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Introduction: Despite recent rapid advancements in in vitro toxicology, its
application to whole-body health outcomes remains limited. Incorporating
factors like internal exposure, such as permeability across biomembranes,
could improve its relevance. Notably, there is a lack of data and predictive
models for blood-brain barrier (BBB) permeability, a proxy for the exposure of
target organs to neurotoxicity. We developed a predictive model for BBB
permeability to investigate whether it can strengthen the correlation between
in vitro and in vivo neurotoxicity data.

Methods: We collected permeability data from parallel artificial membrane
permeability assays for brain membranes (PAMPA-BBB) for 106 compounds
with varied physicochemical properties. This was utilized to develop an
empirical model to expand the potential coverage of chemicals. A list of 23
chemicals with available in vivo and in vitro neurotoxicity data from EPA IRIS and
ToxCast was curated to analyze the correlation in toxicity rankings with the
Spearman correlation coefficient, with and without the consideration of
permeability from our predictive model.

Results: The PAMPA-BBB predictive model showed promising results, with an R2
of 0.71 (measured vs predicted permeabilities). Considering permeability did not
improve the correlation between in vitro and in vivo neurotoxicity (0.01 vs -0.11).

Discussion: This weak correlation may stem from model uncertainty and the
exclusion of other toxicokinetic processes, along with interspecies
toxicodynamics differences. Our results indicate more detailed information on
how neurotoxic substances behave inside the body is essential to better utilize
the in vitro neurotoxicity data for predicting in vivo toxicity and assessing the risk
to the central nervous system.
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1 Introduction

The focus of development in chemical risk assessment has
recently shifted from traditional in vivo testing towards in vitro
approaches (Yoon et al., 2012), collectively referred to as new
approach methodologies (NAMs) (U.S. EPA, 2020). The use of
in vitro assays is promoted for several reasons, including (1) being
more ethical; (2) facilitates easier and more affordable replication
(Daniel, 2018; Zhao, 2023); and (3) allows for species-specific cell
investigations (Nesslany, 2017).

However, applying in vitro testing results to in vivo risk
assessment contexts presents challenges (Zhang et al., 2018). For
example, while in vitro assays can efficiently assess the direct toxic
effects of chemicals on target cells, they do not accurately reflect how
these chemicals behave in the integrated systems of a living
organism (Yoon et al., 2012). In vitro assays may not account for
the metabolic processes that occur in vivo, which can alter the
toxicity profile of a chemical (Wilk-Zasadna et al., 2015). To
overcome these challenges, research has integrated physiologically
based pharmacokinetic (PBPK) models to translate in vitro findings
into predictors of in vivo behavior (Bessems et al., 2014; Yoon et al.,
2012). Converting in vitro concentration-response data into in vivo
dose-response relationship with reverse dosimetry techniques has
been successful in predicting developmental (Louisse et al., 2010;
Strikwold et al., 2013), kidney (Abdullah et al., 2016), and liver
toxicity (Chen et al., 2018).

In vitro to in vivo extrapolation (IVIVE) studies focusing on
neurotoxicity are rare. In a high throughput toxicokinetic (HTTK)
evaluation of the predictive accuracy of in vitro bioactivity for in vivo
adverse effects by Friedman et al. (2020) neurotoxic studies were
included, among other toxicity endpoints. However, the current
version of HTTK does not specialize in assessing the potential
correlation between in vivo and in vitro neurotoxicity data but
provides a more generalized comparison between in vivo and
in vitro point-of-departures (PODs). When comparing in vitro
and in vivo neurotoxic data, the interaction of the blood-brain
barrier (BBB) may complicate analysis. The BBB acts as a
protective barrier, restricting the access of certain chemicals to
the central nervous system (CNS) (Karami-Mohajeri and
Abdollahi, 2011). The ability of a substance to permeate across
the BBB is crucial in determining its potential neurotoxic effects,
potentially leading to more severe neurotoxic outcomes as they can
interact with the CNS more directly (Mikitsh and Chacko, 2014).

