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Introduction:We previously developed a PBPKmodel template that consists of a
single model “superstructure” with equations and logic found in many
physiologically based pharmacokinetic (PBPK) models. Using the template,
one can implement PBPK models with different combinations of structures
and features.

Methods: To identify factors that influence computational time required for PBPK
model simulations, we conducted timing experiments using various
implementations of PBPK models for dichloromethane and chloroform,
including template and stand-alone implementations, and simulating four
different exposure scenarios. For each experiment, we measured the required
computational time and evaluated the impacts of including various model
features (e.g., number of output variables calculated) and incorporating
various design choices (e.g., different methods for estimating blood
concentrations).

Results: We observed that model implementations that treat body weight and
dependent quantities as constant (fixed) parameters can result in a 30% time
savings compared with options that treat body weight and dependent quantities
as time-varying. We also observed that decreasing the number of state variables
by 36% in our PBPK model template led to a decrease of 20–35% in
computational time. Other factors, such as the number of output variables,
the method for implementing conditional statements, and the method for
estimating blood concentrations, did not have large impacts on simulation
time. In general, simulations with PBPK model template implementations of
models required more time than simulations with stand-alone
implementations, but the flexibility and (human) time savings in preparing and
reviewing a model implemented using the PBPK model template may justify the
increases in computational time requirements.

Conclusion: Our findings concerning how PBPK model design and
implementation decisions impact computational speed can benefit anyone
seeking to develop, improve, or apply a PBPK model, with or without the
PBPK model template.
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Introduction

Physiologically based pharmacokinetic (PBPK) models describe
the absorption, distribution, metabolism, and elimination of a
chemical in an organism following exposure. These models can
provide estimates of time course concentrations of a chemical in the
blood and specific body tissues. When implementing a PBPK model
using a computer, one must make several decisions that affect the
ease of implementing and using the model and the performance of
model simulations, including computational speed. One must first
decide which platform or language to use for model implementation.
Like other models that consist of systems of ordinary differential
equations (ODEs), PBPK models can be implemented using
interpreted languages (like R, Python, or Matlab) or compiled
languages (like C or Fortran). Many PBPK modelers work
primarily with interpreted languages (even though this results in
slower simulations) because using such languages makes it easier to
encode and iteratively develop models. Another implementation
option involves combining the convenience of interpreted languages
and the speed of compiled languages. In one such approach,
modelers use R and MCSim together: first, they use the MCSim
model specification language (Bois, 2009), which is relatively easy
for humans to read, to define parameters and encode differential
equations in a single file. Using the MCSim “mod” tool, this model
file can be translated to C and then compiled for use with simulation
scripts written in R. Modelers usually choose an implementation
language and platform based on their prior expertise, computational
sophistication, financial resources, and other factors. However, the
time needed to implement and run a model can certainly also be a
factor in such decisions.

PBPK models are commonly used to perform dosimetric
calculations in support of chemical risk assessments, but the
models should undergo a rigorous quality assurance (QA) review

prior to use (McLanahan et al., 2012). This includes evaluating the
structure, purpose, and mathematical description of the model, as
well as ensuring that the computer implementation is free from
errors and can sufficiently reproduce experimental data (Clark et al.,
2004; IPCS, 2010; McLanahan et al., 2012; U.S. EPA, 2020). Once a
PBPKmodel has passed QA review, it may be considered suitable for
application. In some cases, the assessor might use the model to
perform just a few simulations, for example, to compute a dose
metric or human equivalent dose for one or a few exposure scenarios
with a single set of model parameters per species of interest. In other
cases, however, many thousands of simulations may be required.
Monte Carlo analyses, in which many simulations are performed for
different sets of model parameters in order to quantify uncertainty
and variability in model predictions, are becoming more common in
PBPK modeling applications (Chiu et al., 2014; Krauss and
Schuppert, 2016; Clewell et al., 2019). The computational time
required for a single simulation can greatly impact the overall
time required for a Monte Carlo analysis, which might involve
hundreds of thousands of simulations (Hamra et al., 2013; Tsiros
et al., 2019; Wedagedera et al., 2022).

Previously, we developed and described a PBPK model template
that allows one to implement many different chemical-specific
PBPK models using a single model “superstructure” with
equations and logic commonly found in PBPK models (Bernstein
et al., 2021; Bernstein et al., 2023). The template includes a wide
variety of features allowing for the implementation of many different
PBPK models, but in implementing any given chemical-specific
PBPK model, only a subset of the available features are typically
used. For example, Figure 1 illustrates how a PBPK model for
dichloromethane (DCM) was mapped onto the PBPK model
template superstructure, with darker and lighter rectangles and
arrows indicating the features that are included and excluded,
respectively. Source code and documentation for the most

