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Despite accumulated evidence indicating glyphosate herbicide (GLY) presents
endocrine disrupting properties, there are still discrepancies. Moreover, few
epidemiological studies have focused on hormone-related pathologies. This
work aimed to investigate the associations between urinary GLY levels and
breast cancer (BC) in women from a region of intense agricultural activity in
Argentina, exploring residential proximity to agricultural fields as a potential risk
factor for BC. This was a case-control study that involved 90 women from
different populations in the Province of Santa Fe, Argentina. Demographic data,
lifestyle factors, and residential history were obtained through a questionnaire,
while medical outcomes and reproductive history were acquired from medical
records. Spot urine samples were collected and the concentrations of GLY and its
primary metabolite, aminomethylphosphonic acid (AMPA) were quantified by
ultra-high-performance liquid chromatography–mass spectrometry. Odds ratios
were estimated to assess the strength of the association between the case/
control type and each predictor. GLY concentrations were above the limit of
detection (LOD) in 86.1% of samples, with a range of 0.37–10.07 µg GLY/g
creatinine. AMPA was not detected in any of the samples analyzed. Although
urinary GLY concentrations showed no differences between the case and control
groups, women residing near agricultural fields showed an increased risk of BC
(OR: 7.38, 95% CI: 2.74–21.90). These original findings show the ubiquitous
presence of GLY in adult women from Argentina. Interestingly, women living
near agricultural fields have a higher risk of BC, suggesting that exposure not only
to GLY but also to agrochemicals in general, could predispose to the
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development of BC in Argentina. While this study provides valuable insights, further
and broader assessments of BC distribution in relation to agrochemical exposure
acroos different regions of Argentina are needed.
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1 Introduction

In 2022, 2.3 million women worldwide were diagnosed with
Breast Cancer (BC), resulting in 670,000 deaths (World Health
Organization, 2024). In Argentina, BC is the leading cause of death
in women, with 6,100 deaths annually and an estimated 22,000 new
cases per year, representing 32.1% of the total cancer incidence
(Programa Nacional de Control de Cáncer de Mama (PNCM, 2024).
The development of BC is associated with several risk factors, both
modifiable and non-modifiable. Among the modifiable risk factors
are environmental factors, including chemical agents such as
pesticides (Łukasiewicz et al., 2021).

N-(phosphonomethyl)glycine, also known as Glyphosate
(GLY), is the active ingredient of commercial formulations
named as glyphosate-based herbicides (GBHs). GLY herbicide is
a systemic, broad-spectrum and post-emergent agrochemical that is
used worldwide for weed control in agriculture, urban and
gardening (Acquavella et al., 2004; Andreotti et al., 2018). GLY
and its primary metabolite, aminomethylphosphonic acid (AMPA),
have been detected in a variety of sources, including water (Aparicio
et al., 2013; Bonansea et al., 2017; Mac Loughlin et al., 2017; Singh
et al., 2024), soil (Primost et al., 2017; Ayoola et al., 2023), dust
resulting from field erosion (Mendez et al., 2017), and food for both
human and animal consumption (Rodrigues and De Souza, 2018;
Vicini et al., 2021).

Biomonitoring studies have reported the presence of GLY and/
or AMPA in urine samples from individuals residing in rural and/
or urban areas (Connolly et al., 2022; Chang et al., 2024; Ben
Khadda et al., 2025) and, even more worrying, from pregnant and
lactating women (Camiccia et al., 2022; Lesseur et al., 2022; Ashley-
Martin et al., 2023) and children (Grau et al., 2022; Berni et al.,
2023). In addition, GLY concentrations were determined in
maternal and umbilical cord serum (Kongtip et al., 2017) and
breast milk (Camiccia et al., 2022; Galli et al., 2024). Specifically, in
a country with high pesticide use like Argentina, the available data
on human exposure to GLY herbicide are limited. To date,
concentrations of GLY were documentated only in two regions
of Argentina, in the urine of a small rural population from the
Province of Chaco (Bressán et al., 2021) and in the urine, plasma,
and saliva of an occupationally and non-occupationally exposed
male population from the Province of Córdoba (Filippi
et al., 2024).

The use of GLY in Argentina began to increase significantly in
the mid-1990s, following the introduction of genetically modified
GLY resistant soybeans (Benbrook, 2016). This agricultural
transition resulted in a substantial increase in GLY application,
thereby transforming Argentina into one of the leading consumers
of GLY worldwide. Regulatory measures have historically been
minimal (Blois and Rendón, 2023); however, growing public
concern over health and environmental risks has prompted local-
level restrictions and increasing calls for national regulatory reforms,
although comprehensive bans or national regulations remain absent
(Schmidt et al., 2022).

The utilization of GLY has been extensively implemented
throughout the South American continent. In Brazil, a study
reported significant contamination of drinking water with GLY
and AMPA, particularly in agricultural regions like Paraná, where
100% of the municipalities analyzed exceeded the maximum limits
for GLY-AMPA, correlating with increased cancer risks, including
BC (Panis et al., 2022). Furthermore, research conducted in
Southeast Brazil has revealed the presence of GLY
concentrations in drinking water sources reaching up to
8.70 µg/L, thereby exceeding the established safety limits set by
national and international regulatory bodies (Lima et al., 2022). In
Colombia, in areas dedicated to agricultural activities, the presence
of GLY was detected in different water sources near the crops with
concentrations ranging from 2.01 to 2.77 µg/L (Alza-Camacho
et al., 2016). A recent multicompartmental monitoring study in
Uruguay revealed the presence of GLY and other pesticides in the
surface water, sediments, and biota of Laguna del Cisne, a
subtropical lake utilized as a drinking water source (Rodríguez-
Bolaña et al., 2023). The present findings underscore the pervasive
environmental occurrence of GLY and underscore the necessity for
enhanced surveillance, thereby situating the Argentine context
within a more expansive South American framework of
pesticide exposure.

