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Traditional chemical safety assessment involves identifying the lowest level of a
chemical that impacts endpoints measured in standardized animal studies to
establish human exposure limits. In vitro assays have shown promise in providing
points of departure that can be protective of human health when combined with
exposure predictions into a bioactivity:exposure ratio (BER). Using a combination
of broad screening tools and DART-targeted assays, we previously demonstrated
high biological coverage of this NAM toolbox against a list of DART-relevant
genes and pathways. To fully transition to an animal-free paradigm, it is crucial to
establish confidence that these in vitro assays sufficiently represent the DART
toxicity mechanisms, ensuring a level of protection that is safe for non-pregnant
adults, pregnant women, and fetal populations. In this proof-of-concept study,
we have extended the toolbox to include additional in vitro and in silico tools and
have performed an evaluation using 37 benchmark compounds across
49 exposure scenarios. According to existing regulatory opinions, 18 of these
scenarios would be considered high-risk chemical exposures from a DART
perspective. Our DART NAM toolbox approach identified 17 out of these
18 high-risk scenarios. We further investigated the impact of population-based
changes in pregnancy and the fetus on internal exposures by evaluating human
clinical data where available for the 37 compounds. In most instances, the
variability resulting from pregnancy or gestational changes falls within the
range of toxicokinetic variability observed in the general population. This work
demonstrates that protective safety decisions can be made for DART without
generating new animal test data.
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1 Introduction

Significant progress has been made in adopting New Approach
Methodologies (NAMs) for chemical safety assessment. NAMs have
been particularly successful for local toxicity endpoints like skin
corrosion, eye damage, and skin sensitization (Sewell et al., 2024). To
allow safety assessment of chemicals NAMs will also be needed for
more complex endpoints. To this end, Next-Generation Risk
Assessment (NGRA) approaches are increasingly being developed
(Thomas et al., 2019; Berggren et al., 2017). These approaches are
exposure-led, and hypothesis driven, using a tiered, iterative
approach to make safety decisions, designed to prevent harm
(Dent et al., 2018). The initial tier of such approaches is
constructed to be protective of human health, often integrating
high throughput assays (e.g., high throughput transcriptomics
(HTTr) (Farmahin et al., 2017; Harrill et al., 2019) with more
targeted tools (e.g., functional or binding assays for specific
receptors) allowing broad biological coverage (Middleton et al.,
2022; Zobl et al., 2024). Using multiple concentrations, points of
departure (PoDs) can be calculated to identify concentrations at
which a compound starts to cause biological perturbations
(bioactivity) in a test system. These approaches have been
evaluated in several case studies by calculating bioactivity:
exposure ratios (BERs) from PoDs in combination with predicted
systemic adult exposure estimates using physiologically based
kinetic (PBK) models. Results from these evaluations
demonstrate the protectiveness of these NAM based approaches
mostly for systemic safety assessments (Baltazar et al., 2020; Dent
et al., 2021; Middleton et al., 2022; Zobl et al., 2024; Cable et al.,
2024). If needed an early tier can be followed up with more
physiologically relevant cell systems for hazard testing or
exposure predictions to refine outcomes (Thomas et al., 2019;
Berggren et al., 2017). These new approaches have the potential
to fundamentally transform chemical regulatory framework(s) by
allowing more human-relevant decision-making to support sound
human health safety decisions in diverse industrial sectors
(cosmetics, industrial chemicals, pharmaceuticals, occupational
health, etc.) (Magurany et al., 2023; Schmeisser et al., 2023).

To perform a comprehensive chemical safety assessment, it is
crucial to ensure human exposures will not cause developmental and
reproductive toxicity (DART). Due to the complexity and the
distinct stages within the reproductive cycle, this was historically
addressed using several OECD in vivo test guidelines (Knight et al.,
2023) which assess changes in male and female reproductive
function, gamete development and maturation, conception and
embryo implantation, embryonic and fetal development, birth
and weaning, the onset of puberty, attainment of full sexual
function, and potential effects on subsequent generations
(summarized in (EMA, 2023)). These DART-specific testing
guidelines are employed to assess defined apical endpoints related
to developmental or reproductive toxicity, such as pregnancy
duration, fetal malformations, and the weight and morphology of
reproductive organs, etc., but also evaluate non-specific/systemic
effects like the body weight of the parental generation and the
offspring, as well as the weight and morphological changes of
reproductive as well as non-reproductive organs. The integration
of DART and systemic testing endpoints serves as an approach
protective of critical effect levels for human adverse outcomes