FIGURE 1
Mapping a PBPK model for dichloromethane (DCM) to the PBPK model template superstructure. The model template superstructure includes
multiple tissue compartments and features that commonly appear in published PBPKmodels, so to implement a particular chemical-specific PBPKmodel
using the PBPK model template, the desired structure must be mapped onto the model template superstructure by setting the appropriate parameters.
Unused parameters are set to zero, and for unused compartments, the respective blood flows are set to zero. The mapping of the U.S. EPA (2011)
PBPK model for DCM is shown here by using lighter colored arrows, boxes, and text for parameters and compartments that are “switched off” or set
to zero.
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recently published version of the PBPK model template is available
online (https://doi.org/10.23719/1527967). We implemented the
PBPK model template using R and MCSim to balance ease-of-
use with computational speed. The ability to write simulation scripts
in R means that the template is relatively easy for PBPK modelers
and risk assessors to use, while our specification of the mathematical
details of the PBPK model template in the MCSim model-building
language, which can be easily translated to C, takes advantage of the
faster speed that can be achieved using compiled code. When PBPK
models are implemented using the template, less time may be need
for QA review because the PBPK model template equations,
structure, and implementation source code have already
undergone a thorough QA process. That is, when performing a
QA review for a chemical-specific PBPK model that has been
implemented using the template, one only needs to consider
whether the equations and logic selected for inclusion are
appropriate and to verify that the input spreadsheets used to set
parameter values for the model and exposure information for the
desired simulations have been correctly specified.

To give the model template the flexibility needed to implement a
wide range of chemical-specific PBPK models, more compartments
and options for modeling different processes are included than
would be included in any stand-alone PBPKmodel implementation.
Therefore, expressions for many unused quantities will typically be
evaluated when performing a simulation for a given model using the
PBPK model template. In light of this, one might expect that
simulations performed using a template-implemented model
would require significantly more time than those performed
using a stand-alone model implementation. We explored the
impact that different model implementation decisions have on
computational speed, including the extent to which the
computational time needed for template-implemented model
simulations differs from that needed when using stand-alone
model implementations.

There is limited literature currently available on the impact of
PBPK modeling implementation decisions on computational speed
of simulations. Several studies (Snowden et al., 2018; Bloomingdale
et al., 2021; LeFew and El-Masri, 2012) considered how combining
model compartments (which represent tissues or organs) to create a
new model with fewer compartments (i.e., “lumping”) reduced
computational time requirements. Bloomingdale et al. (2021)
considered the development of a PBPK model focused on the
brain for antibody therapeutics and showed that by combining
tissue compartments together, they could reduce the number of
differential equations in their model from 100 to 16 and achieve an
improvement in simulation speed of approximately 11-fold.
Similarly, Snowden et al. (2018) considered using lumping to
reduce linked PBPK models describing the effects of drug
administration and found they could decrease simulation time by
up to 80% by doing so. Other studies have explored how high-
throughput PBPK models can be used to quickly assess many
chemicals and the reductions in simulation time associated with
such models (Naga et al., 2022). However, none of these studies
involved a systematic evaluation of how selection of model features
impacts computational speed for model simulations.

Methods

We performed various timing experiments using two
chemical-specific PBPK models–one for DCM (U.S. EPA, 2011)
and one for chloroform (CF) (Sasso et al., 2013) – and four
different exposure scenarios–constant continuous oral, periodic
oral, constant continuous inhalation, and periodic inhalation
exposures (U.S. EPA, 2011; Sasso et al., 2013). We used PBPK
model template implementations of the DCM and CF PBPK
models (depicted in Figures 1, 2, respectively) that have been
described in detail by Bernstein et al. (2023), as well as stand-alone

FIGURE 2
Mapping a PBPKmodel for chloroform (CF) to the PBPKmodel template superstructure. To implement the Sasso et al. (2013) PBPKmodel for CF, we
mapped the existing model structure to the PBPK model template superstructure by setting the appropriate parameters. Unused parameters are set to
zero, and for unused compartments, the respective blood flows are set to zero. The mapping of the published CF model to the model template
superstructure is shown here by using lighter colored arrows, boxes, and text for parameters and compartments that are “switched off”or set to zero.
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implementations of the same models. These two models were
selected for the current evaluation because we had previously
been able to demonstrate nearly exact duplication of results (to
within 10–6) for stand-alone and template implementation of the
models (Bernstein et al., 2023), and because many model features
found in other PBPK models for environmental chemicals appear
in one or both of these models. In this latter regard, the DCM and
CF PBPKmodels provide good coverage of the model feature space
that we sought to address. The results of our experiments have
allowed us to draw useful conclusions about which aspects of
PBPK model structure, design, and implementation have relatively
large (and relatively small) impacts on computational time
requirements when performing simulations with such models.