Association between GLY exposure and different types of cancer
has been researched. Epidemiological studies conducted in Sweden,
Canada, and the United States have determined a positive
correlation between GLY exposure and the development of non-
Hodgkin’s lymphoma (NHL) (Weisenburger, 2021) and multiple
myeloma (De Roos et al., 2005). More recently, some authors in a
large pooled study did not detect a relationship between GLY (active
ingredient) and all types of NHL or multiple myeloma separately,
but did find an association with follicular lymphoma, a subtype of
NHL (De Roos et al., 2022). Indeed, the carcinogenic potential of
GLY has been extensive reviewed and debated by several
authoritative and regulatory bodies. The International Agency for
Research on Cancer (IARC) classified GLY as ‘probably
carcinogenic to humans’ (Group 2A) (EFSA, 2015) based on a
specific association with non-Hodgkin’s lymphoma. In contrast
to the IARC assessment, the European Food Safety Authority

Abbreviations: AMPA, aminomethylphosphonic acid; BC, Breast Cancer; BMI,
body mass index; CI, confidence interval; EFSA, European Food Safety
Authority; EPA, Environmental Protection Agency; GLY, glyphosate; IARC,
International Agency for Research on Cancer; IQR, interquartile ranges;
ML, machine learning; OR, Odds ratios; UHPLC-MS/MS, Ultra high-
performance liquid chromatography–Mass spectrometry.
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(EFSA) and the Environmental Protection Agency (EPA) concluded
shortly after that there was insufficient scientific evidence to
consider GLY as possibly carcinogen to humans (Portier et al.,
2016; Benbrook, 2019). Despite all this controversy, European
Union decided to extend the use of GLY until 2033 (Carrasco
Cabrera et al., 2024).

While the debate on its carcinogenic potential continues,
increasing evidence indicates GLY as an endocrine disruptor, a
chemical with the ability to interfere with hormonal signaling
pathways (Muñoz et al., 2021). For instance, GLY has been shown
to modulate the activity of sex hormone receptors, particularly the
estrogen receptor alpha, by enhancing its transcriptional activation in
BC cell lines (Muñoz et al., 2021). Endocrine disruptors, such as
pesticides, are of significant concern in BC due to their potential

influence on the development and progression of the disease (Wan
et al., 2022). In relation to that, a study by Franke et al. (2021) detected
higher levels of AMPA in urine samples of women diagnosed with BC
compared to controls, suggesting that AMPA exposure may be
associated with an increased risk of BC. However, the association
between cancer development and GLY exposure in epidemiological
studies remains inconclusive. Therefore, further investigations in
populations with high GLY exposure, such as those in Argentina,
are of great importance.

In the present study, we conducted a case-control study to
investigate the associations between urinary GLY levels and BC
in women from a region of intense agricultural activity in Argentina,
and also exploring residential proximity to agricultural fields as a
potential risk factor for BC.

FIGURE 1
(A) Map of the province of Santa Fe showing the geographic locations of the women’s residences. Color represents both BC cases (pink) and the
control group (blue). (B) The expanded area of the district of Santa Fe city. José María Cullen Provincial Hospital, where the patients attended for medical
attention, is indicated with a red cross. (C) Plot sizes are proportional to the number of participants. The map figure was created using QGIS software
version 3.22.15 (QGIS Development Teaikm). Vector layers were provided by the Instituto Geográfico Nacional (IGN) and the Gobierno de la
Provincia de Santa Fe.
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TABLE 1 Characteristics of case and control women living in the city of Santa Fe and surroundings.

Variables + numeric encoding Cases
N (%) or median [IQR]

Controls
N (%) or median [IQR]

P-value

Age (years) 48 [41.20–53.80] 42 [36.00–50.00] 0.086

BMI (kg/m2) 0.247

Normal weight (18.50–24.90) (0) 9 (30.0%) 20 (33.3%)

Overweight (25.00–29.90) (1) 13 (43.3%) 16 (26.7%)

Obesity (30.00 or higher) (2) 8 (26.7%) 24 (40.0%)

Educational level 0.467

Incomplete primary education (0) 2 (6.9%) 1 (1.7%)

Complete primary education (1) 16 (55.2%) 34 (57.6%)

Complete secondary education (2) 11 (37.9%) 24 (40.7%)

Working status 0.248

No (0) 16 (59.3%) 25 (43.1%)

Yes (1) 11 (40.7%) 33 (56.9%)

Age at menarche (years) 0.355

<12 (0) 17 (56.7%) 29 (48.3%)

12–14 (1) 8 (26.7%) 25 (41.7%)

>14 (2) 5 (16.6%) 6 (10.0%)

Age at first live birth 0.368

<30 years 23 (76.7%) 52 (86.7%)

≥30 years 7 (23.3%) 8 (13.3%)

Number of children 0.747

0 2 (6.7%) 4 (6.7%)

1 4 (13.3%) 9 (15.0%)

2–3 16 (53.3%) 25 (41.7%)

4 8 (26.7%) 22 (36.6%)