Given the importance of BBB in determining neurotoxicity
on the in vivo level, methods and data addressing permeability
across the BBB are needed. The parallel artificial membrane
permeability assay (PAMPA) is a high-throughput method
consisting of a phospholipid barrier that mimics cellular
membranes, widely used for estimating the permeability of
chemicals (Sun et al., 2017). PAMPA has been adapted to
model various biological membranes, including the BBB, using
porcine brain lipids (PBL) (Mensch et al., 2010). Despite
PAMPA’s ability to measure the effective permeability (Pe) of
chemicals, little research has focused on leveraging it to assess the
interaction between chemicals of environmental concern and the
BBB. This may be due to the physicochemical properties of
chemicals of environmental concern may differ from common
PAMPA experimental settings that are optimized for

pharmaceuticals of different physicochemical property space
(Intasiri et al., 2024). Recently, Kato et al. (2023) released a
model for BBB permeability measured by PAMPA. However,
Kato’s model is a classifier, where the accuracy is assessed by
its ability to classify a chemical’s permeability into “high” (Pe >
10 × 10−6 cm/s) and “low” (Pe ≤ 10 × 10−6 cm/s). Moreover,
this model, like many others, largely considers pharmaceuticals.
Therefore, there is a need for a specialized model to accurately
assess the BBB permeability of chemicals of
environmental concern.

In our previous work (Wang et al., 2022), we developed a silico
mass balance model to assess the applicability of chemicals of
environmental concern (CEC) to PAMPA, considering how
chemical properties such as hydrophobicity and volatility
influence their sensitivity to PAMPA experimental conditions. In
the following paper (Intasiri et al., 2024), we tested 51 compounds,
primarily CECs, under both PAMPA-GIT and PAMPA-BBB
conditions. We then further evaluated the previously mentioned
model incorporating BBB conditions, allowing comparison between
the predicted Pe results and measured data. Given the gap of
knowledge in BBB permeability for chemicals of environmental
concern and how it can improve the interpretation of in vitro
toxicity testing results, this study seeks to explore the predictive
power of in vitro assays in terms of both permeability across the BBB
and toxicity to CNS cells in the context of leveraging these NAM for
in vivo chemical risk assessment for neurotoxicity. To accomplish
this overall objective, we first developed a PAMPA-BBBmodel based
on experimental results more suitable to predict the permeability of
chemicals of environmental concern. Then, we examined the
relationship between in vitro and in vivo neurotoxicity testing
results with and without the consideration of BBB permeability
to explore whether we can enhance the utility of in vitro
neurotoxicity testing in the context of in vivo chemical risk
assessment after considering BBB permeability.

2 Materials and methods

2.1 PAMPA-BBB model development

Previously, we produced PAMPA-BBB experimental results
(effective permeability, Pe) for 30 chemicals mostly comprised of
environmental pollutants (Intasiri et al., 2024). In brief, a clear
PAMPA 96-well filter plates (hydrophobic PVDF membrane,
0.45 µm, non-sterile) was used. The filter of each PAMPA-BBB
well was coated with 4 µL membrane consisting of 2% (w/v) PBL in
dodecane. All PAMPA assays were performed in PBS (pH 7.4)
containing 1% DMSO as a transport solvent unless stated otherwise.
Experiments were given a 30-minte permeation period at room
temperature. For more details, refer to (Intasiri et al., 2024). Due to
non-quantitative results, only 30 out of 51 chemicals were viable to
use in this study. To strengthen the sample size of data to build the
model, we additionally extracted 106 Pe values from Di et al. (2003),
Müller et al. (2015), and Vucicevic et al. (2015). This was done by
prioritizing published results with similar or identical experimental
conditions, including incubation time (18 h) and pH (7.4). This is
because the validity of PAMPA results is reliant on setting up
appropriate experimental conditions that may vary based on the
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physicochemical properties of the investigated chemicals. Chemicals
with lower solubility and stability, such as chemicals of
environmental concern, require longer incubation times to
achieve accurate measurements (Sun et al., 2017; Wang et al.,
2022). After removing 27 duplicates, as well as three
measurements of Pe = 0 originating from Di et al. (2003), we
ended up with a final sample size of 106. For the complete
information on the Pe results, experimental conditions, and the
key physicochemical properties of the chemicals used in this study,
please refer to Supplementary Tables S1, S2.

