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Assessing chemical safety is essential to evaluate the potential risks of chemical
exposure to human health and the environment. Traditional methods relying on
animal testing are being replaced by 3R (reduction, refinement, and replacement)
principle-based alternatives, mainly depending on in vitro test methods and the
Adverse Outcome Pathway framework. However, these approaches often focus
on the properties of the compound, missing the broader chemical-biological
interaction perspective. Currently, the lack of comprehensive molecular
characterization of the in vitro test system results in limited real-world
representation and contextualization of the toxicological effect under study.
Leveraging omics data strengthens the understanding of the responses of
different biological systems, emphasizing holistic chemical-biological
interactions when developing in vitro methods. Here, we discuss the relevance
of meticulous test system characterization on two safety assessment relevant
scenarios and how omics-based, data-driven approaches can improve the future
generation of alternative methods.
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Introduction

Humans and the environment are exposed to various chemicals, generated fromboth human
activities and natural sources, having the potential to cause detrimental effects. Chemical safety
assessment aims at characterizing the possible hazards and risks associated with chemical
exposures while also delineating the parameters under which substances can be safely used.
Traditional approaches to chemical safety assessment rely on animal experimentation. However,
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with the rise of alternative methods rooted in the 3R principles
(reduction, refinement, and replacement of in vivo experiments), in
silico and in vitro approaches gained prominence (Burden et al., 2015;
OECD, 2017; OECD, 2018a; Stucki et al., 2022).

The first phase of alternative approaches focuses on investigating
specific toxicological endpoints by utilizing controlled in vitro
environments. However, these methods do not provide mechanistic
insights into chemical exposures. New Approach Methodologies
(NAMs) instead, designed to mimic human biology, offer a deeper
understanding of chemical-induced toxicity. Despite this advancement,
NAMs still face a challenge in providing a structured framework for
linking molecular events to adverse health and ecotoxicological
outcomes. The Adverse Outcome Pathway (AOP) concept was
introduced to address this gap. Adverse Outcome Pathways (AOPs)
establish a coherent link betweenmolecular initiating events (MIEs) and
adverse outcomes (AOs), enhancing our understanding and prediction
of toxicity mechanisms (OECD, 2017; Stucki et al., 2022).

The first generation of alternative approaches is mainly
characterized by a chemocentric view. Indeed, their applicability
domains define the validity of the tests for a group of substances with
specific characteristics. However, as we navigate the landscape of
alternative methods, it becomes increasingly evident that the nexus
of chemical-biological interactions holds the key to developing more
refined and effective models for chemical safety assessment. This is
especially relevant for emerging classes of advanced materials such
as nanomaterials, where the representation of the substance is not
limited to the core characteristics but is affected by the external and
environmental elements of the exposure (Wyrzykowska et al., 2022).

The relevance of in vitro test systems for studying chemical effects
is predominantly determined based on their ability to mimic the
phenotype of the target tissue, and practical considerations including
availability, readiness, and ethical issues (Figure 1A) (Bruner et al.,
1998; OECD, 2018a; Bernasconi et al., 2023). Preference often favors
test systems due to their established use in toxicity testing or
expression of specific markers (OECD, 2023). However, this
decision is rarely based on how the complete molecular profile of
the test system correlates with distinct physiological and pathological
phenotypes in vivo, nor how it is relevant to specific toxicological
endpoints. The absence of a comprehensive definition for the test

system applicability domain currently impedes accurately describing
the relationship between the biological system and the observed
phenotype. To overcome this limitation, it is vital to meticulously
characterize the variables of the test system, including the molecular
machinery, to represent real-life exposure scenarios faithfully.

The introduction of mechanistic toxicology and toxicogenomics
(TGx) has resulted in an increased understanding of how chemical
substances induce their effects in biological systems (Serra et al., 2020a;
Federico et al., 2020; Halappanavar et al., 2020; Kinaret et al., 2020; Serra
et al., 2022a). Characterizing the mechanism of action of chemical
exposures through TGx can support the identification of early
molecular effects and predictive biomarkers for chemical safety
assessment (Fortino et al., 2022). Similarly, TGx data can be used to
derive points of departure through benchmark dose modelling and to
support the definition of safe dose ranges (Labib et al., 2016; Serra et al.,
2020b; Serra et al., 2020c; Saarimäki et al., 2020; Serra et al., 2022b).
Finally, TGx analysis can support effective in vitro to in vivo
extrapolation, hence guiding the development of NAMs (Kinaret
et al., 2017; Saarimäki et al., 2023a). These examples highlight the
potential of TGx in chemical safety assessment. The enormous amounts
of data and resources generated by the TGx field can be exploited to
develop robust chemical safety assessment methodologies with
emphasis on the chemical-biological system interaction, expanding
the current practices from a chemocentric view to an integrated,
holistic approach.

