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Drug-induced liver injury (DILI) is a severe adverse reaction caused by drugs and
may result in acute liver failure and even death. Many efforts have centered on
mitigating risks associated with potential DILI in humans. Among these,
quantitative structure-activity relationship (QSAR) was proven to be a valuable
tool for early-stage hepatotoxicity screening. Its advantages include no
requirement for physical substances and rapid delivery of results. Deep
learning (DL) made rapid advancements recently and has been used for
developing QSAR models. This review discusses the use of DL in predicting
DILI, focusing on the development of QSAR models employing extensive
chemical structure datasets alongside their corresponding DILI outcomes. We
undertake a comprehensive evaluation of various DL methods, comparing with
those of traditional machine learning (ML) approaches, and explore the strengths
and limitations of DL techniques regarding their interpretability, scalability, and
generalization. Overall, our review underscores the potential of DL
methodologies to enhance DILI prediction and provides insights into future
avenues for developing predictive models to mitigate DILI risk in humans.
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1 Introduction

Drug-induced liver injury (DILI) is a substantial safety concern, with a reported
potential for more than 1,000 drugs or supplements to induce liver damage
(Alempijevic et al., 2017; Zhu et al., 2018). DILI presents a significant challenge for
healthcare professionals, pharmaceutical developers, and regulatory authorities (George
et al., 2018), and frequently results in the discontinuation of drug candidates during their
development (Weber and Gerbes, 2022). It also is a primary reason for the withdrawal of
over 50 medications from the market (Devarbhavi, 2012; Wu et al., 2022) and ranks as a
leading cause of acute liver failure in both the United States and Europe (Andrade et al.,
2019). Despite notable advancements in drug safety, there is a continuing need for
innovative approaches and methodologies to identify drugs candidates in development
with potential hepatotoxicity in humans, and for reliable biomarkers to facilitate the early
detection of DILI (Chen et al., 2014).

The need to enhance safety assessments in drug development has driven new
approaches for predicting toxicity. Conventional methods often lack the precision and
efficiency required to mitigate the risks associated with liver toxicity. However, machine
learning, (ML), which includes Quantitative Structure-Activity Relationship (QSAR)
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modeling (Idakwo et al., 2019; Shin et al., 2023) as a pivotal
component, harnesses extensive datasets, chemical structures, and
biological assays to establish quantitative associations between
molecular properties and toxicity outcomes (Wu et al., 2017).
This approach has the potential to facilitate the detection of liver
toxicity during the early stage drug development process, enabling
screening of drug candidates and their analogs prior to
chemical synthesis.

An advanced ML technique, deep learning (DL), signifies a
transformative approach in the field of liver toxicity prediction,
offering the potential for exceptionally accurate, data-driven
insights. DL harnesses neural networks and extensive datasets,
which encompass chemical data, biological assays, and omics
information, to construct predictive models of outstanding
performance (Xu et al., 2015; Goh et al., 2018). Its integration
into liver toxicity prediction empowers researchers and
pharmaceutical companies to identify potential risks associated
with drug candidates at an early stage in the development
process. Moreover, its capacity to analyze diverse and intricate
data sources facilitates a better understanding of toxicity
mechanisms. Consequently, DL not only advances patient safety
by aiding in identifying harmful compounds, but also is cost-
effective and contributes to the accelerated development of safer
and more effective medications.

In this review, we focus on cutting-edge research using ML/DL
applications to predict liver toxicity. We first examine the
application of ML in liver toxicity prediction, with a particular
emphasis on the development of QSAR models. Next, we provide a
systematic evaluation of DL methods and their application for
predicting liver toxicity, drawing comparisons with traditional
ML approaches. Finally, we discuss the strengths and limitations
of DL methods in interpretability, scalability, and generalization.

2 Machine learning for predicting
liver toxicity

Machine learning (ML) algorithms have extensive applications
in classification tasks, including the prediction of liver toxicity
(Supplementary Table S1). In binary classification, compounds are
typically categorized into two classes: a toxic class (commonly
labeled class 1) and a non-toxic class (class 0). ML algorithms can
learn from historical data and categorize new instances into one of
these two classes by considering their observed characteristics,
such as chemical structures. Among the various ML methods
available, Naive Bayes Classifier (NBC), Support Vector
Machines (SVM), and Random Forests are widely employed in
this context.

