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The development of in vitro tests that reproduce real-world situations is crucial
for toxicity- and disease-risk assessment without animal testing. Because signs
and symptoms of health concerns can be complex, it is helpful to create a
simplified representation of such manifestations using a conceptual framework
such as an adverse outcome pathway (AOP). Combining an AOP with
computational models could be a potential tool for the extrapolation of
in vitro results to real-world scenarios. Here, we applied Bayesian network-
based probabilistic quantitative models for disease-related risk estimation
using an in vitro dataset on the AOP of mucus hypersecretion—a known
representative symptom of chronic airway disease—obtained by repeated
exposure of human bronchial epithelial cells to whole cigarette smoke. We
also used a computational aerosol dosimetry model to account for
differences between in vitro exposure concentrations and human exposure
scenarios. The results revealed dose- and exposure repetition-dependent
increases in adverse outcome probability, suggesting that the model reflects
the risk continuum of cigarette smoking. Furthermore, under certain
assumptions, dosimetry modeling indicated that our in vitro exposure
concentrations were similar to actual smoking scenarios. As an exercise, we
also calculated in vitro odds ratios for chronic bronchitis that were comparable to
the range of real-world odds ratios for chronic bronchitis due to cigarette
smoking. Our combinatory risk-assessment approach could be a valuable tool
for estimating the chronic inhalation effects of inhalable products and chemicals.
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1 Introduction

The development and use of new approach methodologies for toxicological risk
assessments are expected to facilitate the reduction and replacement of animal testing,
in line with the 3R (refinement, reduction, and replacement) guiding principles. Recent
advancements in such in vitromethodologies have enabled researchers to go beyond the cell
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level by investigating the effects of stressors at the organismal level.
Three-dimensionally (3D) cultured in vitro cells have the potential
to represent tissue- or organ-level complexity with more extended
culture duration thanmonolayer-cultured cells. This culture method
presents a significant advantage for assessing the effects of chronic
exposure to stressors and toxins. In addition, comprehensive
biological phenomena have been elucidated through
advancements in omics technologies and systems biology,
enabling the identification of key events (KEs) through which
certain biological phenomena occur. An adverse outcome
pathway (AOP) is a framework that systematically organizes
knowledge to depict a simplified theory. For instance, an AOP
can be utilized to demonstrate how molecular-level alterations in a
specific cell type can lead to apical endpoints in complex organisms,
subsuming thousands of intermediate biological processes. The
AOP framework is expected to become a useful tool for
regulatory decision making.

In Part 1 of this study, we performed an AOP-based study
demonstrating that whole cigarette smoke (WCS) induced mucus
hypersecretion in vitro in 3D-cultured human bronchial epithelial
cells (HBECs) (Ichikawa et al.). The AOP structure comprising the
following events and assays: molecular initial event (MIE), reactive
oxygen species (ROS) generation; KE1, activation of epidermal
growth factor receptor (EGFR); KE2, nuclear translocation of
specificity protein 1 (SP1); KE3, mucin MUC5AC production;
KE4, goblet cell meta/hyperplasia (GCM/H); and adverse
outcome (AO), mucus hypersecretion. We also included assays of
other key molecules involved in this pathway. Specifically,
glutathione (GSH) depletion was assayed because ROS and GSH
balance is considered an index of cellular oxidative conditions, and
the EGFR ligand amphiregulin (AREG), a modulating factor of the
AOP, was assayed because EGFR ligands are crucial for transduction
of the EGFR signaling pathway. We modified the AOP structure of a
previously reported AOP of “decreased lung function” (Luettich
et al., 2017) with practical KEs for the establishment of
in vitro assays.

Quantitative assessment results at each endpoint were reported
in terms of response amplitude in Part 1. However, it is also worth
investigating how such results may be connected to actual risk in the
real world. Specifically, disease risk is typically described in terms of
excess risk ratio or probability. Thus, an AOP-based in vitro test
dataset alone would be insufficient to provide a quantitative
understanding of the risks of stressors in disease-related risk
assessment. Several quantitative AOP (qAOP) models have been
proposed that bridge the gap between AOP-based in vitro test
datasets and quantitative requirements of risk assessment. Spinu
et al. summarized the existing qAOP models for which conventional
statistical, regression, and Bayesian network (BN) modeling
approaches were reported (Spinu et al., 2020). Using the qAOP
model for chronic toxicity and diseases, Zgheib et al. proposed

dynamic BN modeling for chronic kidney disease that can
accommodate in vitro time-series data (Elias et al., 2019). We
also previously developed several qAOP models for chronic
effects that allow for consideration of repeated insults (Ito et al.,
2024). In the current model, the donor-to-donor variability observed
in vitro in Part 1 of this study was turned to an advantage, providing
an estimation of individual differences following the application of
Bayesian-based resampling methods. Such methods have been used
in population modeling to estimate parent distribution with limited
sub-population data. Bayesian formalisms have been employed in
the current model to facilitate calculation of changes in the
conditional probability of AO onset over repeated exposures.