In this study, we utilized the PaDEL-Descriptor software to
compute molecular descriptors and fingerprints for our target
chemicals. Developed in Java, PaDEL-Descriptor, short for
“Public Domain Chemical Descriptor Library,” plays a vital role
in computational chemistry and drug discovery (Yap, 2011).
Molecular descriptors, grouped by 1D and 2D characteristics
(n = 1,444), were generated for the chemicals under
investigation. To initiate our analysis, we gathered SMILES
representations of 106 chemicals from the EPA Comptox
dashboard. These representations were then processed through
PaDEL-Descriptor to extract pertinent descriptors, laying the
groundwork for subsequent model development.

R was used for model creation. Specifically, the package “MASS”
was downloaded to conduct stepwise linear regression using the
stepAIC function. This allows an automatic selection of molecular
descriptors that are the most significantly correlated to log Pe from
the entire set. For model evaluation, we compared the measured Pe
values to the predicted values, calculating the model’s R2 as the
measurement for its performance. In addition, we calculated the
model’s balanced accuracy (BACC), as used previously by Kato et al.
(2023) to compare our model’s accuracy to Kato et al. (2023), which
is the only other PAMPA-BBB predictive model available (Kato
et al., 2023). Specifically, chemicals were first grouped into fast
(Pe > 10 × 10−6 cm/s) and slow (Pe ≤ 10 × 10−6 cm/s) permeability,
BACC was calculated by averaging the sensitivity, the probability of
true positive results, and specificity, the probability of the true
negative results. This tests the model’s ability to accurately place
a chemical in the fast or slow permeability group, compared to the
original measured value placement.

sensitivity � TP

TP + FN

specificity � TN

TN + FP

BalancedAccuracy BACC( ) � sensitivity + specificity

2

TP = true positive, FP = false positive, TN = true negative, FN =
false negatives.

2.1.1 In vivo and in vitro toxicity data
In vivo toxicity data was obtained from the Integrated Risk

Information System (IRIS), a database created and maintained by
the United States Environmental Protection Agency (U.S. EPA,
2024a), which documents the hazardous effects on biological
systems. We collected all chemicals with documented effects
tagged for the nervous system (e.g., those inducing brain ChE
inhibition, neurobehavioral effects, and tremors) via ingestion
exposure. Notably, Point of Departure (POD) values, i.e., the

lowest doses at which a significant biological effect were directly
observed in animal tests, were prioritized over Reference Dose (RfD)
to avoid the influence from uncertainty factors used to derive the
RfD values from POD values (U.S. EPA, 2002) In total, data for
54 chemicals were initially retrieved from the IRIS database.

In vitro neurotoxic bioactivity levels for chemicals were
determined using assay-specific data downloaded from the US
EPA’s CompTox Chemistry (U.S. EPA, 2023) following a
methodology similar to Li et al. (2020). ToxCast records cell line
responses to chemicals examined by bioassays, documenting
AC50 values (µM), which represent the concentration at which
half of the maximal activity is achieved, for each assay. We screened
54 chemicals with POD for neurotoxicity from IRIS for assays
indicating adverse effects on the nervous system. AC50 values for
each chemical were excluded if they were higher than the lower
bound estimates, which are based on assay endpoints in “invitrodb”
including multiple cell lines and technologies and represent an
estimated concentration for general cytotoxicity across assays
(U.S. EPA, 2024b). For chemicals where no lower bound
estimates were available, the cytotoxicity median was used as a
proxy. Background and control assays were also excluded from the
retrieved data. Geometric means of the remaining AC50 values were
then used to represent in vitro neurotoxicity. A geometric mean was
computed to determine the cytotoxicity center by aggregating all
AC50 (or lower) values from active cytotoxicity assays. Neurotoxic
assays specifically sought for analysis are described in
Supplementary Tables S4, S5.