2.1 Naive Bayes classifier

The Naive Bayes classifier (NBC) is a probabilistic ML algorithm
widely used for both binary and multiclass classification tasks (Rish,
2001; Hastie et al., 2009). It is rooted in Bayes’ theorem, which
quantifies the probability of an event based on prior knowledge of
related events. The “Naive” component of its name comes from the
assumption that input features are conditionally independent,

simplifying calculations and enhancing computational efficiency.
Thus, the NBC computes the conditional probability of a given
instance belonging to a specific class by making the “naive”
assumption of feature independence. Mathematically, it leverages
Bayes’ theorem:

P Ck|x( ) � P Ck|x( )∏n
i�1P xi|Ck( )

P x( ) ,

where Ck is the class, x is the feature vectors.
The NBC makes the “naive” assumption that features are

independent given the class. This strong assumption might not
hold in all real-world scenarios. However, despite this simplification,
it often performs surprisingly well and is computationally efficient.
Critical steps to train and use NBC are listed below:

1. Calculate Class Priors: Estimate the prior probabilities P(Ck|x)
for each class based on the training data.

2. Calculate Feature Probabilities: Estimate the conditional
probabilities P(xi|Ck) for each feature and class pair based
on the training data. This involves counting occurrences of
features in each class.

3. Classification: Given a new instance with features
x1, x2, . . . , xn, calculate the posterior probability for each
class using Bayes’ theorem. The class with the highest
probability is the predicted class.

Variations of NBCs are based on types of data and assumptions.
Some common variations are:

• Gaussian Naive Bayes: Assumes features follow a Gaussian
(normal) distribution.

• Multinomial Naive Bayes: Suited for discrete features like text
data, and often used for document classification.

• Bernoulli Naive Bayes: Designed for binary feature data
(presence/absence), and often used for text classification tasks.

NBC is a straightforward yet effective classifier, particularly
suitable for binary classification tasks, provided that the
assumption of feature independence is reasonably met. While it
may not be the optimal choice for all data types, it serves as a
standardized baseline classifier and is extensively employed in the
prediction DILI through QSAR modeling (Ai et al., 2019; Williams
et al., 2019; Wu Y. et al., 2021). For instance, Zhang et al. (2016)
employed NBC to construct a computational model for assessing
DILI risk. Their model exhibited a 94.0% accuracy in 5-fold cross-
validation during the training phase, with a concordance rate of
72.6% on an external test set. They identified key molecular
characteristics associated with DILI risk.

Tang et al. (2020) developed QSAR models for mitochondrial
toxicity using five machine learning methods, including NBC
along with various chemical signatures. They adopted a threshold
moving strategy to rectify data imbalance and implemented
consensus models to enhance prediction performance,
achieving up to 88.3% accuracy in external validation.
Notably, the study highlighted the significance of
substructures such as phenol, carboxylic acid, nitro
compounds, and aryl chloride in classification. In another
work, Rao et al. (2023), proposed an integrated artificial
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intelligence (AI)/ML model that employed physicochemical
properties and in silico off-target interactions to predict the
severity of DILI for small molecules. They utilized data from
603 compounds categorized by the U.S. Food and Drug
Administration (FDA) as Most DILI, Less DILI, and No DILI,
and combined the NBC with other ML approaches to enhance
DILI prediction, surpassing the performance of QSAR models
based solely on chemical properties.

2.2 Support vector machine classifier

The Support Vector Machine (SVM) is a potent and versatile
machine learning algorithm used for a range of tasks, including
regression, binary, and multiclass classification, as is the case
in predicting DILI through QSAR modeling with chemical
structures (Li et al., 2020a; Tang et al., 2020; Wu Z et al., 2021;
Rao et al., 2023). Its primary goal is to identify a hyperplane
that maximizes the margin between the nearest data points from
the two classes. The fundamental concept is to optimize this
margin between classes, resulting in improved generalization
to new, unseen data. These closest data points are referred
to as “support vectors.” The margin is defined as the distance
between the hyperplane and these support vectors.
Mathematically, the SVM tries to solve the following
optimization problem:

1
2
min
w,b

w‖ ‖2

Subject to

yi w · xi + b( )≥ 1for i � 1: n,

where:

• w is the weight vector perpendicular to the hyperplane.
• b is the bias term.
• xi are the feature vectors.
• yi are the class labels (1 or 0) for each data point.
• n is the number of data points.

