conserved genes across taxa, via deep taxonomic
comparisons, is shedding important new light on
conserved immune and adaptation responses to
exposure to micro/nanoscale particles, which have
occurred over millennia in different forms (volcanic
ash, fire and more recently manufactured and
engineered materials).

• Nanotoxicity evaluation goes far beyond assessing the toxicity
of particles on model cells or experimental animals, because
real life exposure necessarily implies co-exposure with
chemical and environmentally borne biotic and abiotic
agents. Exposure studies should provide full data on
bystander substances for future meta-analysis.

• Nanomaterial effects on immunity are of major importance,
since anomalies in immune responsiveness may hamper
homeostatic adaptation and have substantial pathological
consequences.

• Combination of particles with toxic agents may have different
outcomes, depending on the circumstances (nanomaterials’
chemical nature, shape, size, dose, weathering, presence of
other substances, route of exposure) that will influence the
mode of interaction and the overall effects on the immune
responses of different living organisms.

• Endpoints of immunotoxicity should be wisely selected and
longitudinally evaluated, considering that inflammation and
cell death are part of a successful immune response and not
necessarily linked to permanent damage or pathology.

• We must consider the possibility that interaction of particles
with chemicals, biomolecules or microbes may actually abolish
the potential toxicity of these substances through absorption,
by altering their structure or by changing the mode of their
interaction with immune cells.

• There remains a knowledge gap regarding immune reactions
across living organisms generally, and a key next step in
development of Adverse Outcome Pathways (AOPs), for
example, could include assessing their transferability from
humans to environmental species such as fish, earthworms,
mussels and others widely used in ecotoxicity assessment and
environmental quality monitoring.

• Although still premature, given the huge knowledge gaps we
still experience, the AOP framework represents a basis for
future computational investigations that do not imply the use

of in vitro or in vivo experiments. It is obvious, however, that
the lack of information on the individual history of previous
exposure (which is not easy to assess) can substantially bias the
computational results/predictions.

• A meaningful immuno-nanotoxicity evaluation requires the
joint efforts and collaboration between nanotoxicologists,
immunologists and epidemiologists, who should assess the
history of exposure, the complexity and duration/repetition of
exposures, in order to assess the longitudinal effects and
predict possible pathological alterations of future immune
responses.
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