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Adverse outcome pathways (AOPs) have been developed as a risk assessment
tool for regulatory applications. These AOPs describe a logical mechanistic
sequence of events, starting with a Molecular Initiating Event (MIE), and
ultimately leading to a disease outcome via a series of Key Events (KE). The
AOP framework provides a system to make predictions and assessments while
reducing the need for in vivo assessment. In the absence of epidemiological
evidence, assessment of the health effects of a product, chemical or therapy on
the progression of atherosclerosis would necessitate long-term animal exposure
studies such as the use of the Apolipoprotein E deficient mouse. We followed
Organisation for Economic Co-operation and Development (OECD) guidelines
to formulate and propose an AOP for atherosclerotic plaque progression,
collating the evidence by which cigarette smoke-induced oxidative stress
forms a MIE. The downstream pathway includes multiple KEs including the
upregulation of proinflammatory mediators, nitric oxide depletion, and
endothelial dysfunction. Alterations in these KEs can lead to plaque formation
and progression in cardiovascular disease and increase the risk of morbidity and
mortality. Identifying preclinical endpoints and clinical biomarkers associated
with these KEs provides a framework for in vitro and clinical data, supporting a
mechanistic narrative for regulatory assessment. The application of this pathway
provides a powerful alternative to animal models through developing preclinical
assays and biomarkers for the assessment of atherosclerosis progression risk.
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Introduction

Atherosclerosis is a thickening and loss of arterial wall elasticity that occurs with the
formation of atherosclerotic plaques within the arterial intima (Noyes and Thompson,
2014). Atherosclerosis is a chronic arterial disease; atherosclerotic plaque rupture and
thrombosis are the main cause of the majority of acute coronary syndromes and sudden
coronary death (Sakakura et al., 2013; Herrington et al., 2016). The main clinical
manifestations of atherosclerosis include ischemic heart disease, ischemic stroke, and
peripheral arterial disease (Herrington et al., 2016). Ischemic heart disease (most
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commonly due to atherosclerosis of the coronary arteries) and
stroke are the two leading causes of death in the world (Libby
et al., 2019).

The etiology of atherosclerosis is generally unknown, but there
are multiple factors that contribute to atherosclerotic plaque
progression. These include genetic and acquired factors. Today
atherosclerosis is considered an inflammatory process that occurs
as a response to the accumulating lipid within the arterial wall
(Feingold et al., 2000). Increase in plasma cholesterol levels result in
accumulation of lipids, especially “cholesterol-containing low-
density lipoproteins (LDL)” into the arterial wall where they bind
to the extracellular matrix and aggregate (Sakakura et al., 2013; Arai,
2014; Feingold et al., 2000; Orekhov, 2018). Also, circulating
monocytes adhere to the endothelial cells and populate the
subendothelial space (Sakakura et al., 2013). The monocytes then
differentiate to macrophages and subsequently convert to foamy
macrophages (Scott, 1977; Yu et al., 2013; Chistiakov et al., 2017;
Orekhov, 2018).

Foamy macrophage infiltration of pathological intimal
thickening (PIT) is considered the first step towards the eventual
formation of atherosclerotic plaque (Sakakura et al., 2013).
Mechanisms involved in atherosclerotic plaque progression from
PIT to fibroatheromas include further infiltration of macrophages
and foam cells, vascular inflammation, oxidative stress and
subsequent endothelial dysfunction (Schächinger and Zeiher,
2000; Alp et al., 2004; Sakakura et al., 2013; Otsuka et al., 2015;
Gimbrone and García-Cardeña, 2016; Otsuka et al., 2016;
Förstermann et al., 2017; Chen et al., 2018). Further infiltration
of macrophages, which releases matrix metalloproteinase (MMPs),
along with macrophage and vascular smooth muscle cell apoptosis
accompanied with the intraplaque hemorrhage, leads to the
formation and expansion of an acellular necrotic core (Sakakura
et al., 2013). The precursor lesion of plaque rupture is a thin cap
fibroatheroma (TCFA) or “vulnerable plaque” (Sakakura et al., 2013;
Otsuka et al., 2016). Atherosclerotic plaque rupture and erosion
leads to the activation of blood coagulation cascade and results in
luminal thrombosis. Atherosclerotic plaque disruption with
superimposed thrombosis is called atherothrombosis, a term that

includes both atherosclerosis and its acute thrombotic complications
(Viles-Gonzalez et al., 2004). Atherosclerotic and thrombotic
processes are interdependent but thrombosis is not an obligatory
consequence of atherosclerosis (Viles-Gonzalez et al., 2004).

There are many known risk factors for atherosclerosis, including
hypercholesterolemia, hypertension, diabetes, and smoking, which
are involved in the pathogenesis of atherosclerosis (Fan and
Watanabe, 2022). Of the various risk factors, cigarette smoking is
a major preventable risk factor for cardiovascular disease that
directly affects atherosclerosis (Messner and Bernhard, 2014;
Siasos et al., 2014; Wang et al., 2021).

Cigarette smoke is a complex aerosol mixture that contains
thousands of chemicals including reactive aldehydes, polycyclic
hydrocarbons, and quinones, as well as reactive oxygen and
nitrogen species (ROS/RNS) that can trigger cellular oxidative
stress either directly or through activation of cellular oxidative
stress signaling pathways (Takajo et al., 2001; Ambrose and
Barua, 2004; Orosz et al., 2007; Yamaguchi et al., 2007;
Abdelghany et al., 2018; Wang et al., 2019; El-Mahdy et al., 2020).

Oxidative stress alters the redox state of an organism and creates
an imbalance between production of ROS and endogenous
antioxidant defenses, leading to oxidation of lipids, proteins, and
DNA (Checa and Aran, 2020). ROS are produced from molecular
oxygen as a result of normal cellular metabolism. ROS can be
divided into two groups: free radicals and nonradicals. The main
ROS that are of physiological significance include O2

− and H2O2

(nonradical), and ONOO− (Burke and Fitzgerald, 2003; Birben et al.,
2012). ROS are mainly produced by mitochondria, during both
pathological and physiological conditions such as cellular
respiration, during arachidonic acid metabolism, and by
endothelial and inflammatory cells (Pizzino et al., 2017). At the
low physiological level, ROS regulate many essential processes like
protein phosphorylation, activation of several transcriptional
factors, apoptosis, immunity, and differentiation (Rajendran
et al., 2014; Zhang et al., 2016). A large body of evidence shows
that oxidative stress responsible in the onset and progression of
several diseases such as cancer, diabetes, metabolic disorders,
atherosclerosis, atherothrombosis, and cardiovascular diseases
(Pizzino et al., 2017; Kattoor et al., 2017; Martin-Ventura et al.,
2017; Checa and Aran, 2020).