Of the 54 chemicals containing IRIS in vivo data, 29 had
documented in vitro assay data available. Among these, four
chemicals had only one qualifying assay for analysis. While
42 chemicals considering inhalation exposure were available in
IRIS specific to neurotoxicity, only one chemical without oral
exposure POD from IRIS was present in ToxCast. Additionally,
since chemicals inhaled may be able to bypass the BBB via the
olfactory bulb route (Jeong et al., 2023), we excluded all inhalation
exposure IRIS results for further analysis in this study.

2.2 Examining in vitro and in vivo
neurotoxicity data relationship

Before examining the correlation between in vitro and in vivo
neurotoxicity data, a final step of curation was carried out to exclude
chemicals with a molecular weight greater than 400 g/mol. This is
because larger molecules were found to face additional challenges
posed by the tight cell junctions when crossing the BBB (Mikitsh and
Chacko, 2014). This paracellular transport process is not captured in
any way by the PAMPA. Hence, we focused on chemicals that are
smaller and with both in vivo and in vitro neurotoxicity data. This
left us with a total of 23 chemicals.

We ranked these 23 chemicals respective to their in vivo
toxicity–POD from IRIS; in vitro toxicity–geometric mean of
curated AC50 values; and BBB permeability–predicted PAMPA
BBB Pe from our model as none of the 23 chemicals have
measured Pe values. For both in vivo and in vitro toxicity, the
lower the toxicity value, the higher the ranking. For BBB
permeability, a higher Pe is indicative of a higher ranking. We
then composed a permeability-adjusted in vitro toxicity ranking by
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adding the rankings of in vitro toxicity and BBB permeability for
each chemical and ranked the resulting products from lowest to
highest. This is to represent the idea of chemicals’ ability to cause
harm to the nervous system after they penetrate the BBB. Hence a
lower permeability can lower the expected in vivo toxicity inferred
from in vitro toxicity and vice versa.

Finally, we calculated the Spearman correlation coefficient for in
vivo toxicity ranking versus in vitro toxicity ranking, and for in vivo
toxicity ranking versus permeability adjusted in vitro toxicity
ranking to examine if considering BBB permeability can enhance
the correlation between in vitro data with in vivo data for
neurotoxicity. A correlation between the rankings is considered
more appropriate compared to examining the correlations between

the absolute values, as rankings can better accommodate the impact
of uncertainties within the toxicity and permeability data.

3 Results

3.1 Overview of in vitro neurotoxicity
data used

The number of in vitro neurotoxic assays varied substantially,
averaging 12.9 (±7.01) assays per chemical. Among the chemicals of
interest, three (i.e., methamidophos, baygon, chlorobenzilate) only
had one neurotoxic assay recorded. In contrast, hexachlorophene

TABLE 1 Summary of experimentally determined in vivo neurotoxicity endpoint, in vitro neurotoxicity bioassay values, and permeability predicted by our
developed PAMPA BBBa model.

Chemical CASRNb IRIS PODc

(μM/day)
ToxCast AC50d geometric
mean (μM)

Predicted Pee 10−6

(cm/s)