Despite the concerns and limitations (Sauer et al., 2017; Gant
et al., 2023) of integrating omics data in chemical safety assessment,
regulatory agencies are actively exploring their mechanistic value
using them as weight-of-evidence (Bridges et al., 2017; OECD,
2018b). Notably, the OECD has approved the first omics-based
model for screening molecular biomarkers related to skin
sensitization (Johansson et al., 2013; OECD, 2018c). Frameworks
and strategies for standardization are emerging to facilitate their
incorporation into regulatory-approved settings (van der Zalm
et al., 2022; Bleeker et al., 2023). Hence, it is plausible to envision
that by implementing standardized and reproducible methodologies,
omics will become commonplace in future safety assessments, thereby
enabling its implementation in defining the applicability domains of
the test systems.

FIGURE 1
Scientific and regulatory scenarios based on the triangle of chemical safety from Carnesecchi et al. (A) Current selection of the in vitro test system
mainly relies on prior knowledge from literature; (B) Suggested selection strategy of the test method including an omics-based data-driven selection of
the in vitro test system; (C) Mechanistic characterization of chemical effects by a contextualized interpretation of omics data in vitro test system.
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Recently, Carnesecchi et al. (Carnesecchi et al., 2023) introduced
the notion of the triangle of chemical safety, highlighting the need
for integration and cross-reference of chemical data, test method
information, and AOP knowledge to foster chemical safety
assessment. We believe that alternative methods would greatly
benefit from a deep characterization of the test system via omics
approaches. We use the triangle of chemical safety as the base to
showcase two scenarios underscoring the paramount importance of
meticulous test system characterization (Figures 1B, C).

Scenario 1: Omics-based selection of
AOP-relevant in vitro test systems

In a typical safety assessment scenario, the evaluation of
chemicals often begins with their physicochemical
characterization1,2. Evaluating the properties of the chemicals and
previous toxicological evidence is crucial to identify potential risks.
In this phase, hazard assessment is implemented through endpoint-
specific information strategies, where relevant AOPs are selected,
and in vitro tests from the OECD-approved list are performed for
each key event (KE).

For example, a recent validation study for detecting thyroid
disruptive chemicals selected multiple in vitro tests covering relevant
mechanisms associated with thyroid hormone system disruption
(Bernasconi et al., 2023). The selection of the test methods was based
on various factors, including laboratory expertise, procedural
readiness, method comprehensiveness, and requirements on the
test system, such as human relevance and minimization of inter-
species variation.

As pointed out in the study, the test system selection holds a
pivotal role in the prioritization of candidate test methods. This was
performed by a thorough literature review demonstrating the
relevance of test systems and their specificity for the distinct
mechanism within the thyroid signaling pathway under
investigation. A similar approach was used by Chary et al.
(Chary et al., 2018), where the establishment of test systems for
assessing multiple steps in the respiratory sensitization AOP relies
on the pre-existing insights gained from test systems documented in
the scientific literature.

However, cell lines expressing different genes have the potential
to respond differently to the same compound (De Wolf et al., 2016;
Winckers et al., 2021). Thus, we suggest the inclusion of a data-
driven approach (Figure 1B) in the current process of selection of the
most toxicologically relevant test system. This would be based on a
comprehensive characterization of the molecular makeup of the
in vitro system via omics profiling, that could be matched with the
selected Key Events (KEs), for example, by exploiting the recent
curation and annotation of genes and biological systems to KEs
and AOPs (Saarimäki et al., 2023a; Saarimäki et al., 2023b). Recently,

Black et al. showed how investigating the basal gene expression
profiles of cell lines can give insights into their suitability for toxicity
testing (Black et al., 2023). The development of many resources
covering molecular profiles of various biological systems (ENCODE
Project Consortium, 2012; GTEx Consortium, 2013; Thul and
Lindskog, 2018) makes it possible to envision the link between
the AOP annotation and steady-state expression levels. Such a data-
driven approach would reduce manual effort, time, and costs.
Furthermore, it would represent a generalized approach that can
be applied across diverse studies.

It is important to note that the biological complexity of different test
systems may affect their relevance for testing KEs at different levels of
organization (Figure 2). According to the structure of the AOP, events
closer to the Molecular Initiating Event (MIE) may be better
represented and assessed in simpler in vitro tests based on
individual biochemical assays within a monoculture experimental
setup (e.g., ROS production). On the contrary, more apical events,
closer to the Adverse Outcome (AO), may require a higher degree of
organismal complexity, such as those provided by tissues or organs (e.g.,
lung fibrosis) (Noyes et al., 2019). In the context of the validation study
focused on assessing in vitro techniques for identifying chemicals that
influence thyroid function (Bernasconi et al., 2023), it becomes evident
that higher complexity of the investigated KE corresponds to the
utilization of more intricate test systems (e.g., co-culture and 3D
models) resulting in a reduction in the number of tests created. On
the other hand, when examining KEs closer to the MIE (e.g., TSH
receptor activation, TPO inhibition), a broader array of options emerges
for selecting both the test system and the method to implement
(Bernasconi et al., 2023).