Breastfeeding 1.000

No (0) 1 (3.6%) 2 (3.6%)

Yes (1) 27 (96.4%) 53 (96.4%)

Breastfeeding duration (months) 21.00 [11.50–24.00] 24.00 [12.00–24.00] 0.441

Oral contraceptive use 0.697

No (0) 12 (40.0%) 20 (33.3%)

Yes (1) 18 (60.0%) 40 (66.7%)

Menopausal status 0.028

Premenopausal (0) 16 (53.3%) 47 (78.3%)

Postmenopausal (1) 14 (46.7%) 13 (21.7%)

Hormone replacement therapy 1.000

No (0) 29 (96.7%) 57 (95.0%)

Yes (1) 1 (3.3%) 3 (5.0%)

Mammography screening 0.819

(Continued on following page)
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2 Methods

2.1 Population and data collection

This is a case-control study conducted from January to
December 2021. The research protocol was approved by The
Research Safety and Ethics Advisory Committee (Code CE2018-
50) of the Facultad de Bioquímica y Ciencias Biológicas
(Universidad Nacional del Litoral, Santa Fe, Argentina). In the
current study, 90 women who attended the gynecology service of
José María Cullen Provincial Hospital in Santa Fe were recruited to
participate in the study. The study included participants aged
18–60 years old who had lived in various regions of the province
of Santa Fe for at least 5 years prior to the interview.

The participants were either diagnosed with BC (cases, n = 30)
or were cancer-free patients (controls, n = 60). Prior to their
participation, the women were provided with comprehensive
written information and were asked to provide their signed
informed consent. The data of the participants were obtained
from their medical records and survey responses. Since not all
women completed the questionnaire, sample size for some
variables was less than 30 in the case group and less than 60 in
the control group. The questionnaire included items pertaining to
demographic data, health information, lifestyle factors, reproductive
history, family history of BC, and occupational risk factors. The

participants’ addresses were obtained from medical records and
georeferenced using Google Maps (Online Geocoder). The resulting
coordinates were then classified based on the proximity to
agricultural fields (as residential proximity). Addresses located
within 4,000 m were considered ‘near’, while those located
beyond 4,000 m were considered ‘far’ (Thompson et al., 2022).
Out of 90 women surveyed, urine samples were collected from
70 patients (16 BC cases and 54 controls). For the remaining
20 patients, the conditions for urine sampling could not be met
since women were menstruating or lacked the minimum retention
time. The samples were transported to the Instituto de Salud y
Ambiente del Litoral (UNL-CONICET) for processing on the day of
collection. All samples were de-identified, stored at −80°C, and then
shipped to the laboratory of the Programa de Investigación y
Análisis de Residuos y Contaminantes Químicos (PRINARC) for
analysis of GLY and AMPA concentrations.

2.2 Creatinine analysis

The urine samples were analyzed for creatinine by a colorimetric
method using the Wiener Lab Creatinine Kit (code 1260001,
Rosario, Argentina). The reaction of creatinine with alkaline
picrate in a buffered medium results in the formation of a
chromogen, which is then measured at 510 nm. The purpose of

TABLE 1 (Continued) Characteristics of case and control women living in the city of Santa Fe and surroundings.

Variables + numeric encoding Cases
N (%) or median [IQR]

Controls
N (%) or median [IQR]

P-value

No (0) 17 (56.7%) 37 (61.7%)

Yes (1) 13 (43.3%) 23 (38.3%)

Family history of BC 0.216

No (0) 27 (90.0%) 46 (76.7%)

Yes (1) 3 (10.0%) 14 (23.3%)

Tobacco consumption 0.936

No (0) 20 (66.7%) 42 (70.0%)

Yes (1) 10 (33.3%) 18 (30.0%)

Alcohol consumption 0.800

No (0) 23 (76.7%) 43 (71.7%)

Yes (1) 7 (23.3%) 17 (28.3%)

Drinking water source 0.083

Potable tap/mineral water (0) 12 (75.0%) 39 (92.9%)

Non-potable well water (1) 4 (25.0%) 3 (7.1%)

Physical activity 0.341

<2 h per week (0) 9 (56.2%) 16 (38.1%)

≥2 h per week (1) 7 (43.8%) 26 (61.9%)

Vitamins 0.672

No (0) 13 (81.2%) 37 (88.1%)

Yes (1) 3 (18.8%) 5 (11.9%)
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this analysis is to ascertain the validity of the samples and to
normalize for urine concentration. According to the World
Health Organization (World Health Organization, 1996), samples
with creatinine levels below 30 mg/dL or above 300 mg/dL should be
discarded. Samples with very low creatinine concentrations may
interfere with the detection of low-level toxicants, while those with
very high creatinine concentrations may indicate dehydration,
which may affect the renal secretion, excretion, and/or
reabsorption of target chemicals (Barr et al., 2005).