All computational analyses described herein were performed
using R version 3.6.0 (R Core Team, 2019) on a Dell Precision
T7610 with 32 CPUs and 48 gigabytes of memory running Red Hat
Enterprise Linux Workstation release 7.9. Scripts and relevant data
files are available online (https://doi.org/10.23719/1531739). The
PBPK models used were implemented using the MCSim model
specification language (Bois, 2009) and were subsequently translated
into C and compiled for use in R. Input parameters and selections of
model structure options for specific models are provided via
Microsoft Excel files in a pair of input spreadsheets for (1)
chemical- and species-specific model parameters and (2)
exposure and dosing parameters for specific simulations.
Simulations were performed using the “ode” function from the R
package “deSolve” (Soetaert et al., 2010) with the “lsoda” ODE
integration method. This integration method automatically switches
between stiff and non-stiff solution algorithms, and automatically
determines the appropriate step-size necessary to maintain the
requested error tolerances. Thus, while the user can request
simulation results for specific time points, the solver (i.e., the
ODE integration algorithm) may use additional time points as
necessary to obtain the desired level of numerical accuracy
and precision.

For each timing experiment we considered the two different
chemical-specific PBPK models (for DCM and CF) and the four
different exposure scenarios listed below.

1. Constant continuous inhalation exposure for 2 weeks
(assuming a constant concentration of chemical in inhaled air);

2. Constant continuous oral exposure for 2 weeks (assuming a
constant, continuous rate of chemical delivery into the stomach
compartment);

3. Periodic inhalation exposure (assuming a constant
concentration of chemical in inhaled air for 6 hours per
day, 5 days per week, for 2 weeks); and

4. Periodic oral exposure (assuming bolus doses were delivered to
the stomach compartment six times per day, 7 days per week,
for 2 weeks).

For both chemical-specific PBPK models (DCM and CF), we
generated ten thousand (10 k) combinations of anatomical and
physiological parameters representing a sample of 10 k virtual
human subjects using parameter distributions described in the
IRIS Toxicological Review of DCM (U.S. EPA, 2011). Then, for
each exposure scenario, we ran Monte Carlo simulations using the
sample of virtual subjects five times on two different days on our

computer (described previously) to assess and account for variations
in computational speed. Such variations can arise due to network
traffic and background processes that are difficult to control. For the
continuous exposure scenarios (1 and 2), the entire sample of 10 k
virtual human subjects was used, while for the periodic exposure
scenarios (3 and 4) a subset of the sample consisting of 1 k virtual
subjects was used because the individual simulations generally
required considerably more time in those cases.

The time it took to perform each set of 10 k or 1 k simulations
was measured using the “system.time” function in R. We excluded
from the timing command those portions of the code that only need
to be run once for all 10 k (or 1 k) simulations, and only timed those
portions that needed to be run for each of the individual simulations.
The timed processes included updating parameter values for each
virtual subject in the sample population, setting up “events” data
structures (used to implement discrete bolus dosing events),
checking for (and computing, if necessary) background rates of
exposure, running the model (i.e., computing the solution to the
system of differential equations), and returning the list of all
simulation output data frames. We also separately timed just the
portion of code that runs the model (excluding parameter
assignment, creation of data structures, etc.) using the R
command “proc.time”. Both the system.time and proc.time
commands return the “CPU time” as well as the elapsed (wall
clock) time, and in our analysis, we used the CPU time.

In addition to evaluating the differences in computational time
when using the PBPK model template vs. stand-alone model
implementations, we also evaluated computational time
differences when using two approaches for implementing
conditional statements used to change model behavior between
two options. Such conditional logic may be required for models
that allow for simulations of gas uptake from both “open” chambers,
in which the concentration is held constant, and “closed” chambers,
in which the amount of gas in the chamber decreases over time as it
is absorbed and metabolized by the animal(s) in the chamber. One
approach is to use model input parameters that are set to either 0 or
1 and then used as multiplicative constants for the relevant
mathematical equations or assignment statements in the model,
effectively switching them on or off. The other option is to use
conditional (“if-then-else”) statements in the model code, which we
implemented using the C ternary conditional operator (ISO, 2018).
There are 32 conditional statements within the PBPK model
template that were implemented with each option: four
conditional statements in the “Initialize” section of the model
specification file, which are evaluated once per model simulation,
and 28 conditional statements in the “Dynamics” section of the
model specification file, which are evaluated at each step of the ODE
integration algorithm. We hypothesized that use of the conditional
operator would require more computational time than use of a
multiplicative logical switch parameter.

In some applications, it is important to consider body weight
changes over time (e.g., for pregnancy models or simulations of
periods that stretch across multiple life stages). To accommodate
such applications, the PBPK model template represents body weight
as an input variable that can change over time. However, this design
choice requires additional unnecessary calculations for scenarios in
which body weight is, in fact, constant, and we hypothesized that this
may have a significant impact on computational time. To analyze the
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impact of this design choice, we examined the influence (on
simulation time) of allowing body weight (and its dependent
parameters) to vary in time by performing simulations with two
versions of the PBPK model template: one in which the body weight
parameter can vary throughout a simulation and one in which body
weight is treated as a constant. Furthermore, for simulations in
which body weight was defined as a fixed, constant parameter, we
considered subcases in which (1) the dependent parameters were
calculated in the “Dynamics” section of the model implementation
(and thus calculated at every step of the integration algorithm) and
(2) they are calculated only once per simulation in the “Initialize”
section. There are 28 parameters in the PBPK model template that
depend on body weight that were impacted by these
modeling choices.