The above optimization problem ensures that data points are
correctly classified with amargin. Support vectors are the data points
that lie on the margins or violate the margin constraint. In many
cases, the data may not be linearly separable in the original feature
space. To handle these cases, SVMs often use a kernel trick. A kernel
function transforms the original feature space into a higher-
dimensional space, where the data might become separable.
Common kernel functions include:

• Linear Kernel: K(x, x′) � x · x′.
• Polynomial Kernel: K(x, x′) � (x · x′ + c)d.
• Radial Basis Function (RBF) Kernel: K(x, x′) � e−γ‖x−x′‖

2
.

In some cases, the data might not be perfectly separable, or there
could be outliers. In such situations, SVM employed a soft margin to
allow for some misclassification by introducing a slack variable. The
optimization problem becomes:

1
2
min
w,b

w‖ ‖2 + C∑n
j�1
τj

Subject to:

yi w · xi + b( )≥ 1 − τjfori, j � 1: n, τj ≥ 0,

where C is a hyperparameter that controls the trade-off between
maximizing the margin and minimizing misclassification. Major
steps to train and apply the SVM Classifier are listed below.

1. Data Preparation: Gather and preprocess the data, ensuring it
is properly labeled, and features are appropriately represented.

2. Choose a Kernel: Decide on a kernel function based on the data
characteristics, which can be critical to improving accuracy in
DILI predictions (Wu Y. et al., 2021).

3. Train the SVM: Use an optimization algorithm to find the
optimal hyperplane parameters (weights w and bias b) that
minimize the objective function.

4. Classification: Given a new instance with features x, calculate the
decision function f(x) � w · x + b. If f(x)> 0, classify as class
1; if f(x)< 0, classify as class 0. SVMs can be computationally
intensive for large datasets, and tuning the hyperparameters,
such as the choice of kernel and the regularization parameter C,
is essential for optimal performance.

SVM has been applied extensively in predicting DILI, particularly
in scenarios with limited data, owing to its robust prediction accuracy
and computational efficiency. Notable studies (Wang et al., 2019; Li
et al., 2020b; Hemmerich et al., 2020; Mora et al., 2020; Wu Z. et al.,
2021) have employed SVM for DILI prediction. In a comprehensive
analysis conducted by Wu Y. et al. (2021), involving 14 sets of QSAR
data and 16ML algorithms, the radial basis function SVM (rbf-SVM)
emerged as the top-performing method among all ML techniques,
underscoring its efficacy in this domain.

However, certain limitations were associated with the SVM
algorithm. SVM tends to be computationally expensive and may
not be well-suited for very large datasets. When the dataset exhibits
extra noise, such as overlapping target classes, SVM’s performance
can be compromised. Furthermore, SVMmay perform suboptimally
when the number of features for each data point exceeds the number
of training data samples. These considerations are critical when
deciding on the suitability of SVM for specific DILI prediction tasks.

2.3 Random forest classifier

The Random Forest classifier is a robust ensemble ML algorithm
frequently employed for both binary and multiclass classification
tasks. It is an extension of the decision tree algorithm, having the
primary objective of enhancing generalization and mitigating
overfitting by forming an ensemble of multiple decision trees. In
binary classification, the Random Forest classifier is designed to
classify new instances into one of two classes based on their
features. The process involves the construction of multiple decision
trees during the training phase, and their collective predictions are
amalgamated to reach the final classification decision. Key steps for
training and applying the Random Forest classifier are outlined below.
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1. Bootstrapped Sampling: For each tree in the forest, a random
subset of the training data is selected with replacement. This
process is known as bootstrapped sampling. It creates diversity
among the trees, as each tree is trained on a slightly different
data subset.