2.3 Urinary GLY and AMPA analyses

2.3.1 Standards and reagents
Crystalline standards of GLY (97%), AMPA (98%), GLY-9-

fluorenylmethylchloroformate (GLY-FMOC) (92%) and AMPA-
FMOC (98%) were from Dr. Ehrenstorfer (Augsburg, Germany),
and the GLY Isotope-Labeled Internal Standard 1,2-13C2

15N (98%)
was obtained from Toronto Research Chemicals (Toronto, Canada).
Solutions of the derivatizing reagent FMOC-Cl (Sigma, St. Louis,
MO, United States) and sodium tetraborate buffer (Anedra, San
Fernando, Buenos Aires, Argentina) were separately prepared by
dissolving the reagents in acetonitrile and water, respectively. Ultra-
high performance liquid chromatography (UHPLC)-grade
acetonitrile and methanol (OptimaTM, Fisher Scientific, NJ,
United States) and deionized water produced with a Milli-Q
System (Millipore, Bedford, MA, United States) were utilized for
mobile phase preparation. Additionally, 5 mM ammonium acetate

(Anedra, San Fernando, Buenos Aires, Argentina) was employed as
modifier to promote ionization. Pesticide grade dichloromethane
(Sintorgan, Buenos Aires, Argentina) was used for clean-
up purposes.

2.3.2 Analytical method
Human urine samples were analysed for the presence of GLY

and AMPA. Sample preparation was adapted from Bernal et al.
(2010), with derivatisation based on the method outlined by
Demonte et al. (2018), as described below. In an eppendorf tube,
500 μL of human urine was spiked with 20 μL of GLY 1,2- 13C2

15N,
followed by the addition of 250 μL of acetonitrile. The mixture was
vortexed for 1 min, subjected to 10 min of ultrasound treatment, and
centrifuged at 15,000 rpm for 15 min at room temperature to
precipitate proteins. Subsequently, 500 μL of the supernatant was
transferred to another eppendorf tube, and the protein precipitation
step was repeated once more. The supernatant (500 μL) underwent
derivatisation by adding 84 μL of borate buffer (40 mM, pH 9) and
84 μL of FMOC-Cl. The concentration of FMOC-Cl was adjusted
based on the creatinine content of the original sample. The reaction
was allowed to proceed for 2 h at room temperature. Following
derivatisation, the extracts were cleaned by liquid-liquid partition
with 500 μL of dichloromethane. Finally, a fraction of the aqueous
phase was injected into the UHPLC-MS/MS system.

Quality assurance and quality control (QAQC) procedures were
implemented as follows. Due the unavailability of blank samples,
samples tested without GLY were used as blank samples and each
urine sample was spiked with internal standard. Duplicates of each

TABLE 2 Data on pesticide exposure of case and control women in the city of Santa Fe and surroundings.

Variables + numeric
encoding

Cases
N (%) or median [IQR] (ND: Not

detected)

Controls
N (%) or median [IQR] (ND: Not

detected)

P-value

Urinary levels of GLY (µg GLY/g
creatinine)

0.30 [0.25–0.36] 0.33 [0.17–0.86] 0.395

Urinary levels of AMPA ND ND

Residence near agricultural fields <0.001

No (0) 10 (33.3%) 46 (76.7%)

Yes (1) 20 (66.7%) 14 (23.3%)

Rural labor tasks 0.097

No (0) 11 (68.8%) 38 (90.5%)

Yes (1) 5 (31.2%) 4 (9.5%)

Use of agrochemicals 0.696

No (0) 13 (81.2%) 36 (85.7%)

Yes (1) 3 (18.8%) 6 (14.3%)

Application of pesticides at home 0.720

No (0) 12 (75.0%) 34 (81.0%)

Yes (1) 4 (25.0%) 8 (19.0%)

Family members working with pesticides 0.030

No (0)
Yes (1)

11 (68.8%)
5 (31.2%)

39 (92.9%)
3 (7.1%)
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sample were spiked with GLY-FMOC and AMPA-FMOC standard
solution to achieve three different concentration levels: one-third of
the samples were spiked at 0.50 μg/L, one-third at 1.00 μg/L, and the
remaining at 5.00 μg/L.

Percentage recoveries ranged from 62% to 126%, with a relative
standard deviation (RSD) lower than 25% for all samples and both
compounds. The limit of detection (LOD) and the limit of
quantitation (LOQ) were determinate using S/N ratios of 3 and

10, respectively, from 1.00 μg/L spiked samples chromatogramas.
LOD were 0.10 μg/L for GLY and AMPA. The LOQs (0.50 μg/L for
GLY and AMPA) were experimentally verified by analyzing spiked
samples at LOQ level, with recoveries and RSD within
acceptable ranges.

To assess linearity, isotopically labelled GLY and AMPA
standard working solution was added to urine samples with
varying creatinine contents: 31.30 mg/dL (low level), 153.05 mg/

FIGURE 2
The SHAP summary bar graph shows the ranking of variable importance based on the mean absolute value (|SHAP value|) for both controls (Class
NC) (blue) and BC cases (Class BC cases) (pink). FM: Family members.
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dL (medium level), and 300.00 mg/dL (high level). Since AMPA was
not detected in samples, the matrix effect was assessed solely by
analyzing six standard solutions of GLY 1,2-13C2

15N in triplicate
within the range of 0.10–25.00 μg/L (0.10, 0.50, 1.00, 5.00, 10.00,
25.00 μg/L). As it was demonstrated that the matrix effect depends
on the level of creatinine in the sample, the concentration of GLY
was calculated with the internal standard added to each sample.

2.3.3 Chromatographic system and operating
conditions

Liquid chromatography with tandem mass spectrometry (LC-
MS/MS) analyses were performed using an Acquity UPLCTM liquid
chromatograph (Waters, Milford, MA, United States) coupled to a
triple quadrupole mass spectrometer equipped with an electrospray
ionization source able to operate in positive and negative-ion mode
(TQD, Waters Micromass, United Kingdom).