In this manuscript, we present an AOP for cigarette smoke-
induced atherosclerosis through oxidative stress mediated
atherosclerotic plaque formation.

AOP development process

AOP is a simplified linear framework that originates from the
interaction of any external stressor with a biological target that
initiates a molecular initiating event (MIE) and launches the
sequence of consecutive key events (KEs) at different levels of
biological organization connected by key event relationships
(KERs), and subsequently leading to an adverse outcome (AO)
(Users’ Handbook supplement to the guidance document for
developing and assessing Adverse Outcome Pathways (OECD,
2013). MIE is a specialized type of key event that represents the
initial point of chemical/stressor interaction at the molecular level
within the organism, resulting in a perturbation that starts the AOP

Abbreviations: AKT (PKB), AKT serine/threonine kinase (protein kinase B); AO,
adverse outcome; AOP, adverse outcome pathway; CARD5, PYD and CARD
domain containing; CD36, CD36 molecule; Cyclic GMP, Cyclic guanosine
monophosphate; DNA, Deoxyribonucleic acid; ELAVL1 (HuR), ELAV like RNA
binding protein 1; eNOS, Endothelial nitric oxide synthase; GCH1, GTP
cyclohydrolase 1; gp91-phox, cytochrome b-245 beta chain; GSDMDC1,
asdermin D; HDAC6, histone deacetylase 6; IL-1 β, interleukin 1 beta; IL-
18, interleukin 18; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; KE,
key event; LDL, low density lipoproteins; MIE, molecular initiating event;
MMPs, matrix metalloproteinase; NADPH oxidase, nicotinamide adenine
dinucleotide phosphate oxidase; NALP3, NLR family pyrin domain
containing 3; NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cells; NO, nitric oxide; Organisation for Economic Co-
operation and Development (OECD); ox-LDL, oxidized-low density
lipoproteins; p22-phox, cytochrome b-245 alpha chain, PERM,
myeloperoxidase; PIT, pathological intimal thickening; PKC-delta, protein
kinase C delta; PPAR-gamma peroxisome proliferator activated receptor
gamma, RelA (p65 NF-kB subunit), RELA proto-oncogene, NF-kB subunit;
RNS, reactive nitrogen species; ROS, reactive oxygen species; SCN(’-),
Thiocyanate; SOD1, superoxide dismutase 1; TBARS, thiobarbituric acid
reactive substances; TCFA, thin cap fibroatheroma; TNF-alpha, tumor
necrosis factor; TXNIP (VDUP1), thioredoxin interacting protein; VEGFR-2,
kinase insert domain receptor.

Frontiers in Toxicology frontiersin.org02

Makena et al. 10.3389/ftox.2025.1554747

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1554747


(Villeneuve et al., 2014a; Villeneuve et al., 2014b; Vinken et al.,
2017). A KE is a change in biological or physiological state that is
both measurable and essential to the progression of a defined
biological perturbation leading to a specific AO (Villeneuve et al.,
2014a; Villeneuve et al., 2014b; Vinken et al., 2017). KER is a
relationship that connects 1 KE to another, and defines a causal
and predictive relationship between the upstream and downstream
event (Villeneuve et al., 2014a; Villeneuve et al., 2014b; Vinken et al.,
2017). AO is a specialized type of key event that is generally accepted
as being of regulatory significance on the basis of correspondence to
an established protection goal or equivalence to an apical endpoint
in an accepted regulatory guideline toxicity test (Villeneuve et al.,
2014a; Villeneuve et al., 2014b; Vinken et al., 2017).

An AOP describes existing knowledge about the exposure,
molecular, cellular, tissue, organ, organism, and population
perturbations initiated by a stressor that leads to eventual
toxicological effect (AO) at a biological level of organization
relevant to risk assessment. The (OECD, 2013) guidelines were
employed for the development of this AOP (Users’ Handbook
supplement to the Guidance Document for developing and
assessing Adverse Outcome Pathways). The guidance documents
and subsequent supplements to the guidance identify key
information to include in an AOP description and the AOP-KB
(www.aopwiki.org) provides a structured, collaborative platform for
assembling and disseminating AOP descriptions.

An AOP development process starts by identifying the stressor
or chemical compounds or compound classes that have been
experimentally proven to induce the specific AO. In-depth

analysis of reliable literature was applied to establish a MIE, AO,
and a series of specific KEs, which represent the essential
intermediary steps in between the MIE and AO (Villeneuve
et al., 2014a; Villeneuve et al., 2014b).

The assessment of the weight of evidence supporting the AOP
was evaluated according to three principles, namely, essentiality
of the KEs, biological plausibility of the KERs, and KERs
empirical support (quantitative evidence) (Villeneuve
et al., 2014b).

KE included in AOP must be essential, i.e., KE should be
included in the single AOP only if measured responses are
involved in the AOP progression toward the certain single AO,
and causally associated with MIE or upstream/downstream KEs. KE
is considered essential if its blocking prevents all downstream KEs
and/or AO. KER biological plausibility defines the mechanistic
(i.e., structural or functional) relationship between upstream and
downstream KE consistent with established biological knowledge.
KER biological plausibility is evaluated with respect to current
understanding of normal biology, rather than response to specific
stressor. KER empirical support is evaluated with regards to specific
experimental evidence that supports the associations between pairs
of upstream and downstream KEs, i.e., it must be experimentally
shown that a change in an upstream KE leads to the appropriate
change in the downstream KE. It is examined most often in studies
of dose-response/incidence and temporal relationships for stressors
that initiate the AOP, thereby the articles selected for KER empirical
support overview must be stressor- and AO-specific (Villeneuve
et al., 2014a; Villeneuve et al., 2014b).