Accurate information on actual exposure scenarios is important
for realistic risk estimation. Regarding ingested chemical substances,
physiologically based pharmacokinetics models based on
intravenous injection or dermal absorption can be useful to
consider target tissue exposure concentrations (Algharably et al.,
2022). In contrast, inhalable substances primarily target the airway,
and apical effects can be presented there. To estimate the exposure
concentration of a chemical substance during inhalation, a fluid
dynamics-based approach is often adopted (Moreau et al., 2024;
Daina et al., 2022; Corley et al., 2021; Ramanarayanan et al., 2022).
We developed a revised version of the multiple-path particle
dosimetry (MPPD) model for aerosols (Mori et al., 2024) that
accounts for changes in aerosol droplets and vapor through
inhalation. In this study, we adopted the MPPD model for
reverse dosimetry of exposure concentration data from Part 1 to
investigate the discrepancy between in vitro and actual exposure
concentrations of WCS.

We report here the first combined quantitative AOP modeling
and in vitro to in vivo extrapolation for the realistic risk estimation of
a repeated-exposure scenario. As a proof of concept, we applied this
approach to whole cigarette smoke (WCS). Although cigarette
smoking is well known as a risk factor for chronic obstructive
pulmonary disease (COPD), this approach was developed with a
view to applying it also to the risk assessment of other types of
tobacco products, inhalable substances, and airborne materials,
which may still require animal testing to assess disease risk.

2 Methods

2.1 Notation convention

As stated in our previous report (Ito et al., 2024), the definitions
of mathematical symbols used are as follows. “Exposure repetition is
indexed by e � 1, 2, ., ., E. Donors are denoted by n � 1, 2, ., ., N. The
dose (i.e., exposure concentration) is denoted by d ∈ D, where D is
the set of all doses including non-treatment control. MIEs, KEs,
BMs, and AO are collectively referred to as nodes and denoted by
v ∈ V, where V is the set of all nodes. The total number of elements
in a set is denoted by |..|; |V| for example, stands for total number of
nodes. Replicates for each donor will be denoted by r � 1, 2, ., .,R.
Matrices are written in double struck upper case letters: XM×|V| is a
matrix withM rows and |V| columns. Furthermore, a symbol such as
X(e) means a matrix X for a specific exposure repetition e. Similarly,
X(e,n) is understood as a matrix for a specific exposure repetition e
and a donor n. Elements of a matrix and scalars in general are

Abbreviations: 3D-HBECs, Three-dimensionally cultured human bronchial
epithelial cells; ALI, Air liquid interface; AO, Adverse outcome; AOP, Adverse
outcome pathway; AREG, Amphiregulin; BN, Bayesian network; CSE,
Cigarette smoke extract; GCH, Goblet cell hyperplasia; GCM, Goblet cell
metaplasia; KE, Key event; MPPD, Multiple-path particle dosimetry; SP1,
Specificity protein 1; MIE, Molecular initiating event; WCS, Whole
cigarette smoke.
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written in lower-case fonts. A vector is always a column vector and
denoted in bold: β ∈ RP is a vector with P components. A one vector,
1P×1 ∈ RP, is a column vector of P ones. Transpose of a matrix or a
vector is denoted by the capital letterT in the superscript. A node v is
assumed to take continuous values and in Bayesian formalism, the
probability that it takes a value x depends only on the values of its
parents, i.e., P(x(]) | x ∈ RV) � P(x(]) | x(Πv) ∈ R|Πv |), where Πv

denotes the set of parents of node v.”

2.2 Structure of the AOP

Wemodified a previously reported AOP (Karsta et al., 2017) to
facilitate the development of an in vitro assay for each KE. Because
of the difficulty reproducing and assessing the original “decreased
lung function” AOP in vitro, we tentatively set mucus
hypersecretion as an AO for this study. The modified AOP
used in this study comprises the following events: ROS and
GSH (MIEs), EGFR activation (KE1), SP1 activation (KE2),
mucus production (KE3), GCM/H (KE4), and mucus
hypersecretion (AO). The AOP depicted as a directed acyclic
graph for Bayesian modeling, is illustrated in Figure 1. Briefly,
the assay endpoints of the AOP comprised ROS (MIE), EGFR
(KE1), SP1 (KE2), mucus production (KE3), GCM/H (KE4), and
mucus hypersecretion (AO), together with GSH depletion and
AREG secretion, as the key modulators of the AOP.

