
Raising awareness of riverine
populations in the Brazilian
Amazon about MeHg intoxication
in APOE4 carriers: cardiovascular
risk and potential benefit of native
selenium diets

Camila G. M. Carvalho1, Patrícia Marçal Da Costa1,
Luana M. Rocha Souza1, Vitória K. Félix Monteiro1,
Jacqueline I. Alvarez-leite2, Maria Elena Crespo-Lopez3 and
Reinaldo B. Oriá1*
1Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition Biomedicine Center, School of
Medicine, Federal University of Ceará, Fortaleza, Brazil, 2Laboratory of Atherosclerosis and Nutritional
Biochemistry, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo
Horizonte, Brazil, 3Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal
University of Para, Belem, Brazil

KEYWORDS

methylmercury, apolipoprotein E4, metabolic syndrome, obesity, selenium,
antioxidants, DIETS

Introduction

The rapid expansion of illegal gold mining in the Amazon has caused severe social and
environmental issues, particularly mercury (Hg) contamination, threatening biodiversity
and the health of local communities (Domingues et al., 2024). Amazonian riverside
populations have historically been exposed to chronic methylmercury (MeHg) levels
due to ingestion of contaminated fish from water reservoirs (Crespo-Lopez et al., 2021).

Anthropogenic activities in the Amazon have driven MeHg, a highly toxic organic form
of Hg, to bioaccumulate in the trophic chain, mainly in fish used as subsistence food in
riverside communities (Nyholt et al., 2022), raising public health concerns, especially for
vulnerable populations. The Amazonian riverside populations are isolated communities far
from urban areas, with poor health service access. They strongly rely on the river to sustain
fishing and obtain dietary proteins.

The awareness that MeHg has multisystemic effects, apart from its well-known
neurological toxicity, is of utmost importance since accumulating evidence points to
chronic MeHg intoxication as a culprit of increasing cardiovascular risk in preclinical
and clinical studies (Ginsberg et al., 2014; Lopes-Araújo et al., 2023). MeHg exposure
significantly increases the risk of fatal and non-fatal cardiovascular complications, with
tipping points as low as 1 μg/g hair Hg (Hu et al., 2021a). MeHg deleterious effects on
cardiovascular and atherosclerotic risk may be aggravated by the obesity epidemics
occurring even in the Amazon region (Silva et al., 2021). A recent increase in non-
communicable diseases (NCDs) like hypertension, diabetes, and obesity among Amazonian
riverine populations, comparable to urban Brazil, has drawn academic attention. Arrifano
et al. (2018) linked the APOE4 allele to hypertension and altered fasting blood glucose in
these communities (Arrifano et al., 2018a).
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Human apolipoprotein E (ApoE) is a 299-amino acid long
protein that affects cholesterol reverse transport and metabolism.
The combination of two mutations at the ApoE gene (APOE)
originates the three main alleles APOE2, APOE3, and APOE4
(Abondio et al., 2023). The APOE4 allele is a well-known risk
factor for cardiovascular diseases worldwide due to its effect on
rising cholesterol levels and pro-inflammatory mediators
(McMaster et al., 2024).

Selenium (Se) supplementation has been found to reduce
plasma total cholesterol and LDL levels and ameliorate HDL
levels in ApoE-deficient mice (Guo et al., 2020). Se is a
micronutrient with potent antioxidant properties and a well-
recognized cardioprotective element. It may favor long-term
cardiovascular protection if incorporated adequately into
a daily diet.

In this opinion paper, we summarized the up-to-date
scientific literature on the effects of MeHg intoxication and
cardiovascular risk when compounded with APOE4, in the
Brazilian Amazon region. Our group recently found that
APOE4 may influence Hg intoxication levels (Arrifano et al.,
2018b). We also highlight the importance of native Se-enriched
diets to benefit cardiovascular health in people with the APOE4
genetic trait living under MeHg endemic intoxication.

MeHg and APOE4 potential interaction
and cardiovascular effects

MeHg is a neurotoxic pollutant with a broad range of adverse
health effects. Beyond its well-known neurotoxicity, other lines of
research have highlighted its detrimental impact on the
cardiovascular system (Moreira et al., 2012). Exposure to
MeHg can cause cardiac remodeling, leading to increased
muscle mass, altered rhythm, and reduced contractile
function. These changes are associated with mitochondrial
dysfunction, as the exacerbated production of reactive oxygen
species (ROS) causes cellular damage and impairs cardiac
function (Santos Ruybal et al., 2020).

Chronic MeHg intoxication in young APOE knockout (ko) mice
may aggravate dyslipidemia and lead to higher lipid peroxidation
levels. Furthermore, ApoE deficiency, independently of MeHg
intoxication, elevated systemic lipid parameters (Roque et al.,
2021). MeHg intoxication worsens cardiovascular risk,
aggravating atherosclerosis in wild-type and APOE ko mice (Silva
et al., 2021). Interestingly, MeHg can affect phospholipase-D (PLD)
in vascular endothelial cells through constitutive phospholipase-A2
(PLA2) pathway and the cyclooxygenase and lipoxygenase-driven
eicosanoids by oxidative stress (Sherwani et al., 2013).