FIGURE 1
A schematic representation of the AOP: Role of Oxidative Stress induced by cigarette smoke in atherosclerotic plaque progression. MIE, molecular
initiating event; KE, key event; AO, adverse outcome; KER, key event relationship; LDL, low density lipoproteins; NO, nitric oxide. Solid line arrow
corresponds to direct KER, dashed line arrow corresponds to indirect KER.
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AOP MIE, KEs and AO

A schematic representation of the AOP is presented in Figure 1.

MIE: oxidative stress

At the molecular level of biological organization, oxidative stress
was proposed as the MIE of this AOP. There is adequate evidence
that inhalation of toxicants/oxidants including cigarette smoke
significantly increases the risk for atherosclerosis progression
(Howard et al., 1998; Siasos et al., 2014; Babic et al., 2019;
Centner et al., 2020; Wang et al., 2021). The key mechanism
through which inhaled toxicants/oxidants aggravate
atherosclerosis is induction of oxidative stress in the vascular
endothelium (Ambrose and Barua, 2004; Messner and Bernhard,
2014; Siasos et al., 2014; Förstermann et al., 2017; El-Mahdy et al.,
2020; Wang et al., 2021). Oxidative stress arises from cigarette
smoke-derived oxidants (gas and tar phase of cigarette smoke)
and cigarette smoke-induced production of reactive oxygen
species (ROS) by vascular resident cells (endothelial cells, smooth
muscle cells) and infiltrating cells (platelets, monocytes/
macrophages) (Takajo et al., 2001; Ambrose and Barua, 2004;
Orosz et al., 2007; Yamaguchi et al., 2007; Zhou et al., 2013;
Wang et al., 2019; El-Mahdy et al., 2020). Therefore, oxidative
stress plays a central role in smoking-induced atherosclerosis
progression, hence it was considered as MIE for this AOP
(Harrison et al., 2003; Förstermann et al., 2017;
Malekmohammad et al., 2019).

KE1: increased oxidized LDL uptake by
macrophages

At the level of cellular response, cigarette smoke-induced
oxidative stress significantly increases lipid peroxidation resulting
in an increase in atherogenic oxidized-low density lipoproteins (ox-
LDL) levels (Scheffler et al., 1992; Frei et al., 1991; Morrow et al.,
1995; Churg and Cherukupalli, 1993; Yamaguchi et al., 2005;
Kunitomo et al., 2009; Messner and Bernhard, 2014). Moreover,
oxidative stress increases expression of macrophage scavenger
receptors which mediate recognition and uptake of ox-LDL
leading to ox-LDL accumulation in macrophages and subsequent
foam cell formation (Zhou et al., 2013; Feingold et al., 2000;
Orekhov, 2018).

KE2: foam cell formation

At the level of organ response, cigarette smoke induces
differentiation of monocytes into macrophages. Macrophages
accumulate lipids and differentiate into foam cells to form the early
lesions that mature into atherosclerotic plaques (Zhou et al., 2013;
Mehta and Dhawan, 2020). Activated macrophages and lipid-laden
foam cells are considered to be the hallmarks of atherosclerotic plaques
(Orekhov, 2018). Differentiation of monocytes, macrophages and foam
cells are the key stages in atherosclerotic plaque development (Yu et al.,
2013; Chistiakov et al., 2017; Orekhov, 2018).

KE3: increased pro-inflammatory mediators

This KE is at the level of cellular response within AOP. Cigarette
smoke-mediated oxidative stress promotes increased secretion and
release of proinflammatory mediators in the vascular endothelium
(Ambrose and Barua, 2004; Orosz et al., 2007; Messner and
Bernhard, 2014). Oxidative stress launches several mechanisms in
endothelial cells, macrophages, and vascular smooth muscle cells. In
endothelial cells and macrophages, oxidative stress activates
intracellular signaling pathways leading to increased transcription
of several inflammatory factors, such as iNOS, TNF-alpha, IL-6, and
IL-1 β (Brand et al., 1997; Orosz et al., 2007; Morgan and Liu, 2011;
Checa and Aran, 2020; Zhang et al., 2016; Youn et al., 2016). Also,
oxidative stress activates NALP3 inflammasome mechanism in
endothelial cells (Schroder and Tschopp, 2010; Latz, 2010; Wu
et al., 2018; Qian et al., 2021), monocytes/macrophages (Zhou
et al., 2010; Mehta and Dhawan, 2020; Mehta et al., 2020a;
Mehta et al., 2020b; Mao et al., 2021), and vascular smooth
muscle cells (Grebe et al., 2018; Yao et al., 2019).
NALP3 inflammasome activation leads to Caspase-1-mediated
cell pyroptosis, a cell death mechanism that results in cell lysis
(Qian et al., 2021). Also, activated Caspase-1 cleaves IL-18 and IL-1
β, thereby processing mature inflammatory cytokines IL-18 and IL-1
β. Endothelial cell, monocytes/macrophage, and vascular smooth
muscle cell lysis leads to increased cytokine release (Miao et al., 2011;
Wu et al., 2018; Qian et al., 2021; Grebe et al., 2018; Yao et al., 2019).

KE4: leukocyte recruitment/activation

This KE belongs to the cellular response level of biological
organization. The vascular inflammatory response is a
characteristic hallmark of the initiation and progression of
atherosclerosis (Ambrose and Barua, 2004; Tousoulis et al.,
2016). Cigarette smoke-induced oxidative stress causes increased
secretion of proinflammatory mediators and promotes vascular
inflammation followed by monocyte/macrophage migration and
recruitment to early atherosclerotic plaques (Orosz et al., 2007;
Edirisinghe et al., 2008; Mao et al., 2021).

KE5: NO depletion

This KE is at the cellular response level of biological
organization. Nitric oxide (NO) is a soluble gas synthesized from
the amino acid L-arginine in endothelial cells by the enzyme
endothelial nitric oxide synthase (eNOS). NO plays an important
role in the normal endothelial function and vascular homeostasis,
including modulation of vascular tone, regulation of local cell
growth, inhibition of platelet aggregation and protection of the
vessel from injurious consequences of platelets and cells
circulating in blood (Tousoulis et al., 2012). Moreover, NO exerts
multiple anti-atherosclerotic effects (Sukhovershin et al., 2015;
Förstermann et al., 2017).