2.3 Primary dataset

The primary dataset for qAOPmodeling was generated from the
in vitro study of WCS exposure on 3D-HBECs from six different
donors, as reported in Part 1 (Ichikawa et al.). Briefly, the assay
endpoints of the MIE, KEs, and AO were assessed over time
following six exposures to three different concentrations of WCS
to observe manifestations of phenotypic changes.

2.4 Software and algorithms

Analyses and visualizations were performed using R statistics
software version 4.3.2. The R packages used in each analysis are
found in our previous report (Ito et al., 2024).

2.5 Correlation coefficient analysis and
Bayesian resampling of the primary dataset

Correlation coefficients related to each variable were analyzed
using our previously reported formulae (Ito et al., 2024). Briefly, the
mean fold changes of each assay endpoint related to each donor,
dose, and exposure repetition were first log transformed. A vector of
the log-fold change μ(n,e,d) ∈ R|V| was then constructed, where its
components μ(n,e,d,]), v � 1, 2, ., and |V|, were given by the formula

μ(n,e,d,v) � ln( (�f(n,e,d,v))2�������������������
(�f(n,e,d,v))2 + (s(n,e,d,v))2

√ ) . In addition, the

covariance matrix O
(n,e,d)
|V| × |V| was calculated using the response-

response correlation in the primary dataset, given by the

formula
o n,e,d( )
vv′ � σ n,e,d,v( )( )2 � ln 1 + s n,e,d,v( )( )2

�f
n,e,d,v( )( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠for v � v′

o n,e,d( )
vv′ � ρ e( )

vv′

�����������
o n,e,d( )
vv *o n,e,d( )

v′v′

√
for v ≠ v′

, to yield the correlation coefficient ρ(e)vv′ � σ(e)vv′ /
���������
σ(e)vv × σ(e)v′v′

√
.

Using the equations shown in above, we drew 1,000 samples for
each datapoint from a multivariate normal
distribution MN (μ(n,e,d),O(n,e,d)

|V| × |V|).

2.6 Static Bayesian network modeling

As previously reported for our proof-of-concept of qAOP
modeling with Bayesian formalisms, we used a Gaussian BN
(GBN) represented by a directed acyclic graph defined as the
AOP G � (V, E), where V is the set of nodes and E is the set of
edges between the nodes in V. The directed acyclic graph was
topologically ordered such that the parent node(s) was connected
to its child(ren) node, where dose was assumed as a continuous
variable and included as a root node without parent nodes. The joint
probability of each pair of nodes (simultaneous occurrence of both
nodes) in a realization x ∈ R|V| can be factorized as
P(x) � ∏|V|

]�1 P(x(]) | x(Πv)), where Π] is the set of parents of
node ], and x(Πv) is the value that they take. The likelihood
P(x(]) | x(Πv)) is given by P(x(]) | x(Πv)) � N (x(])|x(Πv)Tβ, σ2),
where unknown parameter β is learned by fitting a linear
regression model (Koller and Friedman, 2009; Scutari and Denis,
2014). Fitting between the AOP and X(e) (data for each exposure)

FIGURE 1
AOP structure for quantitative Bayesian modeling. Schematic diagram of the AOP showing specific assay endpoints for the indicated MIE, KEs, and
AO below each event. White and gray boxes indicate early-phase responses and late-phase responses, respectively. KE2 (SP1 activation, black box) was
eliminated from the calculation because the response in Part 1 of the study was highly fragile.
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was used as a source of parameter tuning of the model. The probability
of activation of each KE was then calculated by resampling from the
trained GBNs using a logic-based resampling method, where the
probability at each exposure at each dose is denoted as
P(KE>Δ | d ∈[d ± ε]). The dose d is based on the nicotine
dosimetry analysis performed in Part 1 of this study. Briefly, the
dose in the WCS exposure ranged from 0 to 4,490 μg/mL, which
serves as the basis for calculating the dose-probability. Varied threshold
values Δ were used to investigate Δ-dependent changes in the
probability. To calculate in vitro odds ratio (ORs), we used a
different approach in which we calculated the fold-change values of
the nodes to the air-exposed control at exposure 1.