This complexity also affects the throughput of the test method to
various chemicals. Early molecular events can be shared in the
response of many compounds, therefore being the starting or
intermediate steps toward multiple AOs. Ideally, high-throughput
screening of a variety of compounds would bemade in these settings.
On the other hand, more complex test systems, such as organs-on-
chips, may capture apical and specific endpoints very well (Ma et al.,
2021), being tested for only limited sets of chemicals. However, they
are subject to higher sources of variability (Leung et al., 2022) thus,
many efforts are ongoing to improve their standardization
(Mastrangeli and van den Eijnden-van Raaij, 2021; Piergiovanni
et al., 2021). We believe that by providing a detailed understanding
of the molecular and cellular responses within these systems through
omics data characterization, a common reference point can be
established. This systematic approach fosters a more robust
foundation for collaborative research and the advancement of
scientific knowledge in the field of chemical testing.

Scenario 2: Advancing mechanistic
characterization of chemical effects
through contextualized interpretation
of omics data in the joint test system-
chemical applicability domain.

The distinct genetic characteristics of biological systems result in
diverse responses to compounds, leading to heterogeneous effects
and poor generalizability between in vitro and in vivo settings, and
across different systems (Chang et al., 2021; Sachana et al., 2021;

1 European Chemical Agency. Guidance on Information Requirements and
Chemical Safety Assessment. https://echa.europa.eu/guidance-documents/
guidance-on-information-requirements-and-chemical-safety-assessment.

2 United States Environmental Protection Agency. Reviewing new Chemicals
under the Toxic Substances Control Act (TSCA). https://www.epa.gov/
reviewing-new-chemicals-under-toxic-substances-control-act-tsca.
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del Giudice et al., 2023). This variability impacts toxicity
assessments, for example, requiring concurrent testing on rats
and mice to account for potential over/underestimation of
human toxicity (Saber et al., 2019).

When studying the effect of chemical exposure on a tissue or an
organ, the result is the synergistic consequence of the responses
exhibited by its constituent cellular populations, which cannot be
simply modelled as their sum (Pognan et al., 2023). This
phenomenon is the rationale behind the development of complex
in vitro systems, where the co-culturing of principal cytological
components of a tissue improves the precision of toxicological
assessments (Pognan et al., 2023).

For example, Chortarea et al. described how co-culturing
epithelial cells alongside dendritic cells and macrophages results
in a more realistic exposure scenario when evaluating the effect of
repeated exposure to carbon nanotube-based aerosols (Chortarea
et al., 2015). Additionally, commercial sources provide airway liquid
interface co-cultures, for instance, combining airway epithelial cells
with fibroblasts (Hiemstra et al., 2018).

The influence of distinct cell populations is also evident in how
AOPs are often developed. When formulating an in vitro battery of
assays for developmental neurotoxicity assessment, Sachana et al.
selected a variety of in vitro tests that span across neuronal
populations to cover the landmarks of neurotoxicity (Sachana
et al., 2021). The AOP is based on the principle that neuronal
toxicity is the result of changes in various fundamental processes of
neurodevelopment, and each of them needs to be tested on the

relevant cell type. This process is common to many AOPs
development strategies and has been previously applied to skin
sensitization and endocrine disruption (Johansson et al., 2013;
Bernasconi et al., 2023).

Therefore, it is clear that the biological system directly affects the
observed response to compounds and that in vitro systems based on
cell components of tissues often capture only a portion of the tissue/
organ level toxicity. Although this effect is well known and is the
conceptual basis of both co-culture systems and testing battery
approaches, it is hardly considered when interpreting the
mechanism of action of compounds, where omics alterations are
usually interpreted from a chemocentric perspective.

Previous TGx analysis demonstrated how specific in vitro
responses constitute components of the in vivo exposure effect,
and therefore the observed cellular phenotype needs to be
contextualized and characterized with respect to the cell system
used (Kinaret et al., 2017). Similar considerations were reached
when assessing the effects of MWCNT on the lungs and four cell
lines (Saarimäki et al., 2023a). Comparing the in vitro responses to
the in vivo counterpart revealed that cell lines easily show specific
signals that are instead hidden in the in vivo system, where the co-
existence of multiple cell types contributes to the observed
phenotype.