For some PBPK model compartments and processes, the PBPK
model template provides more than one option for representation
and implementation based on approaches that are common in
published PBPK models. For example, for the venous and arterial
blood compartments, one can choose to model the concentration of
chemical in both compartments using a steady state approximation
described by an algebraic equation. Alternatively, one can choose to
avoid the steady state approximation by representing the amount of

chemical in each blood compartment using state variables
described by differential equations. Similarly, when considering
inhalation exposures, one can represent the concentration in the gas
exchange region using a steady state approximation for the
concentration of chemical in the pulmonary vein. In this case,
the modeler can choose to explicitly include a lung tissue
compartment; otherwise, and if omitting an explicit lung
compartment, the concentration in the pulmonary vein is
assumed to transfer directly to the arterial blood compartment.
The modeler can also choose to avoid the steady state
approximation of the concentration of chemical in the
pulmonary vein by representing the amount of substance in the
lung with a differential equation that includes terms for the rate of
inhalation and exhalation of chemical in the lung compartment. We
hypothesized that options that used steady state approximations
would require less computational time than those that used
additional state variables (i.e., additional differential equations).
Note that for the DCM model implementation, using the option
that does not include a separate lung compartment also means that
lung metabolism is not included, and thus simulations using that
version of the model did not include all the biologically relevant
features of the original DCM PBPK model.

FIGURE 3
Comparison of the computational time required to run a simulation using the template implementation of a given chemical-specific PBPK model
and that required using a stand-alone implementation of that model. The height of each bar represents the mean computational time (n � 10) to
complete 10 k (for continuous exposures) or 1 k (for periodic exposures) simulations for each model implementation. Error bars showmeans ± standard
deviations in computational time (n � 10). Darker and lighter bars represent times required for the PBPK model template implementation and the
stand-alone model implementation, respectively, for each chemical. An asterisk above a bar indicates that there was a statistically significant difference
(p<0.05) between the average computational times for the template and stand-alone model implementations. A table showing means and standard
deviations for computational times for these simulation experiments is provided in the Supplementary Material.
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We considered eight different aspects of PBPK model
implementation for our timing experiments. For a given
chemical-specific PBPK model (i.e., the DCM or CF model), we
compared the computational times required for.

1. Simulations performed using the template implementation
of that model and a stand-alone implementation of
that model;

2. A template implementation of the model that uses the ternary
conditional operator for all conditional statements and a
template implementation of the model that uses
multiplicative logical switches with value of 1 or 0 for all
conditional statements;

3. Simulations using a template implementation of the model
with varying numbers of output time points (50, 100, or
500 time points requested) to be returned with the
simulation results;

4. Simulations using a template implementation of the model
with different numbers of output variables (i.e., calculated
quantities that are not state variables) returned with the
simulation results (i.e., using 76 or 105 output variables);

5. Simulations using a template implementation of the model
when body weight and body weight-dependent quantities are
implemented as either being time-varying or fixed (constant)
parameters;

6. Simulations using a “full” template implementation of the
model that includes equations for all compartments,
including compartments that are effectively deactivated
because they are not included in the model, and a
“reduced” template implementation in which state equations
for deactivated compartments were eliminated, reducing the
total number of state equations in the model;

7. Simulations using a template implementation of the model that
utilizes different (already existing within the model template)
options for modeling blood compartments (i.e., using the
steady state approximations for the venous and arterial
blood compartments vs. representing amounts in these
compartments as state variables with separate differential
equations for each); and

8. Simulations using a template implementation of the model that
utilizes different options for modeling the lung compartment
and the gas exchange region (i.e., using the steady state

FIGURE 4
Comparison of the computational times required for simulations with template implementations of the given PBPK model (“DCM” or “CF”) that use
different options to implement conditional statements. The height of each bar represents the mean computational time (n � 10) to complete 10 k (for
continuous exposures) or 1 k (for periodic exposures) simulations for each model implementation. Error bars show means ± standard deviations in
computational time (n � 10). Darker and lighter bars represent times required for the model implementations using ternary conditional operators
(“Ternary Ops”) andmultiplicative logical switches (“Switches”), respectively, for all conditional statements. An asterisk above a bar indicates that there was
a statistically significant difference (p<0.05) between the average computational times required for the implementations using ternary conditional
operators andmultiplicative logical switches. A table showingmeans and standard deviations for computational times for these simulation experiments is
provided in the Supplementary Material.
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approximation for the gas exchange region vs. representing the
amount in this compartment as a state variable, and explicitly
including or excluding the lung compartment).