2. Random Feature Selection: At each split point in a decision
tree, only a subset of the available features is considered for
splitting. This introduces further randomness and prevents
individual trees from relying on any one feature.

3. Tree Building: Each decision tree is constructed using the
bootstrapped training data and random feature selection.
The tree is grown until a stopping criterion is met, usually
involving the maximum depth of the tree or the minimum
number of samples required to split a node.

4. Voting for Classification: During prediction, each tree in the
forest independently classifies the input data. The final
classification decision is made by taking a majority vote
among the individual tree predictions. In the case of binary
classification, the class with the most votes wins.

Compared with other machine learning methods, random forest
has several unique characteristics:

• Reduced Overfitting: The ensemble of trees helps to mitigate
overfitting by averaging out the noise and biases present in
individual trees.

• Improved Generalization: Random Forests are robust to
outliers and noisy data due to the aggregation of multiple trees.

• Feature Importance: Random Forests can provide insights into
feature importance by analyzing how much each feature
contributes to the model’s performance.

• Non-linearity Handling: Random Forests can capture
complex relationships in the data without requiring explicit
feature extraction/selection.

Random Forest emerges as an invaluable machine learning
technique for the classification of liver toxicity. Gadaleta et al. (2018)
employed Random Forest classifiers and DRAGON molecular
descriptors to create QSAR models designed to predict molecular
initiating events leading to hepatic steatosis. They effectively used a
Balanced Random Forest classifier, alongside the strategy of under-
sampling, to construct robust QSAR models from unbalanced DILI
datasets. Both techniques yielded comparable predictive results,
achieving approximately 75% accuracy in toxicity prediction.

3 Deep learning for predicting
liver toxicity

Deep learning (DL) represents a new class of machine learning
methods characterized by the use of highly complex neural networks.
Networks are structured in deeply nested architectures, often
incorporating advanced operations like convolutions and multiple
activation functions. These distinctive features empower DL with the
unique capability to process raw input data and autonomously
uncover hidden patterns for learning tasks. In the context of
predicting liver toxicity, several DL methods are commonly
employed for classification tasks. These methods deploy neural

networks with diverse architectures and techniques to achieve
precise and efficient classification (Supplementary Table S1). We
provide a brief overview of various DL methods, including multi-
layer perceptron (MLP), deep neural network (DNN), convolutional
neural network (CNN), graph neural network (GNN), recurrent
neural network (RNN), generative adversarial network (GAN), and
transformer.

3.1 Multi-layer perceptron

The Multilayer Perceptron (MLP), also known as an Artificial
Neural Network (ANN), is a fundamental neural network
architecture used for a wide range of machine learning
applications, including classification and regression. An MLP
consists of multiple layers of artificial neurons, typically
structured into an input layer, one or more hidden layers, and an
output layer. Each neuron within a layer is connected to each neuron
in the layers above and below it, creating a densely interconnected
network. Connections between neurons, represented as weights
(often denoted as W), are learned during the training process.
The output of each neuron is determined by applying an
activation function, such as the sigmoid, ReLU, or tanh function,
to a weighted sum of its inputs. Mathematically, the output (O) of a
neuron in a hidden or output layer is computed as follows:

y � f ∑n

i�1wi.xi + b( ),
where y is the output of the neuron. f is the activation function. wi

represents the weight associated with the i-th input connection. xi is the
i-th input to the neuron, and b is the bias term. The training process
involves adjusting these weights and biases using techniques like
backpropagation and gradient descent to minimize a loss function,
allowing the MLP to learn complex relationships within the data.

MLPs are versatile and can approximate a wide range of
functions, making them a popular choice for various ML
applications. Cruz-Monteagudo et al. (2008) investigated
computational approaches for predicting idiosyncratic
hepatotoxicity using 3D chemical structures such as linear
discriminant analysis (LDA) and ANNs. The RBF architecture
was used in a neural network classification method that used the
same descriptors as those in the LDA model. In the training series,
this RBF neural network outperforms the LDA model, achieving an
accuracy of 91.07%, sensitivity of 92.00%, and specificity of 90.32%.
Examination of the Receiver Operating Characteristic (ROC) curve
proved its continuously superior performance.