(Browne et al., 2024). The first indication that NGRA approaches
could also be protective for DART came from a study performed
under the international government-to-government initiative
“Accelerating the Pace of Chemical Risk Assessment (APCRA)”.
By comparing PoDs from high-throughput assays with traditional
hazard information for over 400 chemicals, including results from
DART testing guidelines, this study demonstrated that for 89% of
the compounds, the PoDs from NAMs were more conservative than
PoDs derived from animal studies. No enrichment was found for
compounds with data from DART studies within the cohort of
48 compounds in which the in vivo PoD was lower (Paul Friedman
et al., 2020).

Previously we proposed an NGRA framework for DART
(Rajagopal et al., 2022). The biological coverage of the NAMs
within the proposed framework was evaluated by comparing
cellular processes, signalling pathways and genes involved in
known key stages in human reproduction and embryo-fetal
development from an automated literature extraction to the read-
outs from our NAM toolbox (including basic expression levels of cell
lines). We showed ~80% coverage of these processes based on gene
numbers (Rajagopal et al., 2022). Knowledge of the biological
coverage of our proposed framework and the previous work from
APCRA (Paul Friedman et al., 2020) suggests that an NGRA
approach could provide protection for DART, however
conclusive evidence is still lacking. Therefore, in this study, we
evaluated the protectiveness of our DART NGRA framework by
testing 37 benchmark compounds. High and low-risk exposure
scenarios for the 37 compounds were identified using DART-
relevant data from authoritative sources as benchmarks. Within
tier 0 of the framework in silico predictions covering general alerts
for DART as well as for specific receptor activity were performed
and results were compared to historical data to evaluate the
predictive power of these tools. In tier 1 data from our DART
NAM toolbox was generated and PoDs were calculated to estimate
chemical bioactivity. Bioactivity was then compared to the estimated
human exposure to calculate a BER for each exposure scenario (for
an overview see Figure 1 and for a more detailed description of the
workflow for the evaluation see material and methods).

To cover the different life stages of the reproductive cycle, it is
essential to consider the exposure of non-pregnant adults, pregnant
women, and fetal populations. This approach needs to take into
account the anatomical and physiological changes in the pregnant
woman and the gestational changes within the embryo, which may
alter the absorption, distribution, metabolism, and excretion
(ADME) of a compound, thereby impacting systemic exposure
(Kapraun et al., 2019; Hudson et al., 2023). To broadly
investigate the impact of population-based changes in pregnancy
on internal exposures, clinical data from pregnant and fetal exposure
as well as non-pregnant adult exposure was extracted from literature
for the 37 compounds where available to inform on the exposure and
exposure distribution between the three populations. PBKmodelling
was used to predict the internal exposure of the benchmark
chemicals in female adults where no in vivo data could be found.
BERs were calculated for all three subpopulations for each
exposure scenario.

For the final evaluation of the NGRA approach BERs were used
to group exposure scenarios into uncertain (BER <1) or low risk
(BER >1). Conceptually a BER of 1 indicates that bioactivity would
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FIGURE 1
Workflow for evaluation of DART framework. The in silicomodule (tier 0 of the framework) includes 4 tools used to make in silico predictions on the
benchmark chemicals for general DART toxicity and ER/AR activity. Tier one of the framework consists of 3 additional modules. The Cmax module
includes a workflow to derive Cmax values for the chemical use-scenario for the 3 populations. In the PoD estimation module, 7 NAMs are processed to
identify a minimum PoD. Outputs fromCmax estimation and PoD estimationmodules are combined in the final module to estimate a BER for use in
risk assessment. Schematic adapted from Middleton et al., 2022.

Frontiers in Toxicology frontiersin.org03

Mueller et al. 10.3389/ftox.2025.1602065

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1602065


not be observed at human-relevant exposures. However, an
experimentally derived BER threshold that would be considered
protective for DART has not yet been proposed or agreed. Therefore,
the purpose of this study was to assess whether a BER of 1 would be a
protective of DART in humans and useful for decision making.