Aldicarb 116-06-3 0.01 2.70 0.45

O-Ethyl O-(4-nitrophenyl)
phenylphosphonothioate

2104-64-5 0.01 24.96 2.34

Endrin 72-20-8 0.025 0.26 17.6

Fenamiphos 22224-92-6 0.025 19.57 4.39

Methyl parathion 298-00-0 0.025 17.75 1.09

Disulfoton 298-04-4 0.04 5.16 7.26

Dichlorvos 62-73-7 0.05 4.78 2.49

Dimethoate 60-51-5 0.05 39.53 0.72

Ethion 563-12-2 0.05 22.17 4.91

Methamidophos 10265-92-6 0.05 15f 8.15

Merphos oxide 78-48-8 0.1 53.69 6.5

Acephate 30560-19-1 0.12 0.43 0.15

2,4-Dinitrotoluene 121-14-2 0.2 9.72 0.31

Naled 300-76-5 0.2 10.23 2.24

Malathion 121-75-5 0.23 13.09 0.66

Pirimiphos-methyl 29232-93-7 0.25 48.14 4.2

Baygon 114-26-1 0.36 5.09f 2.18

Carbofuran 1563-66-2 0.5 7.50 2.14

Phosmet 732-11-6 2 32.09 1.39

Danitol 39515-41-8 2.5 2.77 15.1

Benzidine 92-87-5 2.7 19.06 12.4

Chlorobenzilate 510-15-6 5 14.33f 11.0

Mepiquat chloride 24307-26-4 25 5.58 2.21

aParallel Artificial Membrane Assay- Blood Brain Barrier.
bChemical Abstracts Service Registry Number.
cIntegrated Risk Information System Point of Departure.
dConcentration at which half of the maximal activity is achieved.
eEffective permeability.
fOnly one value available for neurotoxicity bioassay.
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had the highest number of available assays in the ToxCast database,
totaling 51. The geometric mean derived from the assays
AC50 values ranged from 0.26 μM (endrin) to 53.69 μM
(merphos oxide), with the majority of chemicals (79%) below
20 μM (Table 1). A total of 72 different types of assay types were
considered, with an average of 2.71 (+-2.65) chemicals per assay,
ranging from 1 to 11 chemicals per assay. Notably, only 54% of
assays included 3 or more chemicals, indicating low assay overlap
between chemicals. For detailed information on the in vitro
neurotoxicity data used and a description of the assays, please
refer to Supplementary Tables S4, S5.

3.2 PAMPA-BBB model evaluation

The seven most significant (p-value <0.001) molecular
descriptors selected by the stepwise linear regression model
included topological polar surface area (TopoPSA), smallest
absolute eigenvalue of Burden modified matrix (with a path
length of 5) weighted by relative first ionization potential
(SpMin5_Bhi), Geary autocorrelation (considering atoms that are
directly bonded) weighted by mass (GATS1m), count of E-State
descriptors of strength for potential Hydrogen Bonds of path length
8(nHBINT8), structural information content index for
neighborhood symmetry of 2-order (SIC2), Moran
autocorrelation (lag 1) weighted by I-state (MaTS1s) and
minimum atom-type H E-State for H on C vinyl bonded to C
aromatic (minHAvin).

LogBBB � −3.288971 + −0.014712 × TopoPSA( )

+ 1.595245 × SpMin5 Bhi( )

+ −1.568614 × GATS1m( )
+ −0.467135 × nHBint8( ) + −2.14832 × SIC2( )
+ −1.519468 × MATS1s( )
+ 1.192349 × minHAvin( )

Themeasured Pe compared to themodel-predicted Pe (n = 106),
yielded an R2 of 0.71 and a root mean square error (RMSE) of 0.99
log units suggesting a strong ability to predict permeability based on
the selected descriptors (Figure 1). The model evaluation BACC
score, when implementing a cutoff of 10 × 10−6 cm/s, was 0.67, with a
sensitivity of 0.86, and specificity of 0.48 (measured and predicted Pe
values can be found in Supplementary Tables S4, S5).

3.3 Physicochemical property space

When comparing the physicochemical properties of the training
set (n = 106) to the prediction set (n = 23), the majority of the
prediction chemicals fall within the range. The log Kow values in the
training set range from −4.5 to 8.35 (paraquat dichloride to
alprenolol), encompassing all of the log Kow values in the
prediction set (−2.82–7.54). The water solubility within the
training dataset ranged from 9.12 × 10-7 to 2.72 mol/L
(rhodamine 6G to paraquat dichloride), similar to the range of

FIGURE 1
Comparison between the predicted and measured log PAMPA-BBB permeability values.
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the predicted chemicals, from 6.24 × 10-7 to 5.2 mol/L (endrin to
methamidophos). For vapor pressure, the training set ranged from
9.60 × 10-11 to 9.00 × 10-2 mmHg (Isoxicam, 2,4-dichlorophenol)
with all predicted chemicals falling into the range except for
mepiquat chloride (0.148 mmHg). Training set and prediction set
physicochemical properties are summarized in Supplementary
Tables S2, S3.