3.2 Deep neural networks

A Deep Neural Network (DNN) can be mathematically
represented as a composition of functions (Schmidhuber, 2015).
Given an input vector x, the output y of a DNN with L layers can be
expressed as:

y � fL+fL−1+ . . .+f2+f1 x( )
Each layer l applies a linear transformation zl � Wla l−1{ } + bl

followed by an activation function al � σ(zl),whereWl is the weight
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matrix and bl is the bias vector for that layer. The final output is
obtained by applying an appropriate activation function at the last
layer. Like MLP, DNN can be trained by adjusting the weights and
biases to minimize a chosen loss function through techniques like
backpropagation and optimization algorithms. DNNs are excellent
for automatically extracting key features from large inputs, making
them the perfect choice for transcriptomic data containing a wide
variety of features.

DNNs (Hinton et al., 2006) have been effectively used to address
the challenge of predicting various types of chemically induced liver
injuries, including biliary hyperplasia, fibrosis, and necrosis, using DNA
microarray data (Feng et al., 2019). Wang et al. (2019) used multi-task
DNNs to evaluate gene and pathway-level feature selection strategies for
these liver injuries. The DNNmodels exhibited high predictive accuracy
and endpoint specificity, surpassing the performance of Random Forest
and SVMmodels. In another study, Li et al. (2020b), developed a DNN
model with eight layers using transcriptome profiles of human cell lines
to predict DILI. The model leveraged a substantial binary DILI
annotation dataset, achieving AUCs of 0.802 and 0.798 for the
training and independent validation sets, respectively. These results
outperformed traditional machine learning algorithms, including
K-nearest neighbors, SVM, and Random Forest.

In a study conducted by Kang and Kang (2021), a DNN-based
model was designed to predict DILI risk. This model used extended
connectivity fingerprinting of diameter 4 (ECFP4) to represent
molecular substructures. The data for this predictive model was
meticulously collected from various sources, including publications
like DILIrank and LiverTox. A model was developed through
stratified 10-fold cross-validation, and the best DNN model
showed an accuracy of 0.731, a sensitivity of 0.714, and a
specificity of 0.750 when validated in the complete applicability
domain. Jain et al. (2021) used a large-scale acute toxicity dataset
encompassing over 80,000 compounds measured against 59 toxicity
endpoints. They compared multiple single and multitask models
using RF, DNN, CNN, and GNN approaches and found that
multitask DL methods performed best.

3.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) are mainly applied in
image and speech recognition. These networks are well-suited for
capturing spatial hierarchies and local patterns within images. CNNs
typically incorporate convolutional layers for feature extraction,
pooling layers for dimensionality reduction, and fully connected
layers for classification. Architectures like AlexNet, VGG, ResNet,
and InceptionNet have consistently demonstrated exceptional
performance on various image classification tasks (Krizhevsky
et al., 2012; Szegedy et al., 2015; Yamashita et al., 2018; Jain
et al., 2021). Mathematically, CNN can be written as follows: Let
X be the dataset having m number of images. The input feature size
is denoted as n × n. Then the convolution layer is written as:

A l( )
ij � σ ∑f

p�1
∑f
q�1

W l( )
p,qA

l−1( )
i+p−1,j+q−1 + bl⎛⎝ ⎞⎠

A l( ) � conv A l−1( ), F l( )( )

Here, l � 1, . . . , L are the number of convolution layers. Next,
the CNN has the pooling layer:

P l( )
ij � max A l( )

pi,pj,A
l( )
pi,pj+1, . . . , A

l( )
pi+p−1,pj+p−1( )

P l( ) � maxpool A l( ), P( )
Flatten the pooled feature maps to obtain a vector of size F. Now

the fully connected layer is defined as:

Z l( ) � W l( )·A l−1( ) + b l( )

Z l( ) � FC A l−1( ), H l( )( )
The output layer has a single neuron for binary classification or

multiple neurons for multi-class classification:

Y � σ Z L( )( )
A suitable loss function, such as binary cross-entropy, is used for

classification. The network is trained using gradient descent-based
optimization to minimize the chosen loss function.