Chromatographic separation was evaluated on an X-Select CSH-
C18 column (3.50 μm particle size, 100.00 × 4.60 mm i.d) at 40°C.

Aliquots of 10 μL of standard and/or sample extracts were
introduced by means of an auto-sampler (Waters, Milford, MA,
United States).

The mobile phase consisted of water and acetonitrile (98:2) +
5 mM NH4Ac (solvent A) and acetonitrile (solvent B).
Chromatographic and mass spectrometry data were handled
using MassLynx software v 4.1 (Waters, Manchester,
United Kingdom).

All these procedures were performed in the PRINARC at the
Facultad de Ingeniería Química, Universidad Nacional del Litoral,
Santa Fe, Argentina.

2.4 Data analysis

2.4.1 Statistical analysis
Statistical analysis was performed using R software (version

4.2.0). Urinary herbicide concentrations were reported as µg/g

FIGURE 3
The SHAP summary plot for each class: control cases (left) and BC cases (right) in detail. The y-axis position corresponds to the feature, and the
x-axis position is determined by the Shapley value. The color indicates the value of the feature, ranging from lowest (red) to highest (green) value. SHAP
values above 0 indicate a positive association with the outcome (for example, regarding BC cases, high values of the feature “living near agricultural fields”
have a positive impact on the output of themodel for this class). SHAP values below 0 indicate a negative association with the outcome (for example,
regarding BC cases, low values of the feature “living near agricultural fields” have a negative impact on the output of the model for this class).
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creatinine (creatinine-adjusted concentrations). A descriptive
analysis of the surveyed variables was performed showing
medians and interquartile ranges (IQR) for continuous variables,
or frequencies and percentages for categorical variables, as
appropriate. The continuous variables included age, weight,
height, and body mass index (BMI) calculated from the latter
two. Categorical variables were grouped into different
dimensions: pesticide exposure (e.g., living near agricultural
fields, childhood in rural areas, rural work, use of agrochemicals,
family members working with pesticides, pesticide application at
home), lifestyle factors (e.g., smoking, alcohol consumption,

physical activity, consumption of vegetables, fruits, dairy
products, processed meats, red meat, white meat, drinking water
source), and socioeconomic status (e.g., educational level,
employment status).

Due to the non-normal distribution of the data, non-parametric
bivariate tests were used. Each BC patient was matched with two
controls based on age, residence proximity classified based on the
proximity to agricultural fields and sample provision. Associations
between BC and each covariate were initially assessed using the
Mann-Whitney U test or Kruskal-Wallis test for continuous
variables, and Pearson’s χ2 or Fisher’s exact tests for categorical

TABLE 3 GLY and AMPA concentrations detected in biological and environmental samples from South American and European countries.

Type of sample Results Detection methods Country Authors DOI

Human urine (27 female/25 male
from Chaco lived in a small rural
village)

Only 10 samples (19.2%) showed
quantifiable values (median:
0.30 µmol/mol creatinine; range:
(0.12–0.91) µmol/mol creatinine)

Liquid chromatography coupled to
tandem mass spectrometry (LC-
MS/MS)

Argentina Bressan et al.
(2021)

https://doi.org/10.
1016/j.jchromb.2021.
122616

Human urine (15 subjects
occupationally and
20 environmentally exposed to
pesticides)

Urine of non-occupationally exposed
population: AMPA: median 0.27 ng/
mg creatinine, GLY median 0.10 ng/
mg creatinine
Urine from occupationally exposed
population. AMPA: median 0.38 ng/
mg creatinine, GLY median 0.08 ng/
mg creatinine

Gas chromatography coupled to
tandem mass spectrometry
(MS/MS)

Argentina Filippi et al.
(2024)

https://doi.org/10.
1016/j.envadv.2023.
100474

Human urine (90 farmers) 12% of the farmers presented GLY
levels

High-performance liquid
chromatography (HPLC-FL)

Brazil de Melo et al.
(2020)

https://doi.org/10.
31005/iajmh.v3i0.124

Human urine (519 participants lived
in agricultural communities)

GLY was detected in 98.3% of
participants
Geometric mean (95% IC)
0.92(0.83,1.01)

Isotope-dilution mass
spectrometry

Ecuador Chronister
et al. (2023)

https://doi.org/10.
1289/EHP11383

Human urine (French general
population)

GLY quantifable in 99.8% of urine
samples with a mean of 1.19 ng/mL+/
−0.84 after adjustment to body mass
index (BMI)

ELISA France Grau et al.
(2022)

https://doi.org/10.
1007/s11356-021-
18110-0

Human urine (non-farm and farm
families)

GLY (max) 3.21 µg/L, AMPA (max)
7.24 µg/L

GC–MS/MS Ireland Connolly et al.
(2022)

https://doi.org/10.
3390/tóxicos10110690

Human urine (Young adults
(18–19 years old)

The median concentration was below
0.10 μg/L and a maximum
concentration being 3.39 μg/L
(density adjusted)

LC-MS/MS Sweden Faniband et al.
(2021)

https://doi.org/10.
1016/j.ijheh.2020.
113657

Surface waters, raw water and
drinking water

Surface waters:
GLY: range LOQ (0.25 µg/
L) – 0.50 µg/L, AMPA: range LOQ
(0.67 µg/L – 0.70 µg/L)
In samples of raw water and drinking
water the results for GLY and AMPA
could not be quantified

Enzyme-Linked Immunosorbent
Assay (ELISA)