In addition, the range of molecular descriptor values for the
training set covered most of the prediction set. TopoPSA training set
values ranged from 3.24 to 159.29 (amitriptyline to amiloride) with
all but two chemicals (mepiquat chloride and ethion) falling out of
range (0 and 171.32). In contrast, SpMin5_Bhi training set values
ranged from 0.16 to 1.38 (agmatine to buspirone), and encompassed
all values in the prediction set (0.20–1.23). For GATS1m, training set
values ranged from 0.46 to 1.28 (bromazepam to agmatine),
capturing the majority of the prediction chemicals with the
exception of phosmet, endrin and mepiquat chloride (0.431,
0.432 and 1.37). Training set values for nHBINT8 ranged from
0 to 4 (bromazepam to amiloride) encompassing all values in the
prediction set. For SIC2, training set values ranged from 0.60 to 0.93
(paraquat dichloride to tizanidine), with merphos oxide, ethion,
benzidine, and mepiquat chloride falling below range (0.53–0.59).
The MaTS1s training set values ranged from −0.48 to 0.09
(amiloride to imipramine) with all prediction set chemicals
falling into range (−0.40 to 0.056). Lastly, minHAvin training set
values ranged from 0 to 0.75 (amiloride to vanillin) with all
prediction set values falling within rage at zero.

3.4 In vitro versus in vivo neurotoxicity value
relationship

The Spearman correlation coefficient for in vivo toxicity ranking
versus in vitro toxicity ranking is 0.01 (p-value = 0.96), indicating
there is virtually no correlation between the two rankings. The
Spearman correlation coefficient for in vivo toxicity ranking versus
permeability adjusted in vitro toxicity ranking is −0.11 (p-value =
0.61), indicating a negative correlation between the two rankings but
also insignificant, and that by considering the predicted Pe, the
correlation between in vitro and in vivo neurotoxicity values did not
improve. Neurotoxicity rankings and Spearman correlation results
are summarized in Supplementary Table S6.

4 Discussion

When comparing the PAMPA-BBB model predictions with the
measurements, the overall RMSE of 0.99 log units was comparable to
the 0.92 log units reported byWang et al. (2022), which corresponds
to 8.32. The evaluation BACC score is in line with Kato et al. (2023),
whose best-performing model achieved a BACC of 0.70, with a
sensitivity of 0.53 and specificity of 0.87, while their lowest-
performing model had a BACC of 0.61, with a sensitivity of
0.30 and specificity of 0.92. When comparing sensitivity and
specificity, our model excelled in identifying permeability
values ≤ 10 × 10−6 (true positives), whereas Kato et al.’s model
demonstrated stronger performance in identifying permeability
values > 10 × 10−6 cm/s (true negatives). This difference may

stem from the composition of our training set, where 68% of
chemicals belonged to slow (Pe ≤ 10 × 10−6 cm/s) and 32% to
fast (Pe > 10 × 10−6 cm/s). In contrast, Kato et al. had 30% (n = 554)
of chemicals in 1% and 70% (n = 1,240) in class 0.