CNN was also used for DILI prediction (Nguyen-Vo et al., 2020;
Chen X. et al., 2022). Nguyen-Vo et al. (2020) introduced a novel
computational model for the prediction of DILI utilizing CNNs and
molecular fingerprints based on 1,597 compounds. The model came
up with an average accuracy of 0.89, a Matthews correlation
coefficient of 0.80, and an AUC of 0.96.

3.4 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks
explicitly tailored for operating on graph data structures. They are
particularly well-suited for tasks involving graphs, such as social
network analysis, chemical structure analysis, and computational
vision (Zhou et al., 2020). Node-level tasks are used in DILI
prediction and chemical structure analysis, and involve predicting
the properties or characteristics of individual chemical components,
such as molecules, within a graph or network structure.

To learn node representations, GNNs combine information
from nearby nodes, effectively capturing intricate relationships in
graphs. For example, letG � (V, E) be the molecular graph, whereV
is the set of nodes (atoms) and E is the set of edges (bonds). The
graph convolutional layer updates node representations based on
their neighbors’ features. Let X be the initial node features
(molecular fingerprint-embedded features) for all nodes in the
graph. The output of the l− th graph convolutional layer can be
represented as X(l) using the following equation:

X l( ) � σ D̂
−1
2ÂD̂

−1
2X l( )W l( )( ),

Here, Â � A + I is the adjacency matrix of the graph with added
self-loops, D̂ is the diagonal of matrix Â, W(l) is the learnable
weights for l− th layers, and σ is the activation function. Pooling or
aggregation layers were incorporated to combine node features
across different neighborhoods. Similar with the CNN
architecture, one or more fully-connected layers were used to
learn higher-level representations from the aggregated features.
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The final layer produces the network’s output. Depending on the
task (e.g., regression, classification), the number of neurons and the
activation function in the output layer can be adjusted. The forward
pass through the GNN can be represented mathematically as written
below. LetX(0) be themolecular fingerprint-embedded features. The
graph convolution is:

X l( ) � σ D̂
−1
2ÂD̂

−1
2X l( )W l( )( )

Aggregated Features � Pooling/Aggregation X l( )( )
D1 � Dense Aggregated Features, neurons, activation( ), . . .,

Dk � Dense Dk−1, neurons, activation( )
Output � Dense Dk, output neurons, output activation( )

Here, k represents the number of dense layers in the network.
GNNs have demonstrated their efficacy in addressing node-level

tasks related to DILI predictions (Hwang et al., 2020). Ma et al. (2020)
used a MV-GNN based model as a backbone to propose a property
augmentation approach to involving more data for four datasets with
liver toxicity-relevant properties. The GNN-based approach
significantly outperformed existing baselines on DILI datasets,
achieving an impressive 81.4% accuracy using cross-validation with
random splitting. Lim et al. (2023) introduced a novel technique
known as supervised subgraph mining (SSM). SSM effectively
identifies explicit subgraph features through iterative optimization
of graph transitions. This approach surpasses conventional machine
learningmethods such as SVM, Random Forest, k-Nearest Neighbors,
and deep learning neural networks in DILI classification using two
datasets, DILIst and TDC-benchmark. By employing structure-based
pattern matching, the proposed approach can also identify subgraph
characteristics associated with specific medication groups.

3.5 Recurrent neural networks

Mathematically, a recurrent neural network (RNN) can be
represented as follows: at each time step t, the RNN takes an
input vector xt, and computes the hidden state ht and the output
yt using the following equations:

ht � f Whh*ht−1 +Whx*xt + bh( )
yt � g Wyh*ht + by( )

Here, ht represents the hidden state at time t, xt is the input at time t,
yt is the output at time t,Whh,Whx,Wyh are weight matrices, bh and
by are bias vectors, f and g are activation functions (typically
sigmoid or hyperbolic tangent for f and softmax for g). The hidden
state ht captures information from previous time steps, allowing
RNNs to model temporal dependencies in sequential data.