One of the most important and well-studied consequences of
oxidative stress caused by cigarette smoking is NO depletion in
endothelial cells and platelets (Ichiki et al., 1996; Barua et al., 2003;
Puranik and Celermajer, 2003; Grassi et al., 2010; Abdelghany et al.,
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2018; El-Mahdy et al., 2020). Augmented oxidative stress affects
eNOS, promoting so-called eNOS ‘uncoupling’ (Heitzer et al., 2000;
Abdelghany et al., 2018; El-Mahdy et al., 2020), which disturbs
normal eNOS activity and suppresses NO synthesis via several
different molecular mechanisms which are summarized in the
“Pathways and molecular mechanisms“ section below (Takajo
et al., 2001; Barua et al., 2003; Jin et al., 2003; Jaimes et al., 2004;
Edirisinghe et al., 2008; Talib et al., 2014; Abdelghany et al., 2018; El-
Mahdy et al., 2020). Oxidative stress-induced NO depletion
subsequently leads to the development of vascular endothelial
dysfunction and increased platelet aggregation; thereby playing a
significant role in the progression of atherosclerosis (Alp et al., 2004;
Li et al., 2018; Wang et al., 2021; El-Mahdy et al., 2020; Dikalov et al.,
2019; Takajo et al., 2001).

KE6: endothelial cell dysfunction

KE6 Endothelial dysfunction represents the tissue level of
biological organization in this AOP. In the context of smoking,
endothelial dysfunction can arise as a result of oxidative stress-
induced NO depletion (Puranik and Celermajer, 2003; Alp et al.,
2004; Chen et al., 2018; Li et al., 2018; Wang et al., 2021; El-Mahdy
et al., 2020; Dikalov et al., 2019; Takajo et al., 2001). Endothelial
dysfunction is characterized by impairment of endothelium-
dependent relaxation and endothelial cell injury leading to
atherosclerotic plaque formation (Siasos et al., 2014; Sukhovershin
et al., 2015; Messner and Bernhard, 2014; Chen et al., 2018; Münzel
et al., 2020; Wang et al., 2021). KE6 Endothelial dysfunction
represents the tissue level of biological organization in this AOP.

KE7: increased platelet aggregation

This KE lays at the tissue level of biological organization in this
AOP. Platelet aggregation is the process by which platelets adhere to
each other at sites of vascular injury leading to hemostatic plug
formation and subsequent thrombosis (Jackson, 2007). Platelet
aggregation plays a key role in pathogenesis of atherothrombosis, an
acute complication of atherosclerosis (Ruggeri, 2002). Platelets adhere
to the sites of vascular endothelial injury upon plaque rupture, become
activated and aggregate to form a hemostatic thrombus (Ruggeri, 2002;
Viles-Gonzalez et al., 2004; Steinhubl andMoliterno, 2005; Csordas and
Bernhard, 2013; Martin-Ventura et al., 2017). Also, there are some data
that demonstrate that platelet activation can be seen in the different
phases of atherosclerosis, activated platelets are able to interact with
endothelium and influence the development and progression of
atherosclerotic plaque (Huo and Ley, 2004; Gawaz et al., 2008;
Wang and Tang, 2020). Smoking-induced oxidative stress causes
NO depletion leading to augmentation of platelet aggregation
thereby likely contributing to the atherosclerotic plaque formation
and atherothrombosis (Ichiki et al., 1996; Takajo et al., 2001).

AO: plaque progression

Plaque progression was proposed as the AO for this AOP and
represents the organ response level. Atherosclerotic plaque

progression is a dynamic process involving the succession of
early lesions to advanced plaques. The earliest stage of
atherosclerotic lesions is termed pathologic intimal thickening
(PIT), where the progressive lesion is primarily composed of
layers of smooth muscle cells in a proteoglycan-collagen matrix
characterized by extracellular lipid accumulation that are rich in
proteoglycans and hyaluronan. Inflammation plays a necessary role
in the progression of atherosclerotic lesions. The extensive vascular
inflammation and infiltration of macrophages and foam cells result
in progression of PIT to fibroatheromas; however, the processes
involved are poorly understood (Sakakura et al., 2013; Otsuka et al.,
2016). Fibroatheroma is characterized by the presence of an acellular
necrotic core which is made up of cellular debris (Otsuka et al.,
2015). The further expansion of the necrotic core along with the
thinning of the fibrous cap leads to development of thin-cap
fibroatheroma (TCFA) or ‘vulnerable’ plaque which is the
precursor lesion of plaque rupture (Sakakura et al., 2013; Otsuka
et al., 2016). Plaque ruptures is when the plaque fibrous cap becomes
weakened and finally disrupted (Otsuka et al., 2016). When the
fibrous cap ruptures and the necrotic core contents are released to
the blood, the coagulation cascade becomes activated, leading to
luminal thrombus formation (Steinhubl and Moliterno, 2005;
Otsuka et al., 2016).

Overall assessment of the AOP

Essentiality of KEs
Supporting evidence for KE essentiality are summarized in

Supplementary Table SA1. Most KEs were rated as high because
there is much clinical, animal model, and in vitro evidence
demonstrating that blocking them would prevent or attenuate the
downstream KEs. However, KE4 (Leukocyte recruitment/
activation) was rated as moderate because there is only indirect
evidence that Leukocyte recruitment/activation is necessary for
endothelial dysfunction in the context of cigarette smoke-induced
oxidative stress. Several studies indicate that cigarette smoke-
induced oxidative stress promotes monocyte/macrophage
recruitment to the vascular wall accompanied by vascular
inflammation, endothelial damage and dysfunction (Orosz et al.,
2007; Edirisinghe et al., 2008; Mao et al., 2021). Inhibition of
oxidative stress suppresses cigarette smoke-induced monocyte/
macrophage migration and adhesion to the endothelium, but
there is a lack of direct evidence showing that inhibition of
monocyte/macrophage activation, migration and adhesion, is
followed by the suppression of endothelial injury and improved
vascular function, under the cigarette smoke action (Orosz et al.,
2007; Mao et al., 2021). According to the OECD guideline it
corresponds to the moderate essentiality of KE.