In this study, we developed a predictive model for PAMPA-BBB
effective permeability. To our knowledge, this is one of the few
models that have predictive capabilities for BBB permeability and
the only one that provides quantitative estimates. While a more
robust sample size would have strengthened our model, we were
inherently limited by minimal PAMPA-BBB sources and adhering
to select experimental conditions to ensure comparable PAMPA-
BBB permeability results (Intasiri et al., 2024; Wang et al., 2022).
Although this permeability does not reflect potential mechanisms,
such as possible active transport for some chemicals when crossing
the BBB, it can serve as an efficient high throughput estimate of the
permeability of chemicals for the BBB for screening purposes.
Ideally, results from a more comprehensive permeability testing
protocol, such as coculturing multiple relevant types of cells in the
BBB (Kulczar et al., 2017; Lubin et al., 2024) that theoretically
represent a closer approximation of in vivo interactions between the
BBB and chemicals, should be compared to the PAMPA-BBB results
to assess its accuracy. However, there is a significant lack of data
from cell-culture-based experiments on chemical pollutants, making
such a comparison currently unfeasible. The finding that there is no
correlation between in vitro and in vivo neurotoxicity data is
somehow disappointing. In vitro toxicity assays are supposed to
be a more efficient way to screen for toxicity compared to
conducting traditional animal experiments so human risk
assessment can be better informed when facing the ever-growing
inventory of pollutants people are exposed to but lack existing
toxicity data. Here, we offer several possible reasons that could
make in vitro neurotoxicity testing results hard to relate to their in
vivo counterparts.

First, in vitro studies report nominal concentrations in the
apparatus that may differ from the freely dissolved
concentrations that exert the actual toxic effects on the cells due
to factors like binding to plastic walls, and serum proteins, as well as
evaporation and degradation/biotransformation in both systems
(Groothuis et al., 2015; Proença et al., 2021). Depending on the
experimental setup and the properties of the chemicals, these factors
can cause varying degrees of differences between the nominal and
freely dissolved concentrations, with the latter considered to be a
better representation of in vitro toxicity, yet much harder to measure
(Groothuis et al., 2019; Henneberger et al., 2021). Since ToxCast
reports only nominal concentrations, the ranking of in vitro
neurotoxicity used in this study may change should the freely
dissolved concentrations be known.

Second, toxicokinetics play a major role in determining how
much of a chemical originally ingested (represented by in vivo POD)
can eventually reach the target sites to induce neurotoxic effects
(represented by in vitro AC50). This important factor has been
explored earlier by researchers applying high throughput
toxicokinetic models to perform in vitro to in vivo extrapolation
(IVIVE) to examine how closely the two can match with each other.
These results show that, in general, in vitro AC50 can correspond to
a more protective (i.e., lower) in vivo POD, but great variation exists
for the differences between these two, or that the correlation between
these two metrics can be dependent on the in vitro assays and/or

Frontiers in Toxicology frontiersin.org06

Illa et al. 10.3389/ftox.2025.1535112

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1535112


IVIVE methodology employed (Bianchi et al., 2024). Thus, it is
possible that a chemical with less capability to reach the nervous
system after being ingested may have a lower in vivo POD while
having a higher in vitro AC50. Moreover, two of the 23 evaluated
chemicals—mepiquat chloride and chlorobenzilate—may have in
vivo critical effects documented as neurotoxicity, yet not originated
from direct impact to the nervous system (U.S. EPA, 1988; U.S.
EPA, 1989).

Third, discrepancies between the tested biological systems of
in vitro and in vivo toxicity assays may give rise to different
biological responses observed in the different experiments. The
ToxCast values for the 23 examined chemicals are based on rats,
guinea pigs, bovine, and humans, while the IRIS POD values are
predominately derived from rodent experiments. It has long been
known that the difference in toxicodynamics such as critical enzyme
activities and/or allosteric modifiers, could result in substantially
different biological responses, as the mode of action may be present
in one species but absent in another (Du et al., 2018; Green, 2000;
Seed et al., 2005; Suzuki et al., 1994). To this end, matching the
species from which the cell lines originated and used in in vitro
assays and the animals tested in in vivo experiments may mitigate
the intraspecies uncertainty when comparing the toxicity values
from these two types of data. However, given the already relatively
small sample size of chemicals that have both types of data available,
no meaningful comparison can be made with this condition
as of now.