In a recent review, it has been discussed how different
isoforms of ApoE, in particular the ApoE4, can affect the
progression of atherosclerosis in patients with periodontal
disease (Pereira et al., 2019). According to Arrifano and
collaborators, 65% of APOE4 carriers had altered fasting blood
sugar levels and/or systemic arterial hypertension (Ginsberg
et al., 2014). More studies are needed to show the interactions
between circulating lipids, diet, and MeHg intoxication and the
interactions that play critical roles in the risk of chronic diseases
later in life (Roque et al., 2021).

Se-rich foods as adjuvants to reduce
MeHg toxicity

Se is an essential micronutrient with antioxidant properties. It
can protect against MeHg toxicity by forming stable complexes with
the metal, reducing its bioavailability, and promoting excretion
(Ferreira et al., 2021; Liu et al., 2019). Furthermore, Se
contributes to the mitigation of inflammation and oxidative
stress, crucial elements in the progression of cardiovascular
diseases (Zhang et al., 2023). Adequate physiological Se plasma
levels vary from 90 to 120 μg/L (Radomska et al., 2021). Such range
values may change depending on the need for biological protection
against Hg ingestion.

The Recommended Dietary Allowance (RDA) value for children
aged 1–3 years is 20 µg/day, and from 4 to 8 years is 30 µg/day for
both sexes. Men and women aged between 14 and 70 need 55 µg/day,
pregnant women 60 µg/day, and lactating mothers 70 µg/day,
presenting the highest intake needs. The tolerable upper intake
level (UL) and the maximum daily intake for all adults over 19 years
of age and pregnant and lactating women are 400 µg/day Se,
considering selenosis as the adverse effect (Barchielli et al., 2022;
Zhang et al., 2019). Se intake comes from food, the content of which
depends on its accumulation in the soil and plants. In general,
dietary Se intake in Brazil varies from slightly low to adequate or
above RDA (between 54.4 and 142 μg/day), depending on the
studied region (Fávaro et al., 1997).

Experimental results in rats showed that the Se-deficient diet
decreased serum GSH-PX activity, which caused severe cardiac
dysfunction in the animals. Suggesting a fine relationship
between a Se-based diet and protection against cellular oxidative
stress (Zhang et al., 2019). Low Se levels were significantly associated
with decreased performance in neurological tests (Shahar et al.,
2010). A diet incorporating one Brazil nut daily, providing
approximately 288 µg of Se, for 6 months has been shown to
enhance cognitive performance in patients by restoring optimal
selenium levels in the body (Rita Cardoso et al., 2016).

Proteins containing at least one selenocysteine (SeC) residue are
termed selenoproteins and play crucial physiological roles, primarily
centered on maintaining cellular redox balance. Se deficiency results
in reduced expression of potassium channels, STAT3 activity, and
mitochondrial function (Leszto et al., 2024). Activation of
STAT3 has been identified as a key cardioprotective signal in
animal studies and humans (Kleinbongard, 2023).

MeHg induces oxidative stress and inflammation, leading to
endothelial dysfunction and decreased antioxidant defenses. MeHg
also has a high affinity for Se-based compounds, leading to decreased
antioxidant activity of Se-containing enzymes, such as glutathione
peroxidase (Takahashi and Shimohata, 2019). Several lines of
evidence point out oxidative stress as a key driving molecular
mechanism in MeHg-induced intoxication (Antunes dos Santos
et al., 2018). Such effects may be associated with increased Rho-
kinase activity (a class of GTPases) that negatively modulates the
endothelial nitric oxide synthase (eNOS) function, reducing nitric
oxide bioavailability in the vasculature, contributing to
vasoconstriction and increased systemic blood pressure (Islam
et al., 2016).

There has been growing interest in how Se may help reduce the
harmful effects of mercury exposure from dietary sources in humans
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(Tinggi and Perkins, 2022). Dietary Se intake may mitigate Hg
toxicity, with implications for human health, particularly for high-
risk groups in a population. The protective Se effect against MeHg
toxicity is considered a hot topic (Wang et al., 2017). Selenoenzymes
generally prevent and reverse oxidative damage in the brain and
neuroendocrine tissues. In contrast, inhibition of selenoenzyme
activity in these tissues appears to cause the toxic and
pathological effects of MeHg (Ralston and Raymond, 2010). The
covalent bond between Hg and Se is markedly strong, makingMeHg
an effective Se scavenger. This interaction significantly involves the
function of selenoenzymes, essential for several biochemical
interactions (Fávaro et al., 1997). The selenocystine, for example,
is a component found in some selenoenzymes, which are the
functional proteins that utilize this amino acid. The effect of
selenocystine (SeCys2) against MeHg cytotoxicity in HepG2 cells
acts reducing the cytotoxicity of MeHg (Wang et al., 2017).