KE7 (Increased platelet aggregation) was rated as low because
there is no experimental evidence that blocking or attenuating
platelet aggregation influences the downstream AO (Plaque
progression). Cigarette smoke causes platelet activation and
aggregation (Ichiki et al., 1996; Takajo et al., 2001). Smoking
cessation, most likely by decreasing oxidative stress, can
ameliorate the enhanced platelet aggregability in long-term
smokers (Morita et al., 2005). Platelet aggregability is one of the
strongest risk factors for atherosclerosis progression in smokers
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(Salonen and Salonen, 1990). In an animal model study, Huo and
colleagues demonstrated that perfusion of activated platelets
increased atherosclerotic lesions formation (Huo et al., 2003).
Many studies demonstrate that platelet activation, adhesion, and
aggregation at sites of vascular endothelial disruption are key events
in pathogenesis of atherothrombosis, a condition which is
characterized by atherosclerotic plaque disruption with
superimposed thrombosis (Viles-Gonzalez et al., 2004; Steinhubl
and Moliterno, 2005; Csordas and Bernhard, 2013; Martin-Ventura
et al., 2017). However, there are no experimental studies
demonstrating that ablation of smoking-induced platelet
aggregation ameliorates atherosclerotic plaque progression. Thus,
the essentiality of this KE is rated low.

Biological plausibility of KERs

Supporting evidence for KERs biological plausibility are
explained in detail in Supplementary Table SA2.

Most of the KERs from this AOP have a well-established
mechanistic basis and there is much supporting evidence from
human, animal model and in vitro studies. Therefore, we have
rated the weight of most KERs as high (strong) with respect to
biological plausibility.

However, the weight of KER (KE7=>AO) moderate, as scientific
understanding of the mechanism of how smoking-induced platelet
aggregation influences atherosclerotic plaque progression is not
completely established (Salonen and Salonen, 1990; Huo et al.,
2003). Many studies demonstrate that platelet activation,
adhesion, aggregation, and activation of the coagulation cascade
at sites of vascular endothelial disruption upon plaque rupture are
key events in pathogenesis of atherothrombosis, which is
characterized by atherosclerotic lesion disruption with
superimposed thrombus formation (Viles-Gonzalez et al., 2004;
Steinhubl and Moliterno, 2005; Csordas and Bernhard, 2013;
Martin-Ventura et al., 2017). Moreover, there is some evidence
that platelet activation takes place in the different phases of
atherosclerosis; activated platelets are able to interact with
endothelium and influence the development and progression of
atherosclerotic plaque (Mustard and Packham, 1975; Sinzinger,
1986; Huo and Ley, 2004; Jørgensen, 2006; Gawaz et al., 2008;
Wang and Tang, 2020). Several studies demonstrate that smoking-
induced oxidative stress augments platelet aggregability which may
contribute to atherothrombosis (Ichiki et al., 1996; Takajo et al.,
2001). But there is a limited amount of experimental data confirming
that smoking-induced platelet aggregation influences early
atherosclerotic plaque formation and progression (Salonen and
Salonen, 1990; Huo et al., 2003).

Empirical support of KERs

An overview of supporting empirical evidence for the KERs is
presented in Supplementary Table SA3. Selection criteria applied to
this evidence were based on the OECD guidance and handbook for
the development of the AOP.

The proposed AOP is a qualitative one. There is a good
qualitative and quantitative understanding of how cigarette

smoking-mediated oxidative stress affects lipid peroxidation,
oxidized LDL uptake by macrophages, foam cell formation,
increase in pro-inflammatory mediators, leukocyte recruitment
and activation, NO depletion, endothelial dysfunction, and
platelet aggregation on the cellular, tissue and organism level,
lending strong support for these KERs (MIE =>KE1, KE1=>KE2,
KE2=>AO, MIE =>KE3, KE3=>KE4, KE4=>KE6, MIE=>KE5,
KE5=>KE6, KE6=>AO, KE5=>KE7, KE7=>AO). In addition,
some of these studies indicate a dose-dependent relationship and
causality for smoking-induced oxidative stress and associated
atherosclerotic changes.

While cause and effect relationships are established for cigarette
smoking-induced oxidative stress and platelet aggregation, the dose/
time–response relationship is more difficult to define for KE7=>AO
(Increased platelet aggregation leads to Plaque progression). There
are several human and animal model studies that experimentally
demonstrate the association of platelet aggregation and
atherosclerosis progression (Salonen and Salonen, 1990; Huo
et al., 2003). However, the exact and direct mechanism and
causal relationship are unclear. Thus, the empirical support of
this KER (KE7=>AO) is supposed to be low. Taking this
together with weak essentiality of KE7 (KE7: Increase, platelet
aggregation) and moderate biological plausibility of KE7=>AO
(Increased platelet aggregation leads to Plaque progression) in
the context of the AOP, the total weight of evidence for KE7 is
believed to be low and we suppose that this KER (KE7=>AO) is
indirect (see dashed line arrow in Figure 1).

Pathways and molecular mechanisms

A summary of putative signaling pathways is presented
in Figure 2.

As mentioned above, oxidative stress was proposed as the main
mechanism through which smoking promotes atherosclerosis
formation (Ambrose and Barua, 2004; Messner and Bernhard,
2014; Siasos et al., 2014; Förstermann et al., 2017; El-Mahdy
et al., 2020; Wang et al., 2021). Cigarette smoke-mediated
oxidative stress induces the development and progression of
atherosclerotic plaque via multiple molecular pathways which are
summarized in this section.

Inhaled toxicants/oxidants, such as components of the gas/vapor
or tar phase of cigarette smoke may be immediate sources of ROS
(Ambrose and Barua, 2004) or may increase ROS production acting
on vascular resident cells (endothelial cells) (Ambrose and Barua,
2004; Orosz et al., 2007; El-Mahdy et al., 2020; Wang et al., 2021),
smooth muscle cells (Martin-Ventura et al., 2017; Wang et al., 2019;
Yao et al., 2019; Wang et al., 2021) and vascular infiltrating cells
(monocytes/macrophages) (Ambrose and Barua, 2004; El-Mahdy
et al., 2020) and platelets (Takajo et al., 2001; Martin-Ventura et al.,
2017) that produce ROS in response to cigarette smoke (Ambrose
and Barua, 2004; Messner and Bernhard, 2014; Martin-Ventura
et al., 2017; El-Mahdy et al., 2020; Wang et al., 2021).