Results

First, we compared the computational times required to perform
simulations using a PBPK model template implementation of a
chemical-specific PBPK model to that required when using a stand-
alone implementation of the same chemical-specific model. Figure 3
summarizes the timing results and shows that the template
implementations take 4–6 times longer to run compared to their
stand-alone counterparts, depending on the exposure scenario
and chemical.

We evaluated two approaches for implementing conditional
statements used to change model behavior: the ternary
conditional operator (ISO, 2018) and multiplicative logical
switches (i.e., Boolean parameters with values of zero or one).
Figure 4 summarizes the results of this evaluation. In most cases,
the model implementation that used the ternary conditional
operator performed slightly faster than the one that used
multiplicative logical switches. However, the difference in
computational time was less than 2% in all cases.

We examined how the number of time points at which
simulation output values are requested (and returned by the

ODE integration algorithm) impacts the computational time, and
the results are shown in Figure 5. For the scenarios with constant,
continuous exposures, the computational time increases linearly
with the number of time points returned. For the scenarios with
periodic exposures, the computational time does not vary
substantially with the number of time points returned, increasing
by less than 1% when increasing the number of requested time
points by a factor of 10.

We created a version of the PBPK model template with
approximately 25% fewer output variables to determine the
impact of “unused” extra algebraic equations on computational
speed. Figure 6 shows that the version of the PBPK model
template with fewer output variables typically performed slightly
faster than the original version. However, the decrease in
computational time was no more than 6% for any given
comparison, and in most cases was less than 2%.

The original version of the PBPK model template treats body
weight as a time-varying input parameter, so to evaluate the
impact of this design choice on computational time we created a
version of the PBPK model template in which body weight is
treated as constant. We used the original version of the PBPK
model template to perform simulations with a changing body
weight and a constant body weight and used the alternative
version of the template to perform simulations with a constant
body weight. Figure 7 shows the computational time for
simulations performed using each of the tested options for

FIGURE 5
Comparison of the computational times required for simulations using a template implementation of a given PBPK model (“DCM” or “CF”) with
different numbers of output time points (50, 100, or 500) to be returnedwith the simulation results. For each exposure scenario, the solid and dashed lines
indicate the results for the average computational times required to perform 10 k (for continuous exposures) or 1 k (for periodic exposures) simulations
using the template implementation of the DCM and CF PBPK models, respectively.
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describing body weight and its dependent parameters (i.e., those
parameters that are calculated based on body weight such as the
compartment volumes and blood flow rates). Note that for these
results, when body weight is treated as a “constant” for a
simulation performed with the original version of the PBPK
model template, the body weight parameter is provided as a
constant-valued input table. When the body weight dependent
parameters are calculated in the “Dynamics” section, the
difference in computational time between implementations
that use a time-varying body weight input or a fixed body
weight input is less than 4%. However, for the alternative
version of the PBPK model template, the body weight
dependent parameters are calculated only once per simulation
(and are therefore also essentially treated as “constants”). Using
the alternative “fixed body weight” implementations of the PBPK
models there are large savings in computational time with
simulations taking up to 30% less time in cases with constant,
continuous exposures, and over 40% less time in cases with
periodic exposures. We also considered a limited case where
the value of the body weight did vary in time and saw that
computational time increased compared to the case in which

body weight was described by a constant valued function. Details
of those results can be found in the Supplementary Material.

To examine how the inclusion of “unused” state variables, for
which time rates of change (i.e., right-hand sides of differential
equations) are always equal to zero impacts computational time, we
constructed versions of the PBPKmodel template for each chemical-
specific model that removed state variables corresponding to
compartments that were deactivated in the full model template
implementation. Specifically, we removed 19 of 53 state variables for
the modified template implementation of the DCM PBPK model
and 20 of 53 state variables for the modified template
implementation of the CF PBPK model. Figure 8 shows the
computational time results for this experiment. Removing the
unused state variables resulted in simulation times 20%–35%
lower than times for simulations performed with the full PBPK
model template.

The PBPK model template provides two options for
estimating the amount of chemical in the venous and arterial
blood compartments: (1) using steady state approximations to
model the concentration of chemical in each blood compartment
or (2) representing the amounts of chemical in those

FIGURE 6
Comparison of the computational times required for simulations using a template implementation of a given PBPK model (“DCM” or “CF”) with
different numbers of outputs (i.e., calculated quantities not including state variables) returned with the simulation results. The height of each bar
represents the mean computational time (n � 10) required to complete 10 k (for continuous exposures) or 1 k (for periodic exposures) simulations for
each model implementation. Error bars show means ± standard deviations in computational time (n � 10). Darker and lighter bars represent times
required using the original PBPKmodel template (with 105 output variables) and an alternative version of the PBPKmodel template with fewer (76) output
variables. An asterisk above a bar indicates that there was a statistically significant difference (p<0.05) between the average computational times required
for simulations using implementations based on the original PBPK model template and the version of the template with fewer output variables. A table
showing means and standard deviations for computational times for these simulation experiments is provided in the Supplementary Material.
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compartments with state variables described by differential
equations. Figure 9 shows the computational time required for
each exposure scenario using each modeling option. There is no
clear pattern as to which modeling option results in faster
simulations, and in most of the cases we considered the
differences in computational times were less than 5%.