2.7 Dynamic BN modeling

Unlike acute toxic effects, chronic effects manifest after repeated
and habitual exposure to a stressor. In addition, because of the
complexity of homeostatic mechanisms, biological organisms do
not always exhibit the exact same response to stimuli. Therefore,
the probability of AO onset with exposure may change over time. To
reflect this possibility, we also used dynamic BN modeling to estimate
transition probabilities of the AO. Aswe previously reported (Ito et al.,
2024), the upstream events at a previous exposure (e − τ) causally
influence successive events at the current exposure. The dynamic BN
model of the AOP was conditioned using a multivariate Markov
process of the form x(e,]) � X(e−1,Π])β(e,]) + ε(e,]) ~ N (0, σ2I).
Because the in vitro phenotypic changes reported in Part 1 of the
study (i.e., mucus production, GCM/H, and mucus hypersecretion)
were strongly correlated with one another, as expected, we applied
ridge regression to manage overfitting of the model. The appropriate
penalty λ* was selected using leave-one-out cross-validation. To
resample the data from DBM, we used a range from the cutoff
value to two times the mean value, and performed likelihood
weighing. Like the static BN modeling, we used several activation
threshold values for dynamic BN modeling.

2.8 Modeling of aerosol deposition in
the airway

Deposition of aerosol and chemical constituents in the airway
during a puff of the 1R6F combustible reference cigarette was

estimated using a revised version of the MPPD model (Mori
et al., 2024). While nicotine deposition was used as a
representative constituent for this reverse dosimetry approach,
the calculation included other representative chemicals. The
characteristics of cigarette smoking behavior and aerosol that
were utilized in the calculation are summarized in Tables 1, 2,
respectively. Briefly, we assumed oral humidity of 80% and lung
humidity of 99.9%. The temperatures at the oral interface and lung
were set as 20°C and 37°C, respectively. The respiratory tract
properties utilized in the deposition estimation are summarized
in Table 3. The deposition of specific chemical constituents in
cigarette smoke were estimated from the following properties of
each constituent: density, vapor pressure, molar mass, specific heat,
surface tension, latent heat, activity coefficient, diffusion coefficient
in air, diffusion coefficient in H2O, and partition coefficient of tissue/
air (Table 4). This information was extracted or obtained from
Pubchem (PubChem [nih.gov]), ProPhyPlus software, the EPA
chemical dashboard (CompTox Chemicals Dashboard (epa.gov),
or mathematical calculation, as previously reported (Mori et al.,
2024). The surface area of the specific airway loci relevant to human
bronchi was estimated from published data (Overton et al., 2001;
Weibel, 1979; Weibel, 1963).

3 Results and discussion

3.1 Dose response of resampled data

To robustly calculate AO probability, we first generated an
extended dataset using a Bayesian resampling method. This
method utilizes distribution of an original in vitro dataset to
generate a large number of virtual samples. In this study, we
drew 1,000 realizations for each datapoint (i.e., dose, donor, and
exposure repetition), which we considered robust enough for the

TABLE 1 User smoking topography utilized in MPPD modeling.

User topography Input values

Puff withdrawal time(s) 1.62

Mouth-hold time (s) 0.5

Inhalation Time (s) 1

Pause/lung Hold time (s) 0

Exhalation Time (s) 1.62

Puff Volume (mL) 58.5

Inhaled mass(mg) 3.854

Dilution Volume (mL) 400

TABLE 2 Aerosol properties utilized in MPPD modeling.

Aerosol properties Input values

Droplet Number Concentration (×109/cm3) 1.0

Droplet Median Diameter (μm) 0.2

Total Mass Inhaled (mg) 3.850

Droplet Temperature (˚C) 24.55

TABLE 3 Respiratory tract properties utilized in MPPD modeling.

Respiratory tract properties Input values

Oral/URT Volume (mL) 50

Functional Residual Capacity (mL) 3,000

Oral Humidity (%) 80

Lung Humidity (%) 99.9

Oral Interface Temperature (˚C) 20

Lung Temperature (˚C) 37

URT, upper respiratory tract.
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probability calculation. As expected, the virtually generated dataset
mirrored the dose-response relationship of the original in vitro
dataset (Figure 2 and see also Part 1 of this study). Using the mean
values of the virtually generated dataset, there was no onset of the
mucus hypersecretion AO in any donor at the WCS exposure
repetition 1. The onset of maximum mucin release varied among
the donors, with Donors 1 and 2 showing maximum release at
exposure 6, and other donors reaching the maximum at exposures
3 or 4. Additionally, the amplitude of mucus hypersecretion also
varied among the donors, with notably less intensive mucus
hypersecretion with each exposure over time in Donor 6. While
these trends align well with the original in vitro data, the virtually
generated dataset includes more intense datapoints. Our in vitro
dataset comprised six donors with three replicates each for all
datapoints. As we showed in Part 1, the anticipated donor-to-
donor variation was observed, and could be misleading if
probability were to be calculated with such a sparse distribution.
Other non-Bayesian resampling methods could be employed to
complement this sparse original dataset for better estimation of
the distribution, thus supporting subsequent modeling efforts.
Indeed, resampling methods are helpful with mathematical
modeling using in vitro data with limited specific endpoints.
Furthermore, intense data generation from actual experiments
can be time-consuming and costly.