Uruguay Frontera et al.
(2024)

https://doi.org/10.
26461/27.01

Water GLY was detected in 66% of surface
water samples (0.20–167.40 μg/L), in
15.8% of the groundwater samples
(1.30–2.00 μg/L) and in the harvested
precipitation sample (0.20 μg/L)

UHPLC MS/MS Argentina Lutri et al.
(2020)

https://doi.org/10.
1016/j.scitotenv.2019.
134557

Soil The average concentrations of GLY
and AMPA in soil were 2,299 ±
476 mg/kg and 4,204 ± 2,258 mg/kg,
respectively

Ultra-performance liquid
chromatography with tandem
mass spectrometry (UPLC-
MS/MS)

Argentina Primost et al.
(2017)

https://doi.org/10.
1016/j.envpol.2017.
06.006

Rainwater Maximum detected concentrations
were 6.10 μg/L and 5.80 μg/L for GLY
and AMPA, respectively

LC–MS/MS Belgium Tang et al.
(2015)

https://doi.org/10.
1016/j.scitotenv.2015.
02.040
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variables, to identify possible candidate variables for multivariate
logistic regression. Variables with a p-value < 0.10 were included in
the multivariable logistic regression model. In this model, the
response variable was of the case/control type, whereby cases
were assigned the value of ‘1’ and controls the value of ‘0’. Odds
ratios were estimated with a 95% confidence interval (CI) to evaluate
the strength of the association between the response variable and
each predictor.

2.4.2 Supervised machine learning
Supervised learning is a machine learning (ML) paradigm in

which the data set comprises labeled examples. Each data point
contains features and an associated output label. The goal of
supervised learning algorithms is to learn a function that maps
feature numerical vectors (inputs) to labels (desired outputs) based
on example input-output pairs (Russell and Norvig, 2016) also
known as training examples (Bishop and Nasrabadi, 2006). A
supervised learning algorithm analyzes the training data and
produces an inferred function that can be used to map new
testing examples, generalizing from the training data to unseen
situations.

In this study, several ML classifiers were trained, including
Multilayer Perceptron (MLP), Random Forest (RF), Gradient
Boosting (Gboost), Bagging and K nearest neighbors (KNN)
(Haykin, 1999; James et al., 2013). We have also included a
logistic regression linear model as a benchmark for comparison
with the machine learning models. The optimal model was selected
using random cross-validation, with 1-fold completely random
partition having 80% of the complete dataset allocated for
training and 20% of the full dataset for testing and performance
evaluation. For the MLP model, hyperparameters grid-search was
performed with a small subset of the training data. The MLP
architecture is hidden_layer_size = 100, activation function =
reLU, automatic batch_size, learning_rate = 0.001, and maximum
iteration number = 1,000. The optimizer employed was Adam. The
other models were used with default parameters: RF, GBoost and
Bagging with 100 estimators, KNN with k = 5.

The prediction quality of each model was evaluated using the
F1 classical classification measure:

F1 � 2
s+p

s+ + p
, s+

TP

TP + FN
, p

TP

TP + FP

where s+ (recall) measures how good is a classification method at
recognizing (and not missing) the true positives; the precision p
measures the relation between true positives and false positives; F1, a
harmonic score between precision and recall, is used to compare
prediction methods. TP, FP and FN represent the number of true
positive, false positive and false negative classifications, respectively.

Model explainability, named Explainable Artificial Intelligence
(XAI) is crucial in any ML pipeline. In this work, XAI with SHAP
(Shapley Additive Explanations) was employed to achieve model
explainability. This work used the SHAP method (Lundberg and
Lee, 2017), which is based on the game theoretically optimal Shapley
values (Shapley, 1953), to explain individual predictions by
computing the contribution of each feature to the prediction.

The SHAP explanation method utilizes coalitional game theory
to compute Shapley values. In this method, the feature values of a

data instance act as players in a coalition. Shapley values explain how
to distribute the prediction playout fairly among the features. In the
case of tabular data, a player can be an individual feature value.
SHAP specifies the explanation as:

g x′( ) � ∅0 +∑
M

j�1
∅j

where g represents the explanation model, x’ represents an instance
o data point, M represents the number of features and ϕj∈R
represents the feature attribution for a feature j, also known as
the values. The Shapley value for feature j indicates the value
contributed by the j-th feature to the prediction output of this
particular instance compared to the average prediction for
the dataset.

In this study, we used the SHAP Summary Plot to show the
importance of each feature for the RF model trained to predict
cancer. In this plot, the effect of a feature on the classes is stacked to
create the feature importance plot. The summary plot for multiclass
classification can show what the model learns from the features.
Each point on the summary plot represents a Shapley value for a
feature and an instance. The y-axis position corresponds to the
feature, and the x-axis position is determined by the Shapley value.
The color represents the value of the feature from lowest (red) to
highest (green) value. The features are ordered according to their
importance. Additionaly, we obtained a detailed SHAP Summary
plot for each class.