In endothelial cells, cigarette smoke increases the levels of gp91-
phox and p22-phox subunits of NADPH oxidase (Orosz et al., 2007;
El-Mahdy et al., 2020), leading to ROS generation (Bedard and
Krause, 2007; Orosz et al., 2007; El-Mahdy et al., 2020). Activated
NADPH oxidase catalyzes the formation of O2

− (Orosz et al., 2007;
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Bedard and Krause, 2007), while superoxide dismutase, such as
SOD1, catalyzes the conversion of O2

− to H2O2 (Orosz et al., 2007;
Fukai and Ushio-Fukai, 2011). Moreover, cigarette smoke and its
components induce ROS production in monocytes, macrophages
and foam cells (Wu et al., 2018; Mehta andDhawan, 2020; El-Mahdy
et al., 2020; Mehta et al., 2020b; Mao et al., 2021). Cigarette smoke
induces the activation and expression of gp91-phox and p22-phox in
monocytes and macrophages, increasing NADPH oxidase-mediated
O2

− production (El-Mahdy et al., 2020).
Cigarette smoke increases intracellular ROS levels at all stages of

monocyte-to-macrophage-to-foam cell differentiation (Lugg et al.,
2022). Cigarette smoke-induced oxidative stress induces lipid
peroxidation significantly increasing ox-LDL levels (Scheffler
et al., 1992; Heinecke et al., 1986; Frei et al., 1991; Morrow et al.,

1995; Churg and Cherukupalli, 1993; Yamaguchi et al., 2005;
Kunitomo et al., 2009; Arai, 2014; Messner and Bernhard, 2014).
Moreover, in monocytes/macrophages, production of ROS is
required for phosphorylation and activation of PKC-delta that
then, via an unknown pathway, increases PPARγ expression
(Feng et al., 2000; Dressman et al., 2003; Zhou et al., 2013). In
turn, PPARγ upregulates the expression of CD36 (Feng et al., 2000;
Dressman et al., 2003; Silverstein and Febbraio, 2009; Zhou et al.,
2013), a scavenger receptor that mediates the recognition and uptake
of ox-LDL (Febbraio et al., 2001; Silverstein and Febbraio, 2009).
CD36 recognizes and internalizes ox-LDL, subsequently leading to
lipid accumulation in macrophages (Liu et al., 2018). This results in
the formation of foam cells containing lipids, ultimately promoting
the progression of atherosclerotic plaques (Febbraio et al., 2001;

FIGURE 2
Summary of the signaling pathways: the role of oxidative stress induced by cigarette smoke in atherosclerosis.
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Silverstein and Febbraio, 2009; Sakakura et al., 2013; Zhou et al.,
2013; Feingold et al., 2000) and differentiate into lipid-laden foam
cells, promoting atherosclerotic plaque development (Peluso et al.,
2012; Yu et al., 2013; Chistiakov et al., 2017; Orekhov, 2018).

Cigarette smoke components increase ROS production in
vascular smooth muscle cells. In turn, ROS activate RelA
(p65 NF-κB subunit) that increases the expression of Beclin 1
(Wang et al., 2019), a trigger protein in autophagy (Cao and
Klionsky, 2007; Martinet and De Meyer, 2009; Wang et al.,
2019). Autophagy further contributes to the phenotypic switching
of smooth muscle cells from the contractile to the synthetic type
(Wang et al., 2019), which enhances the cell abilities to migrate and
proliferate (Xie et al., 2011; Siasos et al., 2014; Wang et al., 2019; Liu
et al., 2021). Upon migration to the intima, vascular smooth muscle
cells can trans-differentiate into lipid-laden foam cells, leading to
atherosclerotic plaque formation and atherogenesis (Wolfbauer
et al., 1986; Wang et al., 2019; Liu et al., 2021).

Cigarette smoke-induced oxidative stress promotes
proinflammatory alterations in the vascular endothelium
(Ambrose and Barua, 2004; Orosz et al., 2007; Messner and
Bernhard, 2014). H2O2, produced in endothelial cells, leads to the
activation of NF-κB, which, probably, contributes to the expression
of proinflammatory factors, such as iNOS (Orosz et al., 2007;
Morgan and Liu, 2011) and cytokines TNFα, IL-6, and IL-1β
(Brand et al., 1997; Orosz et al., 2007; Checa and Aran, 2020).
H2O2, at least in part via the production of cytokines such as TNFα,
also induces monocyte adhesion to endothelial cells (Orosz
et al., 2007).

Moreover, ROS activate NALP3 inflammasome in endothelial
cells (Schroder and Tschopp, 2010; Latz, 2010; Wu et al., 2018; Qian
et al., 2021) and H2O2 most likely via NF-kB and/or TXNIP
(VDUP1)-dependent pathways activates NALP3 (Zhou et al.,
2010; Tschopp and Schroder, 2010; Schroder and Tschopp, 2010;
Yin et al., 2017). H2O2 blocks Thioredoxin association with TXNIP
(VDUP1), causing TXNIP (VDUP1) interaction with NALP3 (Zhou
et al., 2010). Within the inflammasome, activated NALP3 binds to
the adapter protein CARD5 that, in turn, associates with and
activates Caspase-1 (Schroder and Tschopp, 2010; Latz, 2010; Wu
et al., 2018). Activated Caspase-1 triggers endothelial cell pyroptosis,
a cell death mechanism that results in cell lysis (Qian et al., 2021).
Also, activated Caspase-1 cleaves IL-18 and IL-1β, thereby
processing mature inflammatory cytokines IL-18 and IL-1β.
Endothelial cells lysis leads to cytokines release promoting
vascular inflammation and monocyte/macrophage migration and
recruitment to early atherosclerotic plaques (Miao et al., 2011; Wu
et al., 2018; Qian et al., 2021).