The PBPK model template provides three options for
representing the lung compartment and gas exchange region. We
explored differences in computational time requirements for each of
these options and the results are shown in Figure 10. For the
constant, continuous exposure scenarios there was less than a 5%
difference in the computational times for each of the three modeling
options. However, for the periodic exposure scenarios there were
significant differences (p < 10–13) between the computational times
for the options that included an explicit lung compartment and the
computational times for the option that did not. Including an
explicit lung compartment increased simulation time by about

10% for periodic inhalation exposures, while for periodic oral
exposures simulation time increased by 75% with the DCM
model implementation and by 35% with the CF model
implementation.

Discussion

Based on our experiments, simulations using template-
implemented models take longer than simulations using
equivalent stand-alone models. This is expected because the
PBPK model template includes 53 state variables (quantities
described by differential equations) and 105 output variables
(quantities described by algebraic equations), while the stand-
alone implementation of the DCM model includes 21 state
variables and 22 output variables, and the stand-alone
implementation of the CF model includes 19 state variables and

FIGURE 7
Comparison of the computational times required for simulations using template implementations of a given PBPKmodel (“DCM” or “CF”) when body
weight is treated as time-varying (“BW Input”) or constant (“BW Fixed”) parameters and body weight dependent quantities are treated as possibly
dynamically changing throughout the simulation (“Params Dyn”) or are calculated just once during an initialization step (“Params Init”). The height of each
bar represents the mean computational time (n � 10) required to complete 10 k (for continuous exposures) or 1 k (for periodic exposures)
simulations for each model implementation. Error bars show means ± standard deviations in computational time (n � 10). In each panel, the darkest bar
represents the computational time for the implementation in which body weight is treated as a time-varying input parameter, the middle bar represents
the computational time for the implementation in which body weight is treated as a constant parameter but dependent quantities are calculated at each
step of the integration algorithm, and the lightest bar represents the computational time for the implementation in which body weight is treated as a
constant parameter and dependent quantities are calculated only once per simulation. An asterisk above a bar indicates that there was a statistically
significant difference (p<0.05) between the average computational times required when using the implementation in which body weight is treated as a
time-varying input parameter and an alternative implementation in which body weight is treated as a constant parameter. Note, for the option in which
body weight is treated as a time-varying input parameter, the body weight parameter had a constant value during the entire simulation andwas described
by a constant-valued input table. A table showingmeans and standard deviations for computational times for these simulation experiments is provided in
the Supplementary Material.
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26 output variables. As we demonstrated in our evaluation of the
impact of removing state variables for which rates of change are
always equal to zero (see Figure 8), the inclusion of additional state
variables (and corresponding differential equations) in the model
can have a large impact on the computational time needed for
simulations, and the PBPK model template has more than double
the number of state variables of either of the two stand-alone model
implementations we considered. However, including these
additional state variables gives the model template more
flexibility and enables implementation of a greater variety of
chemical-specific PBPK models. While the DCM and CF models
described herein contain similar numbers of state variables in their
stand-alone implementations, when mapped to the model template
superstructure, different state variables were chosen in order to
implement each model (see Figures 1, 2).

Representation of body weight as either a constant or as a
(possibly) time-varying input parameter also influenced
computational time. In particular, defining body weight as a
constant (fixed) parameter and calculating all dependent
quantities once per simulation led to a large time savings

compared to an approach in which body weight dependent
quantities were calculated at each time step of the integration
algorithm. For both of the chemical-specific PBPK models we
considered, the stand-alone model implementations represented
body weight as a constant parameter, and thus utilized the fastest
of the three options for representing body weight (and related
quantities) that we considered. However, if one wanted to use
either of those models to perform simulations in which body
weight changes might be important (e.g., simulations of periods
of time during which the person or laboratory animal was growing),
those implementations would be insufficient. For such a simulation,
one would need to create a new stand-alone model implementation
that represents body weight and its dependent quantities as time-
varying quantities. In this case, one would need to implement the
model and perform QA review, which could require additional time
and effort. Because body weight is represented in the PBPK model
template as an input parameter (that can have different values at
different times in the simulation), it can be used for scenarios where
body weight varies over time and scenarios where body weight is
constant over time (by providing a constant valued input table)