A dysfunction resulting from MeHg competition for the active
sites of selenoenzymes, especially in fetal neuroendocrine tissues
with low Se reserves, can lead to adverse effects and, in severe cases,
death (Branco et al., 2022). Se supplementation can act as a chelator,
accelerating MeHg clearance and restoring the activity of
selenoenzymes, thus preventing neurotoxic damage.

Native Se-based foods as nutritional
interventions against MeHg poisoning

The Se content was estimated in several foods consumed in
Brazil from different regions; as a result, it was discovered that foods
considered traditional in the Brazilian diet, such as rice, beans, wheat
flour, corn, and cassava flour, had low mineral levels. Food habits in
the Manaus region differ significantly from those of other regions of
the Amazon or even outside the Amazon, such as Mato Grosso and
Santa Catarina. Both states consume rice and beans, but the protein
ratio may vary depending on the local culture (Ferreira et al., 2002).

The Tapajós river region in the Brazilian Amazon presents a
wide variation in Se levels in the local population, leading to blood
levels ranging from 142 to 2,447 μg/L (Lemire et al., 2009). The
average normal blood level of Se in many studies was 139 μg/L
(Hadrup and Ravn-Haren, 2021). Eating Se-rich foods, such as
Brazil nuts, may significantly contribute to mitigating the adverse
effects of MeHg, especially in Amazonian populations exposed to
high levels of this heavy metal (Takahashi and Shimohata, 2019).

Se levels in the Amazonian riverside population may vary
considerably and are influenced by household location and time of
year factors. Brazil nuts from Amazonas and Amapá have higher Se
contents than those from other Amazon states (Silva Junior et al., 2017).

One of the primary sources of Se comes from the Brazil nut
(Bertholletia excelsa), is a native Se-rich food (Macan et al., 2022), widely
distributed in the BrazilianAmazonwith Se levels up to 512mg/kg, with
higher levels obtained from trees with lower fruit production (Gomes
et al., 2024). Cassava, rice, beans, and some local fruits may also be Se
food sources, relying on Se-rich soils. In addition, meat, chicken, eggs,
and vegetables can significantly contribute to the daily intake of this
micronutrient to Amazonian populations, depending on local
availability (Monteiro and Verly Júnior, 2023).

Incorporating Se into proteins by replacing sulfur in amino acids
like methionine is a relevant biochemical mechanism for its

bioaccumulation in animal and plant tissues. Protein-rich foods
have high Se levels, but their concentration varies by animal species,
diet, and region of origin (Minich, 2022).

Although animal-based foods are important Se sources, some
plants, such as cruciferous vegetables (broccoli) and garlic (Allium
sativum), may show low to moderate levels and become relevant
dietary sources. Brewer’s yeast is also recognized for its Se content.
In regions with Se-rich soil, cereals such as wheat can have
considerable Se levels, contributing to the mineral intake through
bread and other derived products (Hu et al., 2021b). Given the
above, a Se-rich diet based on Amazonian traditional eating habits
may help protect against cardiovascular diseases in MeHg-exposed
populations, especially for APOE4 carriers.

Factors like climate change, agricultural practices, and meal
preparation methods also can influence Se levels in food (Lu et al.,
2024). Although Se is essential for humans, high oral exposure can
cause acute toxicity. Toxic Se blood levels may be fatal when levels
exceed 300 μg Se/L (normal level: 100 μg/L), especially with
prolonged exposure. Most fatal cases of Se intoxication are
related to the ingestion of gun-bluing agents containing selenous
acid (Hadrup and Ravn-Haren, 2020). Caution is needed to avoid
long-term high Se supplementation that may cause undesirable
chronic toxic effects (selenosis), such as dermatological,
gastrointestinal, neurological symptoms, and multiorgan damage.
We do not know whether ApoE isoforms could influence the
absorption of Se from diets. Notably, APOE4 was associated with
distinct clinical outcomes following micronutrient supplementation
in Brazilian shantytown children (Mitter et al., 2012).

APOE can regulate selenoprotein P levels, a key Se transport
protein, by interacting with its heparin-binding sites (Kim et al.,
2025). Interestingly, in a rural study enrolling elderly Chinese,
APOE4 carriers showed lower nail Se levels than non-carriers, even
after controlling for estimated dietary Se consumption (Gao et al., 2009),
supporting thatAPOE allelesmay have specific effects in Semetabolism.

In conclusion, the interplay betweenMeHg and Se inAPOE4 carriers
may be critical in determining long-term cardiovascular outcomes, which
may have public health consequences. While MeHg and APOE4 pose
significant risks to cardiovascular health, Se can act as a protective agent
by mitigating oxidative stress and inflammation. Dietary interventions,
particularly those focused on increasing the consumption of Se-rich
foods, can be a valuable strategy to reduce the adverse effects of MeHg
exposure in genetically-risk individuals. Although Se might help reduce
MeHg intoxication in APOE4 carriers, caution should be taken to avoid
Se toxicity. In addition, more studies are needed to define adequate Se
safety levels following MeHg intoxication.
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