Xu et al. (2015) employed undirected graph recursive neural
networks (UGRNN) to develop DL models for predicting DILI for
drugs and small moleculars. Their DL-combined model outperformed
ANNandDNNmodels, achieving an accuracy of 86.9% and anAUCof
0.955 when predicting the DILI of 198 drugs in the external validation
set. The model also successfully identified important molecular
substructures relevant to DILI, demonstrating the power of DL in
this context. In another study Ruiz Puentes et al. (2021), investigators
proposed using PharmaNet, a machine learning method that employs

RNNs, to search for novel pharmaceutical candidates. PharmaNet was
applied to discover ligands for 102 cell receptors and achieved
impressive performance with a 97.7% Receiver Operating
Characteristic curve-Area Under the Curve (ROC-AUC).

3.6 Generative adversarial network

Generative Adversarial Network (GAN) is an advanced
generative model composed of two neural networks: a generator
and a discriminator. These networks are trained in opposition to
each other. The generator’s objective is to create synthetic data that
is virtually indistinguishable from genuine data, while the
discriminator’s role is to differentiate between real and generated
data. GANs operate through a minimax game where the generator
and discriminator compete. As training progresses, the generator
becomes increasingly skilled at generating realistic data, while the
discriminator becomes better at distinguishing between real and fake
data. This dynamic process drives the generator to produce high-
quality synthetic data, establishing GANs as a foundational
technology in a wide range of applications, such as picture
production, style transfer, and data augmentation.

Chen Z. et al. (2022) developed Tox-GAN, which employed
deep GANs to generate fresh animal study results without the need
for extra tests. They demonstrated its effectiveness by creating
transcriptome profiles with remarkable similarity (0.997 ±
0.002 in intensity and 0.740 ± 0.082 in fold change) to real-world
data obtained from rat liver toxicogenomic studies. In a related
study, Li et al. (2023) introduced the TransOrGAN framework,
which aims to map gene expression patterns across multiple rodent
organs, sexes, and ages. TransOrGAN generated synthetic
transcriptomic profiles with an average cosine similarity of
0.984 compared to their corresponding real profiles. This proof-
of-concept study involved 288 samples from nine different organs,
showcasing the potential of TransOrGAN to generate realistic
transcriptomic data for various research applications.

3.7 Transformers

The field of Natural Language Processing (NLP) has undergone
a transformative shift with the introduction of transformer-based
models (Kang et al., 2020). These models have enabled the automatic
analysis and comprehension of text data in scientific literature. In
the domain of DILI studies, NLP models have proven to be valuable
tools for extracting insights from textual sources.

Zhan et al. (2022) developed NLP techniques specifically for
biomedical texts, allowing the automated processing of 28,000 titles
and abstracts retrieved from the PubMed database. By comparing
five different text embedding techniques, they found that the model
using term frequency-inverse document frequency and logistic
regression performed best, with an accuracy of 0.957 on the
validation set. Wu Z. et al. (2021) employed a NLP approach
based on Bidirectional Encoder Representations from
Transformers (BERT) to classify DILI and decipher the meanings
of complex text in drug labeling documents. This AI-based model
utilized BERT’s power to enhance understanding of text data,
particularly in the context of drug safety assessments.
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4 Comparison of machine learning and
deep learning for DILI prediction

Machine learning and deep learning techniques have emerged
as powerful tools for developing models to predict DILI (Table 1).
Machine learning uses algorithms to discover patterns and make
predictions based on labeled data, whereas deep learning, a subset
of machine learning, uses artificial neural networks to replicate
the sophisticated functioning of the human brain. Machine
learning algorithms analyze a set of predefined features to
identify patterns associated with liver injury in the context of
DILI prediction, whereas deep learning models can automatically
extract intricate features from raw data, providing a more
nuanced understanding of complex relationships. The major
distinction between the two is in the level of abstraction and

data representation (Figure 1). Machine learning is based on
feature engineering, in which the algorithm needs to select
important features from high-dimensional dataset, whereas
deep learning can develop hierarchical representations from
raw data, possibly catching subtle nuances that typical
machine learning algorithms may overlook. Both approaches
provide important contributions to improving our ability to
detect and alleviate DILI, giving essential insights for drug
development and patient safety.

5 Conclusion

Deep learning approaches have indeed shown significant
promise in predicting DILI, leveraging the advantages of large

FIGURE 1
The general flowcharts for machine learning and deep learning techniques for developing models to predict DILI.