In monocytes, macrophages and foam cells, oxidative stress also
activates NALP3 inflammasome via the H2O2/Thioredoxin/TXNIP
(VDUP1) pathway (Zhou et al., 2010; Mehta and Dhawan, 2020;
Mehta et al., 2020a; Mehta et al., 2020b; Mao et al., 2021). NALP3 via
CARD5 activates Caspase-1 signaling leading to IL-18 and IL-1β
processing and activation (Mehta and Dhawan, 2020; Mehta et al.,
2020a; Mehta et al., 2020b; Mao et al., 2021). Caspase-1 also cleaves
GSDMDC1 which forms pores in the cell membrane and stimulates
cell pyroptosis (Mao et al., 2021; Qian et al., 2021). Then, the
inflammatory cytokines along with other alarmins are released
through cell membrane pores or after membrane lysis (Qian
et al., 2021). In addition, cigarette smoke components induce

macrophage pyroptosis through the activation of HDAC6.
Deacetylase HDAC6 reduces the acetylation level of RelA
(p65 NF-κB subunit), thus enhancing RelA (p65 NF-κB subunit)
nuclear translocation. In the nucleus, RelA (p65 NF-κB subunit)
upregulates the expression of NALP3, leading to the activation of
NALP3 inflammasome (Xu et al., 2021). In macrophages,
HDAC6 can also upregulate the expression and activity of p22-
phox and gp91-phox, two subunits of Cytochrome b-558 that, in
turn, is a part of NADPH oxidase (Bedard and Krause, 2007; Youn
et al., 2016). NADPH oxidase produces O2

− that then rapidly
dismutates to H2O2 (Bedard and Krause, 2007). At least in part,
HDAC6-induced NADPH oxidase/H2O2 signaling leads to the
activation of RelA (p65 NF-κB subunit) and production of
inflammatory cytokines such as IL-1β(Morgan and Liu, 2011;
Zhang et al., 2016; Youn et al., 2016). In vascular smooth muscle
cells, ROS production also leads to the activation of
NALP3 inflammasome and release of mature IL-1β and IL-18
(Grebe et al., 2018; Yao et al., 2019).

Oxidative stress-induced increase in proinflammatory factors
and monocyte/macrophage recruitment to the vascular wall leads to
vascular inflammation. Moreover, endothelial cell, macrophage and
foam cell pyroptosis increases inflammation and necrotic core
formation in advanced atherosclerosis, promoting endothelial
damage and dysfunction, which results in the progression of
atherosclerosis (Ambrose and Barua, 2004; Orosz et al., 2007;
Messner and Bernhard, 2014; Edirisinghe et al., 2008; Mao et al.,
2021; Qian et al., 2021).

Also, in endothelial cells, increased oxidative stress promotes
oxidation and depletion of Tetrahydrobiopterin (Crabtree and
Channon, 2011; El-Mahdy et al., 2020). Tetrahydrobiopterin
plays a crucial role in regulating eNOS activity. When
monomeric eNOS forms a stable dimer through heme and
Tetrahydrobiopterin, eNOS becomes biologically active (Wang
et al., 2021). Active eNOS catalyzes NO biosynthesis (Alderton
et al., 2001). Depletion of Tetrahydrobiopterin leads to eNOS
‘uncoupling’, a condition in which eNOS produces O2

− rather
than NO leading to decrease in NO levels (Crabtree and
Channon, 2011; El-Mahdy et al., 2020). Notably, the reaction
between NO and O2

− results in ONOO− generation; ONOO−

interaction with Tetrahydrobiopterin is a more probable
mechanism for Tetrahydrobiopterin oxidation (Crabtree and
Channon, 2011; Siasos et al., 2014). Extracellular O2

− produced
by monocytes/macrophages can penetrate into the adjacent vascular
endothelial cells and increase endothelial intracellular O2

− levels,
facilitating ROS-dependent eNOS ‘uncoupling’ (El-Mahdy et al.,
2020). Both NADPH oxidase and eNOS-derived ROS can feedback
on each other resulting in a vicious cycle of monocyte/macrophage
and endothelial-mediated oxidant stress that causes vascular
dysfunction in atherosclerosis (El-Mahdy et al., 2020). In
endothelial cells, cigarette smoke also induces proteasomal
degradation of GCH1, a rate-limiting enzyme in
Tetrahydrobiopterin biosynthesis (Abdelghany et al., 2018).
Moreover, cigarette smoke components inhibit ELAVL1 (HuR)
translocation from the nucleus to the cytosol and suppress
ELAVL1 (HuR)-mediated stability of GCH1 mRNA (Li et al.,
2018). A decrease in GCH1 levels leads to a decrease in
Tetrahydrobiopterin biosynthesis followed by eNOS ‘uncoupling’
(Abdelghany et al., 2018; Li et al., 2018). The impairment of

Frontiers in Toxicology frontiersin.org08

Makena et al. 10.3389/ftox.2025.1554747

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1554747


endothelial Tetrahydrobiopterin synthesis and eNOS ‘uncoupling’
contribute to an increase in O2

− production and a decrease in NO
production (Alp et al., 2004; Crabtree and Channon, 2011; Li et al.,
2018; Wang et al., 2021).

In addition, cigarette smoke increases the levels of SCN- in
endothelial cells (Morgan et al., 2011; Wang et al., 2021). Also,
cigarette smoke-induced oxidative stress increases the availability of
H2O2. PERM uses H2O2 to catalyze the conversion of SCN− to
OSCN− (Talib et al., 2014; Wang et al., 2021). In turn, OSCN−

disrupts eNOS dimer structure and thus inhibits eNOS activity,
leading to decreased eNOS-mediated NO production (KE5: NO
depletion) (Talib et al., 2014).

Also, cigarette smoke-induced ROS inhibit the expression and
activity of VEGFR-2 in endothelial cells (Edirisinghe et al., 2008;
Edirisinghe and Rahman, 2010). VEGFR-2 inactivation attenuates
VEGFR-2-induced AKT (PKB) phosphorylation and activity,
which, in turn, attenuates AKT (PKB)-induced eNOS
phosphorylation and activity (Jin et al., 2003; Edirisinghe et al.,
2008; Edirisinghe and Rahman, 2010; El-Mahdy et al., 2020; Wang
et al., 2021).

In endothelial cells, cigarette smoke induced H2O2 reduces
Sirtuin1 levels and decreases its deacetylase activity, leading to
increased eNOS acetylation and reduced NO production
(Arunachalam et al., 2010; Edirisinghe and Rahman, 2010; Wang
et al., 2021). Moreover, cigarette smoke decreases the expression of
the mitochondrial deacetylase Sirtuin3 in endothelial cells (Dikalov
et al., 2019). Under normal conditions, Sirtuin3 deacetylates a key
mitochondrial antioxidant SOD2 tomaintain its activity. Superoxide
scavenger SOD2 reduces O2

− accumulation and protects against
oxidative stress (Sun et al., 2018). Attenuation of Sirtuin3-mediated
deacetylation increases the mitochondrial oxidative stress and leads
to the mitochondrial O2

− accumulation. O2
− overproduction

contributes to eNOS ‘uncoupling’ leading to decrease in NO
production (Dikalov et al., 2019; Wang et al., 2021).