3 Results

3.1 Population characteristics

The questionnaire was completed by 30 BC cases and
60 controls. Figure 1 indicates the geographic locations of the
women’s residences. General characteristics of case and control
groups are shown in Table 1 and their dietary habits are
displayed in Supplementary Table S1 (Supplementary Material).
The control group had a median age of 42 years old (interquartile
range (IQR): 36–50 years), while the BC group had a median age of
48 years old (IQR: 41–54 years). Body mass index (BMI) was not
significantly different between the groups, with a median of 28.6
(IQR: 23.8–33.5) kg/m2 for controls and a median of 26.7 (IQR:
24.3–30.3) kg/m2 for cases (p = 0.409). Educational level was not
significantly different between BC cases and controls (p = 0.467),
with only 37.9% of BC cases and 40.7% of controls having completed
secondary school. Menopausal status was significantly different
between BC cases and controls (p = 0.028). The majority of
participants, both cases (56.7%) and controls (61.7%) reported
never having had a mammogram. Also, no significant differences
were detected between the cases and controls with regard to the age
at menarche, family history of BC, oral contraceptive use, hormone
replacement therapy, breastfeeding, physical activity, smoking,
alcohol consumption, and meat and vegetable intake. Table 2
shows the data on the participants’ exposure to pesticides. In this
study, 66.7% of the BC cases and 23.3% of controls reported residing
near an agricultural fiel (defined as residential proximity)
(p < 0.001).
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Urinary creatinine analysis showed 65 out of 70 samples were
valid (14 BC cases and 51 controls) with creatinine values ranging
30–300 mg/dL. GLY was detected in 86.1% of the 65 urine samples
tested. Concentrations ranged 0.37–10.07 µg GLY/g creatinine and
no significant differences were observed between the BC cases and
controls. AMPA was not detected in the samples tested.

The results of the multivariate logistic regression analysis
showed a significant increase in the risk of BC for women
residing near agricultural fields (OR: 7.38, 95%CI: 2.74-21.90)
and for postmenopausal status (OR: 3.80, 95% CI: 1.32-11.70).
None of the associations found were related to urinary GLY levels.

3.2 ML analysis

The dataset comprises 90 women, with 30 cases of BC and
60 controls. The target class, ‘Group’, indicates whether the
participant has been diagnosed with BC (case group) or not
(control group). Table 1 presents the description and details of
each dataset feature used in this study. Binary variables (the ‘Yes/No’
type) were assigned values of 0 (No) and 1 (Yes). Additionally,
variables with more than two levels were coded incrementally to
indicate their respective levels.

In the cross-validation test, each model achieved the following
F1 scores at the 20% data test partition: logistic regression 66.7%,
MLP 61.1%, RF 77.8%, GBoost 72.2%, Bagging 61.1% and KNN
61.1%. Therefore, RF was selected as the best model for cancer
prediction to perform the final training with the complete dataset.

After the cross-validation that was performed in order to select
the best classifer, a RF classifier of 100 trees was trained with the
complete dataset (no partitions) to classify instances into two classes:
‘no-cancer’ (Class NC) and ‘BC’ (Class BC cases), resulting in F1 =
68.6% for the complete dataset. The SHAP method was then
employed to explain the results of the RF model. The features
were ranked based on their importance, as shown in Figure 2.
The SHAP bar graph shows the mean absolute SHAP values, which
represents the average impact of each feature on the model’s
predictions for each class. The most important feature for
classification into these classes is living near agricultural fields.
Figure 3 show the SHAP plots illustrating the impact of each
feature on the model output for each separate class. It was
observed that for class BC, the variable of ‘living near agricultural
fields’ has a very high impact on the model output.

4 Discussion

The present study, similar to others conducted in different
countries, demonstrated the ubiquitous presence of urinary GLY
in women from Santa Fe, Argentina. The widespread presence of
GLY in human samples reflects its pervasive occurrence in the
environment, as GLY have been reported in various food matrices
(Zoller et al., 2018; Fagan et al., 2020; Cruz and Murray, 2021) and,
particularly in Argentina, in different environmental samples
(Primost et al., 2017; Lutri et al., 2020; Okada et al., 2020).
Moreover, a recent study examining the occurrence of pesticides
in 64 small water bodies across regions with intense agricultural
activity in Argentina and ten European countries revealed that GLY

herbicide exhibited the highest median concentration (Navarro
et al., 2024). Even more worrying, Argentina showed the highest
overall concentration of pesticides in the water bodies analyzed
(Navarro et al., 2024). This evidence suggests a significant burden of
GLY exposure in the Argentine population.

In our study, the median GLY concentration, including both
healthy subjects and those diagnosed with BC, was 1.23 μg/L, with
a maximum of 3.50 µg/L observed in a healthy woman. These
urinary GLY levels were higher compared to other studies carried
out in Argentina in non-occupationally exposed men (median
0.191 ng/mL) (Filippi et al., 2024) and in a population from a rural
village (range < 0,50–3,03 μg/L) with 19.2% of quantifiable samples
(Bressán et al., 2021). Moreover, the GLY levels reported in the
current work were also higher than those in healthy
postmenopausal women in Southern California, United States
(median 0.10 μg/L; maximum 3.01 μg/L) (Lucia et al., 2023),
healthy lactating women in the United States (mean 0.28 μg/L;
range 0.02–1.93 μg/L) (McGuire et al., 2016), and adults in
Portugal (median 0.13 μg/L) (Nova et al., 2020). On the other
hand, some authors detected similar maximum urinary GLY
concentrations of 3.22 μg/L in Danish mothers (Knudsen et al.,
2017) and 3.39 μg/L in Swedish young adults (Faniband et al.,
2021). To better contextualize GLY and AMPA exposure levels
across regions, Table 3 presents a comparative summary of GLY
and AMPA levels reported in biological and environmental
samples from Argentina, neighboring South American
countries, and Europe.