TABLE 1 Comparative analysis of machine learning and deep learning for DILI prediction.

Machine learning Deep learning

Definition Machine learning, as an application and subset of artificial intelligence,
enables systems to autonomously learn from experiences and improve
without manual intervention. Machine learning primarily generates
outputs in the form of numerical values, such as score classifications

In contrast, deep learning is essentially a subset of machine learning that
intricately connects recurrent neural networks and artificial neural
networks. Deep learning produces outputs ranging from free-form
elements, such as unrestricted sound and text, to numerical values

Data uses and
presentation

Machine learning utilizes unstructured data and information, resulting in
distinct data representation scenarios. It involves handling thousands of
diverse data points, contributing to its learning process

Deep learning, leveraging artificial neural networks, introduces a different
data representation paradigm, emphasizing neural networks. It is
characterized by a vast amount of data, incorporates millions of data
points, facilitating a more nuanced understanding of patterns and
relationships. Deep learning models, especially deep neural networks,
often require large amounts of labeled data for training

Algorithm Machine learning employs a variety of automated algorithms,
transforming them into numerous model functions capable of predicting
future actions based on data patterns. Feature extraction is important for
ML algorithms. Traditional machine learning models often have lower
computational requirements compared to deep learning models

In contrast, deep learning relies on neural networks to transport input
through multiple processing levels, elucidating the characteristics and
relationships within the current dataset. However, it is not necessary to
extract or select important features for deep learning algorithms because it
can be adjusted by weights in the hidden layers of the network

Application of DILI
prediction

Machine learning stays competitive on identifying hidden patterns from a
small amount of input dataset. It assists in various aspects of DILI
prediction and management

Deep learning excels in resolving complex machine learning challenges
within a system, and its efficacy for DILI prediction will become more
prominent with the progress of data accumulation in the field
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datasets and the ability to capture intricate patterns. In the context of
QSAR modeling, DL methods have often been reported to
outperform conventional machine learning methods. However, it
is essential to recognize that DL’s superiority is not always guaranteed
and can depend on the specific characteristics of the dataset and the
problem. For instance, Liu et al. (2018) pointed out that global
performance metrics, which typically show DNNs as superior to
conventional machine learning, may not be appropriate for
datasets with highly imbalanced sample distributions. They argued
that for highly toxic chemicals, DNNs trained on all samples often
perform worse than indicated by global performance metrics.

Imbalanced datasets can lead to misrepresentations of the actual
performance, especially in cases where the minority class (highly
toxic chemicals, in this example) is of particular interest. Similarly,
Russo et al. (2018) compared DNN with conventional machine
learning algorithms, including Naive Bayes, AdaBoost Decision
Tree, Random Forest, and SVM, in the development of QSAR
models for predicting endocrine disrupting endpoints using up to
7,500 compounds. Their results revealed that while DNNs may
achieve higher accuracy on the training set, they did not consistently
outperform classic machine learning methods in 5-fold cross-
validation and predictions on external test sets. The performance
of machine learning models can be influenced by various factors,
including the nature of the data, the choice of molecular descriptors,
and the specific problem being addressed.

Deep learning has specific characteristics for toxicity prediction.
Scalability is a primary one, since DLmodels can handle vast amounts
of data and understand nuanced correlations, enabling the discovery
of small DILI risk variables that older approaches may overlook.
Furthermore, by collecting latent characteristics across varied datasets,
these models can accomplish impressive generalization, boosting the
capacity to predict DILI across different chemicals and patient groups.
However, interpretability is a key weakness of DL in this scenario.
Because the models are intrinsically complex, deciphering the
precise biological or chemical elements leading to DILI forecasts is
difficult, limiting one’s capacity to grasp the underlying processes.
Additionally, DL also requires a large amount of high-quality data for
training, and like machine learning, is also prone to overfitting when
the training data is noisy or when the model is too complex.

Researchers and practitioners in this field must carefully
consider these advantages and challenges when choosing and
implementing DL approaches for toxicity prediction. Balancing
the needs for accuracy and interpretability is crucial in improving
our understanding and prediction of DILI and other toxicities.
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