Therefore, mechanistic interpretation of omics data requires
contextualizing the observed outcomes in terms of the exposure and
the exposed system. In our second scenario, we stress the importance
of the biological system characterization when studying an exposure

FIGURE 2
The relationship between the complexity of the test system and their relevance to key events (KEs) in the AOP framework. On the x-axis, a generic
AOP structure is depicted, linking a direct molecular initiating event (MIE) to an adverse outcome (AO), at a level of biological organization relevant to
hazard assessment (from cellular to population level). On the y-axis, test systems with increasing complexity are reported (from simple monoculture to
multi-organ on-chip). Annotation of genes in the AOP framework allows the link between toxicologically relevant events and the molecular profiles
derived from test systems.
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omics profile, where the chemical and the test systems are predefined
(Figure 1C). This scenario applies both to cases in which the data has
been newly generated, or when publicly available data are re-used for
further toxicological assessment.

Our recent efforts demonstrated how to characterize gene
alterations through robust bioinformatic pipelines that link
molecular profiles to MIEs, KEs, and AOs for mechanistic insight
(Saarimäki et al., 2023a; del Giudice et al., 2023). This comprehensive
approach considers a broad range of potential AOs and prioritizes all
appropriate biological responses that may lead to adverse outcomes.
Similarly, Labib et al. suggested an integrated use of TGx data in the
AOP framework (Labib et al., 2016).

We further envision that the mechanistic information retrieved
from such approaches needs to be interpreted within the joint
applicability domain of the test system and the chemical to
unveil functional components of the real-life expected exposure
response and lead to better characterization of the hazard potential
and phenotype variability.

This approach addresses the challenge of utilizing omics data in
regulatory settings, where their complexity and lack of straightforward
interpretation have been limiting factors. Furthermore, by considering
the impact of the biological system, it addresses the effect of biological
variability, which has often hampered the comparison of individual
exposures to the same compounds. Mapping the omics results to
specific KEs within an AOP reduces the complexity of the
interpretation (Saarimäki et al., 2023a; Saarimäki et al., 2023b). This
enables amoremanageable andmeaningful understanding of the omics
data, establishing a direct relationship with toxicologically relevant
endpoints in regulatory assessment.

Discussion

The field of toxicology is undergoing a significant shift towards
alternative methods that aim to reduce reliance on animal
experimentation (Burden et al., 2015), with AOPs and AOP-
informed strategies playing a central role in this mechanistic
understanding (Sakuratani et al., 2018).

However, most of the available alternative methods still lack a
deep understanding of the chemical-biological interactions
needed to advance the field of chemical safety assessment.
While this is relevant for all chemicals, it holds particularly
true for nanomaterials, where it has been proved that the
potential hazard originates from the synergistic effect of the
pristine characteristic and system-dependent elements of the
surrounding environment (Wyrzykowska et al., 2022). This is
of paramount importance when selecting the test method since
different in vitro test systems will offer a specific or limited
resemblance of the phenotypic effect in vivo. Thus, an omics-based
thorough characterization of the in vitro test system is crucial for
ensuring the reliability of the test method. It is imperative to evaluate if
the test system expresses the appropriate molecular machinery
relevant to the phenomena under study (Saber et al., 2019) and to
determine if the effect of the chemical-biological interactions would
correspond to real-life scenarios.

This could be achieved by enhancing the OECD-approved tests by
incorporating a mechanistic layer that informs about the applicability
domain of the biological test system. TGx data-driven analysis that

prioritizes in vitro test systems for specific KEs would speed up the
development of new alternative methods.

Similarly, the interpretation of the mechanism of action of
chemical exposures should be contextualized with the biological
system used to generate the molecular profile. This would not only
allow a better understanding of the (partial) effect of the substance
but also result in better prediction of phenotype variability and
contribution to multiple adverse outcomes.

To stably implement the use of omics data derived information,
the robustness and generalizability of in vitro assays and omics
profiles must be ensured. Implementing Good Laboratory Practice
(GLP) principles for omics data generation can boost transparency,
reproducibility, and reliability while ensuring standardization of the
experimental planning and reporting. (Kauffmann et al., 2017;
Saarimäki et al., 2022).

Overall, a compelling necessity exists to strategically leverage the
molecular machinery insight of in vitro test systems to prioritize
them for diverse KEs. Such prioritization can delineate the biological
applicability domain of the AOP, which encompasses a collection of
in vitro systems viable for AOP testing. This knowledge could guide
researchers in selecting themost pertinent system for their study and
facilitating the design of more efficacious integrated test batteries.

By meticulously addressing these facets, we propel the
advancement of NAMs and significantly streamline and enhance
the accuracy of risk assessment within regulatory processes.
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