In our study, the metabolite AMPA was not detected in any of
the urine samples analyzed, which differs from other studies that
have reported its presence. This discrepancy could be attributed
to a number of factors including limited exposure, removal
efficiency or limitations in the detection method (Aris and
Leblanc, 2011). Our method achieved a LOD of 0.10 µg/L for
AMPA, which is comparable to those reported in other
biomonitoring study (Faniband et al., 2021). In that study,
AMPA was detected in a higher percentage of urine samples
than GLY; however, no significant correlation was observed
between urinary concentrations of GLY and AMPA. This
finding suggests that AMPA levels in urine may not
necessarily reflect internal GLY metabolism but could instead
be influenced by independent environmental exposure to AMPA.
Futhermore, only about 1% of an ingested GLY dose is excreted
unchanged in urine, with reported excretion rates for AMPA
being even lower. These biological factors may explain the
absence of AMPA in urine, particularly when exposure
originates primarily from GLY.

Some studies have shown a correlation between pesticide
exposure and increased BC risk in vulnerable populations
(Franke et al., 2021; De Rezende et al., 2023; Panis et al., 2024).
For instance, a case-control study in Paraná, Brazil, a region with
extensive pesticide use, examined the impact of pesticide exposure
on BC risk in rural women who performed cleaning tasks on
pesticide-contaminated equipment and clothing (Panis et al.,
2024). The authors found evidence of pesticide exposure,
including GLY in urine samples, and revealed that women
exposed to pesticides exhibited an elevated risk of BC and lymph
node metastasis (Panis et al., 2024). In contrast, in our current study
we did not find a direct association between the urinary GLY levels
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and BC risk. This finding suggests that the relationship between
urinary GLY concentration and BC risk may be complex and
influenced by additional factors beyond just GLY exposure.
Furthermore, taking into account the ubiquitous occurrence of
GLY in our healthy and unhealthy population, make it more
difficult to establish an association between the levels of this
herbicide and the risk of BC and other pathologies.

Importantly, the evaluation of residential proximity revelated
that women residing near agricultural fields had increased risk of
BC, a finding consistent across both clasiccal statistics and ML
approach. This result aligns with previous studies reporting
increased BC risk associated with proximity to agricultural areas
and surrounding greenness in Spain (O’Callaghan-Gordo et al.,
2018). Additionally, a case-control study conducted also in Spain
revelead that children residing near agricultural areas had a higher
risk of developing various types of cancer (Gómez-Barroso et al.,
2016). In France, Carles et al. (2017) found an increased risk of
meningioma among adults residing near open field crops. Despite
the absence of an association between BC and urinary GLY levels in
our study, the positive correlation detected between BC and
proximity to cultivated fields suggests that exposure to
agrochemicals in general, and not just GLY, may contribute to
BC development. While our results are consistent with these
previous studies, it is important to note that the existing
literature is not yet sufficiently conslusive. This is due, in part, to
the heterogeneity in study desings, with some focusing on different
cancer types or employing various methods to assess
pesticide exposure.

Another interesting finding of this work was the detection of an
increased risk of BC in postmenopausal women. This result is
consistent with previous data indicating that the majority of BC
diagnoses occur in postmenopausal women (Kharb et al., 2020). The
postmenopausal period is considered a particularly susceptible
phase to the influence of endocrine-disrupting chemicals (EDCs),
and growing evidence suggests that EDCs exposure may contribute
to BC development, especially during this physiological period (Kass
et al., 2020; Gouesse and Plante, 2022).

Notable, GLY has shown estrogenic properties and the ability
to induce the proliferation of estrogen-dependent MCF-7 human
BC cells (Thongprakaisang et al., 2013; Mesnage and Antoniou,
2017) and ERalpha (ESR1)-positive cholangiocarcinoma cells
(Sritana et al., 2018). In vivo studies have also demonstrated
GLY’s potential to induce hyperplastic changes in the
mammary gland of aged female rats (Zanardi et al., 2020).
Based on this evidence, GLY herbicide might be a contribuiting
factor in the development of BC. However, further epidemiological
research is necessary to address this point, with particular
attention to menopausal status.

This study provides evidence for the widespread presence of
GLY in urine samples fromwomen residing in Santa Fe, Argentina.
Despite the absence of a direct association between GLY levels and
BC, we detected a significant association between BC risk and
living near agricultural fields. Our findings highlight the
importance of considering environmental factors, including
pesticides, when assessing BC risk. Finally, this work
underscores the need to develop strategies to reduce pesticide
exposure and protect the health mainly of those populations living
near agricultural fields.

4.1 Limitations and strengths of the study

Our study has limitations, mainly because of the small number
of participants, which requires further research with a larger
population to increase the power of the study and to better
explore these relationships while accounting for relevant
confounding factors such as, age, menopause status and family
members working with pesticides. Another limitation is that our
case-control ratio does not reflect the actual disease incidence in the
general population due to recruitment constraints, which could
potentially introduce selection bias in our analyses. The limited
sample size prevented us from properly stratifying participants by
menopausal status, which would be important in future studies
given its established association with BC risk. Additionally, the
utilization of a single urine sample may not be sufficient to
accurately assess GLY exposure levels, given the short half-life of
this compound. Nevertheles, our findings indicate that GLY is
present in most of the samples analyzed, suggesting the
widespread occurrence in the population. Furthermore, the
results provide substancial insights into potential risk factors for
BC in our population, particularly related with the place of
residence. In addition, menopause may represent a vulnerable
physiological period associated with increased BC risk in our
population. We consider the data from the present study to be of
significant importance for future decision-making in Argentina.
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