Fourth, when calculating the AC50 geometric mean, all assays
related to neurotoxicity for a specific chemical were treated equally,
despite inherent differences that could affect comparability. The
assays vary in terms of cell type, exposure duration, and endpoints,
introducing heterogeneity in the data. However, there is a limited
overlap of assays across chemicals, with an average of 2.7 (±2.7)
chemicals per assay. Selecting from a single cell type or endpoint
would significantly reduce the number of chemicals included in the
analysis, further limiting sample size. To address this, we followed
the practice of previous researchers by using the geometric mean of
all available assays under the lower bound cytotoxicity limit as a
compromise when considering multiple different assay types. By
using the lower bound cytotoxicity medians, it ensures a
conservative approach by providing protective thresholds for
cytotoxicity, reducing the risk of underestimating potential toxic
effects. Additionally, these estimates offer consistency across studies
by standardizing the inclusion criteria based on a comprehensive
and widely applicable dataset.

While this study cannot address issues with nominal
concentration or toxicodynamic, it attempts to add some value to
the discussion of toxicokinetic in the context of comparing in vitro
and in vivo neurotoxicity data. Notably, IVIVE studies conducted so
far have not considered the impact of BBB, which plays a critical role
in the toxicokinetic of neurotoxicity as it can limit access to the
nervous system for chemicals. Indeed, to the knowledge of the
authors, there is no high throughput toxicokinetic model exist
yet that specifically includes any part of the nervous system as an
independent compartment considering the effects of BBB. Here we
use PAMPA-BBB permeability as a proxy to represent higher/lower
internal exposure to the nervous system after ingestion. However, no
improvement in the correlation between in vivo toxicity and in vitro
toxicity was found. To some extent this is not entirely unexpected as

the predicted PAMPA-BBB permeability values themselves inherit
the uncertainty of the model that predicted them.

One consideration is the lack of standardization in PAMPA-
BBB experimental conditions and membrane composition, leading
to discrepancies in protocols across different studies. When
selecting PAMPA-BBB studies for model building, emphasis
was placed on ensuring uniformity in experimental conditions
(i.e., pH, incubation time) across publications. However, the
variations in membrane composition, such as ratio of porcine
brain lipid, dodecane, and volume of transport solution varied
across publications. Since membrane composition influences the
correlation with in vivo permeability, these variations could affect
the model’s predictive capability, ultimately impacting its ability to
accurately reflect in vivo conditions. Additionally, uncertainty
remains regarding whether, and to what extent, the PAMPA-
BBB assay accurately represents a chemical’s mass transfer
process across the BBB. PAMPA-BBB uses an artificial organic
membrane to approximate the endothelial cells of the BBB.
However, it is important to recognize the significant differences
in biological and structural complexity between this artificial
system and actual BBB endothelial cells. For instance, BBB
endothelial cells contain active transport systems, such as efflux
pumps and receptors, which regulate molecule movement in
addition to passive diffusion that is considered alone in
PAMPA-BBB. Furthermore, while the lipid composition of the
PAMPA membrane is designed to mimic general lipid bilayers, it
does not fully replicate the complex lipid and protein composition
of BBB endothelial cell membranes. Note that permeation through
the BBB is not the only toxicokinetic process that determines a
chemical’s level found in the central nervous system. Subsequent
partitioning between brain tissue and blood also plays a
thermodynamic role in determining the brain’s capacity to
retain a chemical. Notably, the high fat content of the human
brain (~60%, compared to ~0.1% in blood) favors the partitioning
and accumulation of highly lipophilic chemicals, relative to
hydrophilic chemicals, in the brain. Variability in this
partitioning may be a significant confounding factor
contributing to the lack of correlation between in vivo toxicity
rankings and permeability-adjusted in vitro toxicity. Other
toxicokinetic processes between the ingestion of chemicals to
contacting the BBB, such as gut absorption, partition between
blood and tissue, etc., are also not considered in this study, which
can also vary among chemicals based on their physicochemical
properties.

To conclude, developments in understanding better the freely
dissolved concentration from the nominal concentrations are
preferred (Armitage et al., 2014; Fisher et al., 2019). At the same
time, there is a need to expand the capability of IVIVE to include the
nervous system and its unique physiology of BBB more explicitly to
better infer between in vitro and in vivo dose-response toxicity
relationship.
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