3.2 Static BN modeling

Next, we performed static BN modeling in which the GBN was
separately fitted to the virtually generated dataset for each WCS
exposure. Of note, we eliminated KE2 (SP1 activation) from this
modeling because of its high variability and large deviation in
range of amplitude compared with the other assayed factors. To
verify the goodness of model fit, we analyzed the correlation
between the predicted probability of each biomarker and the
actual observed response amplitude (Supplementary Figure
S13). We confirmed that the goodness of fit (i.e., R2 values) for
KE4 and AO was mostly greater than 0.6, respectively. It therefore
suggests that the model adequately explains the relationship
between probabilities and response amplitudes, albeit with some
degree of uncertainty. Figure 3 shows the probabilities of the KEs
and AO calculated at a given dose, where the probabilities were
given by P (KE > Δ|d∈[d ± ϵ]). For our first attempt, we applied a
threshold of fold change (FC) = 2 relative to the control for filtering
individual samples, which is typical for in vitro testing. The
probabilities of all nodes in the AOP showed dose-related
increases in the probability at all exposure slices. At the
individual KE level, KE1 showed a gradual decrease in
probability dependent on the number of exposures, consistent
with the change in the amplitude of KE1 over time with each
exposure (see also Figure 4 of Part 1). Meanwhile the phenotypic
changes related to KE3, KE4, and the AO all showed increased
probabilities from exposure 2 onward. However, the probability of
the AO was drastically increased from exposure 3 onward
compared with those of KE3 and KE4. We also performed
probability calculations using the static BN model at several
different thresholds. When we loosened the activation threshold
from FC = 2 to FC = 1.5, the calculated probabilities of all eventsT
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were increased, as expected (Figure 4). At an activation threshold
set to FC = 3, the probabilities of KE3 and KE4 dropped to
approximately zero, while that of the AO remained >0.5 (Figure 5).

Unlike the AO (mucin hypersecretion), KE3 (intracellular
mucin production) and KE4 (GCM/H) are directly related to
histological changes. These types of biological events are typically
limited with regard to response amplitude because changes in a cell
population in a limited area are usually represented as a proportion.
For example, the proportion of goblet cells in 3D-HBECs cultivated
under control conditions ranged from 5% to 10% across all donors,
indicating that we might expect maximum increases in GCM/H of
10- to 20-fold relative to control in WCS-exposed cells. Considering
that phenotypic changes are not as drastic as disease symptoms, and
that basal cells can be retained amidst GCM/H conditions
(Polosukhin et al., 2011), the actual response amplitude may be
smaller than the theoretical maximum change (i.e., complete
conversion of epithelial cells into goblet cells). Although a
constant threshold was applied across all of the biological events
used in this study, theoretical maximum and minimum changes of
each event should be considered in light of the threshold of
individual KEs used in the probability calculation.

3.3 Dynamic BN modeling

Unlike static BN modeling, dynamic BN captures the influences
of previous exposure on the current exposure. Our in vitro study
reported in Part 1 of this manuscript comprised six repeated WCS
exposures, for which we assumed that biological perturbation at the
previous exposure could affect the outcome of the current exposure.
Indeed, our previous reports showing that repeated exposure to

cigarette smoke elicited cumulative inflammatory effects on 3D-
HBECs (Ito et al., 2018; Ishikawa and Ito, 2017) imply that such
cumulative impacts may stem from biological perturbations that
surpass the regulatory capacity of homeostatic processes. These
findings also suggest that toxicity, as well as disease onset
manifested by chronic exposure to stimuli, can be reproduced in
an in vitro system. Considering that an insult caused by an early
exposure may inform the eventual damage, contextual analysis over
repeat exposures is crucial to estimate the risk of a stimulus.
Dynamic BN modeling is capable of capturing the relationship
between time-separated exposure slices as a transition probability
at a given threshold. Similar to the static BN modeling, we used
virtually generated data based on the in vitro dataset obtained in Part
1 of this study for dynamic BN modeling. First, we calculated the
transition probability of the AO (mucus hypersecretion) with the
distribution given by all-donor means and standard deviations, at a
threshold of log2FC = 2, revealing an almost clear dose-probability
relationship (Figure 6).