FIGURE 8
Comparison of the computational times required for simulations using template implementations of a given PBPK model (“DCM” or “CF”) that
include (“Original”) or do not include (“No Zero States”) equations for compartments that are deactivated in the full PBPK model template to more
efficiently match the chemical-specific PBPK model. The height of each bar represents the mean computational time (n � 10) required to complete 10 k
(for continuous exposures) or 1 k (for periodic exposures) simulations for eachmodel implementation. Error bars showmeans ± standard deviations
in computational time (n � 10). Darker and lighter bars represent times required using the original PBPK model template (with 53 state variables) and an
alternative version of the PBPK model template without the deactivated state variables (which had 34 state variables for the DCM model and 33 state
variables for theCFmodel), respectively. An asterisk above a bar indicates that therewas a statistically significant difference (p<0.05) between the average
computational times required when using the original PBPK model template and the version without the deactivated state variables. A table showing
means and standard deviations for computational times for these simulation experiments is provided in the Supplementary Material.
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without needing to change the underlying model file. Therefore, a
user does not need to spend additional time implementing and
performing QA review of a new model version that will
accommodate time-varying body weight. However, converting a
model that includes changing body weight to one where body weight
is assumed to be fixed would require additional effort, so providing a
version of the model template that has a fixed body weight may be
advantageous for PBPK modeling scenarios in which body weight is
assumed to be constant.

For constant, continuous exposure scenarios, the number of
output simulation time points requested significantly impacted
computational time. The differences between results for constant
and periodic exposure inputs are not surprising since periodic
exposures involve regular, recurring discontinuities in some of
the state variables throughout a simulation and thus the step-size
used by the solver to attain the desired error tolerance is likely
smaller than that requested by the user for output. On the other
hand, for constant, continuous exposures, the system reaches a
steady state, and the solver can use much larger time steps while
maintaining the desired error tolerance. Thus, for the constant and
continuous exposure cases, requesting a larger number of output

time points requires the solver to evaluate the system at additional
time points in order to include those values in the output. Modelers
performing many simulations should carefully consider how many
time points will be needed for their subsequent analyses. Requesting
more time points than the solver requires to attain the desired
numerical accuracy can greatly increase the computational time,
especially for constant, continuous exposure scenarios.

Some model implementation choices had little impact on
simulation speed; that is, the difference in the computational
time with each option was small relative to the average time
required (for either option). For example, using different
approaches for implementing conditional statements impacted
computational time by less than 2% and implementing blood
compartments in different ways impacted computational time by
less than 5%. Including 25% fewer output variables yielded a less
than 6% decrease in computational time, implying that the
convenience of having access to any outputs that may be of
interest to modelers may justifies their inclusion in the PBPK
model template.

Selecting between various options for representing gas exchange
in a PBPK model also had some impact on computational time, but

FIGURE 9
Comparison of the computational times required for simulations using template implementations of a given PBPKmodel (“DCM” or “CF”) that utilize
different (already existing within the model template) options (“SS Approx” or “No SS Approx”) for modeling blood compartments. The heigh of each bar
represents the mean computational time (n � 10) required to complete 10 k (for continuous exposures) or 1 k (for periodic exposures) simulations for
each model implementation. Error bars show means ± standard deviations in computational time (n � 10). Darker and lighter bars represent times
required when using steady state approximations or state variables, respectively, to represent the concentrations (or amounts) of chemical in the venous
and arterial blood. An asterisk above a bar indicates that there was a statistically significant difference (p<0.05) between the average computational times
requiredwhen using steady state approximations or state variables to represent blood compartment concentrations (or amounts). A table showingmeans
and standard deviations for computational times for these simulation experiments is provided in the Supplementary Material.
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the largest time differences were observed between simulations
involving implementations that did or did not include an explicit
lung compartment rather than implementations that did or did not
use steady-state approximations for concentrations in specific
regions of the body. This makes sense because including an
explicit lung compartment requires that the model include an
additional state variable (with a non-zero rate of change), and we
demonstrated in separate simulation experiments (described herein)
that the inclusion of additional state variables has a significant
impact on the computational speed of simulations. However,
using a steady state approximation or a differential equation to
represent the concentration (or amount) of substance in the gas
exchange region had only a small impact on computational time.
This finding was comparable to the result observed for simulation
experiments involving a similar representation choice for the blood
compartments.

While implementations using the PBPK model template take
more computational time than simulations using dedicated models,

there are still advantages to using the model template. The template
allows for faster and more efficient QA review, which typically
includes (among other things) checking that the model
implementation is accurate. Generally, this portion of the QA
review can require many hours of work, but when using a model
template implementation, much of this portion of the QA review can
be considered complete [because QA review of the PBPK model
template has been performed by the authors of the PBPK model
template (Bernstein et al., 2021; Bernstein et al., 2023)]. Only the input
spreadsheets describing the parameters for the model and exposure
scenarios need to be checked. Similarly, when implementing a model,
either de novo or from a published source, using the PBPK model
template is faster than developing a stand-alone model
implementation since only the input spreadsheets need to be
completed. For de novo models this also allows for greater
consistency in implementation of specific features since all
template-implemented models will use the same form for
the equations.