As a result, decreased NO production subsequently leads to
endothelial dysfunction promoting atherosclerosis (Gimbrone and
García-Cardeña, 2016; Malekmohammad et al., 2019; El-Mahdy
et al., 2020; Wang et al., 2021).

Cigarette smoke-induced oxidative stress also promotes platelet
aggregation (Takajo et al., 2001). Oxidative stress, which is
accompanied by enhanced intraplatelet O2

− levels, leads to eNOS
‘uncoupling’ in platelets, that results in a decreased NO production
and increased O2

− (Takajo et al., 2001; Förstermann and Sessa, 2012;
Alexandru et al., 2010; Gawrys et al., 2020). Moreover, spontaneous
reaction between NO andO2

− leads to ONOO− synthesis resulting in
nitrosative/oxidative stress in platelets (Takajo et al., 2001;
Alexandru et al., 2010; Förstermann and Sessa, 2012; Gawrys
et al., 2020). NO depletion leads to reduced activation of
Guanylate Cyclase 1 soluble and a decrease in Cyclic GMP levels
(Dangel et al., 2010; Radziwon-Balicka et al., 2017; Makhoul et al.,
2018). Subsequently, both nitrosative/oxidative stress and a decrease
in Cyclic GMP levels can lead to platelet aggregation (Takajo et al.,
2001; Dangel et al., 2010; Alexandru et al., 2010; Makhoul et al.,
2018). Increased platelet aggregation may contribute to
atherosclerotic plaque formation (Salonen and Salonen, 1990;
Huo et al., 2003).

Domain of applicability

Taxonomic applicability
The evidence presented in this study in support of the proposed

AOP is derived from human, rat, and mouse biological systems.
Also, there was a small amount of data included that was generated
using non-human primate (Heinecke et al., 1986) and bovine
(Jaimes et al., 2004) cells. In vitro and in vivo studies in these
test systems have been used to clarify the mechanisms of smoking-
induced oxidative stress in plaque formation. Clinical data was
obtained from patients with atherosclerosis, healthy subjects,
smokers or non-smokers using blood or plasma samples. In vitro
human data were obtained using human cell cultures. Animal
in vitro and in vivo data were obtained using genetically modified
animal model systems (ApoE−/− mice), blood or tissue samples, and
in vitro animal cell cultures.

In summary, collected evidence suggests that data obtained from
human and animal studies are consistent and themajority of KEs are
conserved and relevant regardless of species used for the test system.

Life stage and sex applicability

Smoking-induced atherosclerosis and related biological
mechanisms in humans were studied predominantly in middle-
aged adults. No child studies were observed in the context of AOP.
Study groups included generally healthy smokers and non- or never-
smokers, and patients with cardiovascular manifestations.

Most smoking-related clinical studies usedmale subjects. Several
studies included mixed male-female groups (Heitzer et al., 1996;
Valkonen and Kuusi, 1998; Valkonen and Kuusi, 2000; Papamichael
et al., 2004; Solak et al., 2005), and one study was performed in
females only (Bergmann et al., 1998). In terms of smoking status,
female were more dominantly mild smokers, whereas males were
more dominantly observed to be heavy smokers (Solak et al., 2005).
However, the available clinical evidence in support of the AOP
suggests that there is no remarkable gender difference in level
of smoking.

Application of the AOP

Atherosclerosis and its clinical manifestations, such as
ischemic heart disease, stroke, and peripheral arterial disease,
are the leading causes of vascular injury-related death in the
world. But the etiology of atherosclerosis and exact mechanisms
involved in atherosclerotic plaque formation are not fully
understood to date. Smoking is one of the major preventable
risk factors for atherosclerosis and most types of cardiovascular
disease. The proposed AOP provides a mechanistic model of how
oxidative stress caused by inhaled toxicants/oxidants from
cigarette smoke can lead to the formation of atherosclerosis.
Assessment of described biological endpoints also provides a
mechanistic basis of smoking-induced atherosclerosis.
Moreover, the AOP described here may help to evaluate novel
targets for early diagnostics and more effective treatment options.
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Biomarkers

This AOP can be used as a source for relevant biomarkers of
effect of cigarette smoking and/or oxidative stress, with the aim of
developing reliable preclinical markers that are indicative of the
atherosclerosis plaque formation.

Biomarkers and corresponding assays which were used to
measure the MIE, each KE and AO of this AOP are summarized
in Supplementary Table SA4.

Based on the cumulative weight of evidence for KEs for this AOP
and number of studies which measure the selected biomarkers in
context of smoking and oxidative stress, we propose that these
biomarkers may have clinical significance to predict or indicate the
risk of atherosclerosis formation in smokers. Thus, increased
markers of oxidative stress, increased lipid peroxides and
thiobarbituric acid reactive substances (TBARS), increased
expression levels of macrophage surface markers, increased
NLRP3 inflammasome assembly markers and vascular
inflammatory mediators, markers of NO depletion and
endothelial cell dysfunction may be used to develop relevant
clinical tests for atherosclerosis assessment in smokers. Increased
platelet aggregability has low essentiality and biological plausibility
for atherosclerotic plaque formation, but it could serve as relevant
marker of thrombosis (as acute complication of atherosclerosis).

Conclusion

In conclusion, in this manuscript we propose the AOP framework
which represents a mechanistic relationship between cigarette smoke-
mediated oxidative stress and atherosclerotic plaque formation.
Molecular mechanisms underlying the pathogenesis of
atherosclerosis have been extensively investigated during the past
30 years, however there are still many gaps of knowledge. The overall
weight of collected evidence supporting KEs and KERs in this AOP is
strong. Obtaining measures of AOPs in the clinic presents significant
challenges. KE in AOPs often involve intricate molecular and cellular
interactions that can be difficult to measure directly, offer few
validated biomarkers and those present often these often overlap
with comorbidities. In vitro assays and new approach methodologies
(NAMs) may offer promising tools to address these issues. These
alternatives enable controlled, mechanistic investigations of cellular
responses to stressors, facilitating as proxies to bridge the gap between
clinically measurable key events to enhance the predictive power of
AOP frameworks and improve risk assessment strategies.
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