Regarding AO transition probabilities at the highest WCS dose,
the maximum probability was detected at exposure 3, declining from
exposure 3 to exposure 4, and rising again at exposure 6. This result
may reflect the donor-to-donor variability in timing at which the
maximum response amplitude was observed (see also Part
1 Figure 7). Most donors showed a clear dose response from
exposure 3 onward, while Donors 2, 4, and 5 showed a
maximum amplitude at exposure 3 (Figure 7C of Part 1).
Likewise, some fluctuation in the AO response amplitude over
time was observed in all donors except Donor 1, who exhibited a
monotonic increase in the response to repeated exposure over time.
This was clearly reflected in the distributions of combined all-donor
dose-response data, which showed two peaks at exposure 4 onward

FIGURE 2
Resampled AO data. (A) Box plots of the resampled AO (mucus hypersecretion) data for each donor (vertical) and each WCS exposure repetition
(orizontal). The x- and y-axis in each box is for the dose and the response amplitude. (B) Density plots of AO results using the combined all-donor
resampled data at each dose and exposure repetition.
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(Figure 2B), which implies responsive population and non-
responsive population.

To evaluate the influence of threshold setting, we also calculatedAO
transition probabilities at a variety of thresholds. Figure 7 illustrates a
comparative analysis of the probabilities of AO at exposures 3 and 6,
with a threshold of fold change values = 2–32. As expected, the
probability of AO declined as the threshold was raised (Figure 7).

However, there were obvious differences in AO transition
probability between exposures 3 and 6. A more pronounced
decrease in AO probability was observed at exposure 3, with a
moderate influence of the threshold setting at exposure 6. When
looking at the actual in vitro data shown in Part 1, all-donor mean of
the response amplitude of AO at the highest dose at exposure 6 was
more pronounced than that at exposure 3 while the increase in

KE4 was comparable. Because the probability calculation is
influenced by the closest upstream biological event (KE4 in this
case), these results suggested that early activation of KE4 (GCM/H)
may not directly lead to a robust increase in the AO (mucus
hypersecretion). Although goblet cells are a source of mucin, its
release from goblet cells is triggered by various stimuli, including
cigarette smoke (Cao et al., 2018; Gray et al., 2004; Jaramillo et al.,
2018; Zou and Hastie, 2005), regardless of GCM/H. Therefore, the
probability increases at exposure 3 might reflect a mixture of acute
mucin release and the cumulative effects ofWCS insults. Meanwhile,
the AO transition probability at exposure 6 was stably high, even at
the strictest threshold. The mean values of KE4 at exposures 2 and
5 at the high dose of WCS were comparable (Figure 5B in Part 1);
however, the distributions showed different trends. The distribution

FIGURE 3
Static BNmodelingwith the resampled in vitro dataset at a threshold of FC= 2.0. BNmodeling-based probability calculations of the biological events
of the AOP using FC values relative to the air-exposure control at each exposure repetition. The dose was used as the root node. The activation threshold
was set as 2.0 (10̂0.301).
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of KE4 under the high dose at exposure 5 could be divided into two
distinct populations: responsive and non-responsive (Supplementary
Figure S1). The responsive population could have contributed to the
robust AO transition probability at exposure 6. From a biological
perspective, this would also mean that the mucus hypersecretion
observed at exposure 6 was mainly caused by mucin released under
GCM/H conditions.

3.4 Linking in vitro exposure conditions with
real-life cigarette usage

In this reverse dosimetry study, we used nicotine
concentration as a representative aerosol constituent. As shown

in Part 1, the in vitro nicotine concentrations throughWCS at low,
medium, and high exposure doses were 0.51, 1.62, and 4.49 μg/
mL, respectively. Converting these figures to concentration per
tissue surface area using the 110 μL collection volume of nicotine
and the 0.33 cm2 surface area of the culture insert yielded
approximate exposure concentrations of 0.17, 0.54, and
1.50 μg/cigarette/cm2/day, respectively. We previously reported
a revised MPPD model that allows estimation of the deposition
fraction of a complex aerosol such as cigarette smoke (Mori et al.,
2024). This model is capable of estimating the deposition of
specific chemical constituents in the respiratory tract on a cell
generation-by-generation basis. Here, we utilized this model to
compare the exposure concentrations between the experimental
conditions and asymmetric lung geometry data from a previous

FIGURE 4
Static BNmodeling with the resampled in vitro dataset at a threshold of FC = 1.5. BNmodeling-based probability calculations of the biological events
of the AOP using FC values relative to the air-exposure control at each exposure repetition. The dose was used as the root node. The activation threshold
was set as 1.5 (10̂0.176).
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study of real-life cigarette use including the oral compartment
(Mori et al., 2024). The user topography, aerosol properties,
respiratory tract properties, and constituent properties are
summarized in Table 1 through 4, respectively. We calculated
the total surface area of the Trachea-Bronchi region using the
method described by Overton et al. (2001). Because it was
reported that no goblet cells are found at the 7th generations or
deeper (https://ntp.niehs.nih.gov/atlas/nnl/respiratory-system/
lung/MetaplasiaGobletCell), we summed the surface areas of
generations 0 to 6. The calculated surface area of the TB
region was 168.07 cm2, equivalent to a nicotine deposition
concentration in the actual use scenario of 1.46 μg/cm2/
cigarette. Thus, the range of nicotine deposition in the in vitro
exposure conditions and the actual use scenario of one cigarette
were comparable.