FIGURE 10
Comparison of the computational times required for simulations using template implementations of a given (“DCM” or “CF”) model that utilize
different options (“No Lung” vs. “Lung” and “GE SS” vs. “GE Not SS”) for modeling the lung compartment and the gas exchange region. The heigh of each
bar represents the mean computational time (n � 10) required to complete 10 k (for continuous exposures) or 1 k (for periodic exposures) simulations for
each model implementation. Error bars showmeans ± standard deviations in computational time (n � 10). In each panel, the darkest bar represents
the computational time for the implementation with no explicit lung compartment and a steady state approximation of the concentration of chemical in
the gas exchange region, the middle bar represents the computational time for the implementation with an explicit lung compartment and a steady state
approximation of the concentration of chemical in the gas exchange region, and the lightest bar represents the computational time for the
implementation with an explicit lung compartment with terms describing the rates of inhalation and exhalation of chemical. An asterisk above a bar
indicates that there was a statistically significant difference (p<0.05) between the average computational times requiredwhen using the implementations
with or without an explicit lung compartment. Note that for DCM, when using the implementation without an explicit lung compartment, lung
metabolismwas excluded from themodel (even though suchmetabolism is an inherent feature of the original DCM PBPKmodel). A table showingmeans
and standard deviations for computational times for these simulation experiments is provided in the Supplementary Material.
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When one plans to use a PBPK model to perform Monte Carlo
simulations or do other analyses requiring many hundreds or
thousands of simulations, parallel processing should be
considered. Since simulations for each member of a virtual
population are independent, they can be performed at the same
time using different processor cores. Parallel processing allows one
to take advantage of the multiple cores (or “workers”) available on
most modern computers to complete multiple independent
simulations more quickly. For the analysis described here, none
of the model simulations were performed in parallel, but doing so
can decrease computational time considerably. One can take
advantage of parallelization to perform multiple independent
simulations more quickly using any PBPK model
implementation. So, if performing a simulation requires 1 s using
implementation A and 5 s using implementation B, then if one
performs thousands of simulations using parrallel computing with
implementation A, one can expect that the complete set of
simulations will be performed in about 20% of the time required
when using parallel computing with implementation B. Because the
time savings inherent in the use of parallel processing applies to all
model implementations equally, we did not explore it here.

In performing this work, we also found that computational
speed was sometimes impacted by factors outside of our control
related to the specific computers, environments, and systems we
were using. We initially used a standard-issue corporate laptop (a
Dell Latitude 5300 two-in-1 computer running Microsoft Windows
10) and the time to simulate 10 k virtual individuals exposed via
inhalation to a constant air concentration of DCM ranged from
36.72 to 68.44 s (with relatively high variability), even after ensuring
that the laptop was disconnected from the network and stopping
execution of all unnecessary programs we could control. In
comparison, when we switched to using the Dell Precision
T7610 running Red Hat Enterprise Linux Workstation release
7.9 (which was used for all results provided herein), the time to
perform those same simulations ranged from 53.79 to 59.53 s (with
relatively low variability). Such variability in computational time
can be difficult to control, and it may make it more difficult to
determine the significance of small differences in computational
time, such as that as seen in Figures 4, 9, in which some of the
differences appear to be statistically significant (p< 0.05), but there
is no clear pattern in which of the tested options results in lesser
computational times.

For the research presented here, we considered the impact of
different modeling choices on computational speed, but we did not
consider the impact of these choices on model predictions. In
particular, we did not consider how the various options and
assumptions used to describe the blood compartments and
representation of inhalation-relevant aspects of a PBPK model
might impact predictions of time-course concentrations. We plan
to explore this in future work.

Conclusion

How one chooses to implement a PBPK model can have a
significant impact on computational time required for simulations.
The time required for a single simulation can be especially
important for Monte Carlo PBPK modeling analyses, which can

involve many thousands of simulations.We performed PBPKmodel
simulation timing experiments considering various aspects of model
design implementation and showed which design and
implementation choices have greater and lesser impacts on
computational time. We also demonstrated that using our PBPK
model template to implement a chemical-specific model can result
in longer simulation times compared to those that may be achieved
with a stand-alone implementation of the same PBPK model.
However, we identified several of the factors that contribute to
the greater computational time requirements for PBPK model
template implementations of models (such as a relatively large
number of compartments represented by state variables and a
time-varying input variable to represent body weight) and
determined that these factors are also beneficial features of the
PBPK model template that give it flexibility and broader
applicability than the individual stand-alone model
implementations. This flexibility, as well as the (non-
computational, human) time savings realized when implementing
and reviewing a model using the PBPK model template, may offset
or justify the additional computational time required for PBPK
model template simulations in many cases. Whether one uses the
PBPK model template or some other implementation strategy, our
results provide insights into some of the features and design choices
that determine the computational expense of PBPK model
simulations and may therefore prove useful to anyone seeking to
develop, improve, or apply a PBPK model.
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