3.5 Biological significance and in vitro to in
vivo extrapolation

Considering the contrast between the duration and frequency of
WCS exposure in vitro (equivalent to one cigarette a day, three times
a week for 2 weeks) with that of real-world smoking (20 cigarettes a
day for decades), the lifetime total exposure in these two scenarios
are different. Based on a report by Tsuji et al. (2013), an equivalent
daily exposure dose should induce equivalent pulmonary responses;
however, we observed mucus hypersecretion and the raised
probability of this AO under in vitro conditions within 2 weeks
of exposure. Therefore, there may still be gaps between in vitro 3D-
HBECs and actual lung tissues. One possible explanation for this
discrepancy derives from the disparity in lifespan between actual
tissues and those cultivated in vitro. While one of the commercially

FIGURE 5
Static BNmodelingwith the resampled in vitro dataset at a threshold of FC= 3.0. BNmodeling-based probability calculations of the biological events
of the AOP using FC values relative to the air-exposure control at each exposure repetition. The dose was used as the root node. The activation threshold
was set as 3.0 (10̂0.478).
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available 3D-HBECmodels boasts a shelf life of up to 1 year (https://
www.epithelix.com/), actual bronchial tissues retain their function
for up to 100 years. Differences in homeostatic capacity, including
tissue repair and regeneration, could also contribute to this gap.
Various non-epithelial cell types are involved in the maintenance of
lung tissues (Lloyd and Marsland, 2017). For example, fibroblasts,
immune cells, and epithelial cells orchestrate the repair of damaged
tissue; however, this process is a double-edged sword, because such
repair sometimes fails and causes unexpected tissue remodeling
(Ishida et al., 2023). Given the difficulty in reproducing all
homeostatic processes in vitro, extrapolation of the factors
involved in longer lifespan of in vivo tissues to 3D-cultured cells

in vitro could be crucially important for the further development of
in vitro models.

Assuming that in vitro 3D-HBECs can be utilized to capture the
symptoms of respiratory diseases as a form of accelerated study, the
activation thresholds should be aligned with the corresponding real-
world situations. Mean International Organization for
Standardization (ISO) tar values of smokers in eight different
countries were reported to range from 5.1 to 10.2 mg tar/
cigarette (Mariner et al., 2011). Because we used reference
cigarettes (ISO tar value of ~10 mg) in Part 1 and the deposition
simulation in this study, the calculated probabilities of AO onset
may be directly applicable in this in vitro to in vivo extrapolation
approach. In addition, based on a previous report by Radicioni et al.
(2021), the absolute concentration of MUC5AC is approximately 4-
fold higher in current or former smokers without COPD, and
approximately 10-fold higher in those with severe COPD,
compared with that in non-smokers without COPD, as
represented by fold changes in median values. Based on this
information, we calculated the OR from the results of static BN
modeling at a comparable dose (the medium dose of WCS) with the
activation threshold of 10. Because both mucus secretion and GCM/
H gradually increased in 3D-HBECs even under control conditions
(Figure 6 of Part 1), we designed an exercise to test whether this
reflects an aging effect. Considering exposures 1 and 6 as the
initiation of smoking and the time point of disease manifestation,
respectively, the changes in biological events on the AOP could then
be calculated as the fold change relative to the air-exposed control at
exposure 1 at dose 1. We were then able to calculate the probabilities
of each KE and the AO, even in the control condition, making it
possible to also calculate the ORs. Because GCH/M is a
representative symptom for chronic bronchitis, we compared the
calculated ORs of GCM/H in vitro with those from real-world

FIGURE 6
Transition probabilities of AO onset over repeated WCS exposures. Whisker-box plots of transition probabilities of AO onset calculated using a
virtually generated dataset with dynamic BN modeling. Probabilities were calculated by extracting all possible combinations of three of the six donors
(20 combinations in total) and assuming the activation/onset of KEs and AO had occurred when the log2FC of the response relative to the air-exposure
control was >2. Exp; exposure repetition, KE; key event, AO; adverse outcome.

FIGURE 7
Comparison of transition probabilities P(AO|KE4) at WCS
exposures 3 and 6, using different activation thresholds. Probabilities
of transitioning from KE4 to AO under three doses of WCS at
exposures 3 (AO_3) or 6 (AO_6), calculated under activation
thresholds defined as fold change values = 2–32 relative to the air-
exposure control value.
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patients with chronic bronchitis. As expected, the ORs of GCM/H
for WCS exposure were nearly zero at exposures 1 and 2, gradually
increasing with additional exposure to ultimately reach ~4.5 at
comparable nicotine concentration of approximately 1,500 μg/mL
(Figure 8). Additionally, because our BN modeling was able to infer
the dose-probability relationship as a continuous value, we
calculated the ORs of GCM/H for different nicotine
concentrations (500–5,000 μg/mL), which ranged from 3.89 to
8.02. The calculated in vitro ORs showed good agreement with
the established 95% confidence interval of the OR of persistent
smoking for chronic bronchitis (3.702–8.983) (Kim et al., 2016).
Although the agreement between the in vitroORs and the real-world
OR could be coincidental, as the real-world disease manifestation
involves some confounding factors such as air pollution (Wang
et al., 2022), which was not reflected in our in vitro test method.
Therefore, the in vitro OR may not represent absolute risk of
cigarette smoking. However, we believe that calculation of
in vitro OR under the consideration of realistic exposure scenario
would be one of the ways to assess risk of disease as well as chronic
toxicity without animal testing.

Notably, we modified the original AOP to align with the feasibility
of in vitro assays. The original AO, lung function decrease, was
replaced with mucus hypersecretion. This change was made
because the 3D-HBEC model does not represent the entire lung
and is therefore unsuitable for evaluating lung functionality.
Consequently, we used GCM/H as a representative condition of
chronic bronchitis. However, decreased lung function is a hallmark
of chronic disease symptoms and should be replicated in vitro. We
believe that advancements in in vitro cell culture technology will
eventually allow us to evaluate adverse outcomes as accurately as in
vivo, thereby enabling more precise disease risk assessments.

4 Study limitations

Although we have demonstrated that BN-based qAOPmodeling
could be useful for risk estimation, there are some potentially
limiting aspects of our study. First, we used in vitro data from
six different donors; however, further investigation to determine the
ideal number of donors and its potential impact on the probability
calculations. Second, because the in vitro data were derived from
primary HBECs with limited proliferation, once these cells are
depleted, cells from different donors will need to be used. This
could result in change in the probability calculation, because
primary cells may retain original donor-specific characteristics,
the response to stimuli may vary from donor to donor. Third,
the sustainability and robustness of this qAOP framework require
further consideration. We set a uniform threshold across all
biological events on the AOP due to the lack of consensus on
activation thresholds. However, activation thresholds should vary
depending on the biological response, otherwise responses which
did not reach the threshold value can be ignored, even though they
may still have biological significance. Therefore, it is necessary to
explore individual threshold settings or consider normalization as
well as regularization for each biological response. Fourth, as
discussed above, the longevity of in vitro cell cultures differs
from that of human tissues and organs. Therefore, it is unknown
what duration of real-world smoking corresponds to a 2-week

exposure in in vitro testing. Further investigation should be
conducted to accurately scale the duration of in vitro exposure.
Fifth, although we used a constant activation threshold across all
nodes in the AOP, the actual thresholds may vary from node to
node. For example, the elicitation of KE1 may require one threshold
to activate the MIE, but a different threshold to activate
downstream events.

5 Conclusion

Here, we demonstrated the utility of the qAOP model using
mucus hypersecretion caused by cigarette smoke as a case study.
Although further investigation to verify the relevance of these results
for real-world situations is warranted, the combination of in vitro

FIGURE 8
In vitroORs of GCM/H as a function of WCS dose. Probabilities of
GCM/H calculated using a static BN model in which the air-exposure
control at exposure 1 was used as the absolute control were used to
calculate in vitro ORs at exposure 6. The dots represent the
in vitro OR at each inferred exposure dose, where the gray area
indicates the range of ORs of real-world chronic bronchitis with and
without habitual cigarette smoking (i.e., the ORs for
persistent smoking).
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repeated exposure and qAOP modeling presented in this series of
manuscript would be a powerful tool for comparative assessment
with other types of tobacco, including heated tobacco products and
e-cigarettes. Additionally, the qAOPmodels utilized in this study are
applicable to other in vitro testing scenarios involving repeated
exposure, and would enable probabilistic risk estimation for
chemicals associated with recurrent insult. We anticipate that our
risk estimation framework with qAOP modeling will contribute to
ongoing efforts to reduce animal testing, particularly in studies
involving repeat exposure.
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