2 Materials and methods

2.1 Workflow for the evaluation of a DART
NGRA framework

To evaluate the overall protectiveness of the DART framework,
high and low-risk exposure scenarios for all compounds were
identified where possible using DART-relevant data from
authoritative sources as benchmarks. In the initial tier 0, in silico
predictions using various tools, namely, Derek Nexus (Marchant
et al., 2008), OECD QSAR Toolbox (https://qsartoolbox.org/),
VEGA (Benfenati et al., 2013), OPERA (Mansouri et al., 2016)
relevant to general DART hazard and estrogen and androgen
activity were generated and compared to information from the
same regulatory sources or, in the case of estrogen receptor (ER)
and androgen receptor (AR), from the CompTox Chemicals
Dashboard (see Figure 1). In tier 1 of the framework, data was
generated for all NAMs in the toolbox to estimate chemical
bioactivity across these NAMs, alongside an estimate of human
chemical exposure via various methods (see Figure 1). The
previously outlined conceptual design for our DART NGRA
framework integrates broad, untargeted tools to detect bioactivity,
including HTTr in three cell lines and a cell stress panel (CSP), with
additional targeted NAMs—namely, in vitro pharmacological
profiling (IPP) across 72 molecular targets and two human
induced pluripotent stem cell (hiPSCs)-based assays (Rajagopal
et al., 2022). These targeted NAMs provide more mechanistic
based information and have been included to capture key
molecular initiating events (MIEs) known to be important for
DART, as well as fundamental cellular processes (e.g., iPSC
metabolism and differentiation) that take place during early
embryonic development. These assays provide complementary
information to the broader untargeted assessments of bioactivity
provided by the HTTr and CSP. Downstream events in the ER and
AR pathways, along with disruptions in estrogen and androgen
hormone synthesis, were identified as gaps in the previously
published framework (Rajagopal et al., 2022). Since OECD-
approved test systems for ER, AR and steroidogenesis (OECD,
2021; OECD, 2023b; OECD, 2023a) are commercially available,
we incorporated these assays, namely, the H295R and AR and ER
CALUX assays, to address these gaps during this evaluation. PoDs
are calculated for each NAM and are compared to internal exposure
to estimate a BER. By comparing the lowest PoD across all available
NAMs to the estimated chemical exposure (plasma Cmax), a BER
was calculated to characterize the risk of the compound at the
specific exposure scenario with respect to DART. A conceptual BER
of 1 was used as a threshold to differentiate between high/uncertain-
risk (BER <1) and low-risk (BER >1) exposure scenarios, and
protectiveness was evaluated by comparison to traditional risk
assessment decisions. For simplification true dose estimates
(Nicol et al., 2024), metabolism of a substance (Thomas et al.,

2019) as well as uncertainty calculations (Middleton et al., 2022;
Canada, 2021) to allow for decision-making, are excluded for this
proof-of-concept study.

2.2 Benchmark chemical-
exposure scenarios

In total 37 benchmark compounds were selected for evaluation
of the DART NGRA framework. Compounds were selected to
provide at least one human exposure scenario, and to include a
variety of different consumer uses (e.g., pharmaceutical, cosmetic,
plant protection, food), with routes of exposure including oral,
dermal and intravenous administration. In total there are
49 chemical exposure scenarios across the 37 compounds
(see Table 1).

2.2.1 Assignment of risk classifications to
benchmark chemical-exposure scenarios

To evaluate the DART NGRA framework each of the
49 chemical-exposure scenarios had a risk classification assigned
with respect to human developmental and reproductive toxicity.
These chemical-exposure DART risk classifications are considered
the ‘truth’ and determine if the NGRA framework is sufficiently
protective. Each of the 49 exposure scenarios was classified as either
high, low, or uncertain risk for DART (Table 1). The risk
classifications for each chemical-exposure scenario were
determined based on the availability of existing toxicological
information from animal studies and from evidence of
developmental or reproductive effects in humans. In most cases,
authoritative sources (e.g., EFSA, ECHA, EMA, FDA, EPA, SCCS
risk assessments and/or reviews) were used to establish the risk
classification for each chemical exposure scenario. Occasionally,
other data sources were utilized to make risk classification
decisions. For example, a biomonitoring study of prenatal
exposure to chlorpyrifos was used to assign a risk classification
for that specific exposure, based on human outcome and compound
concentration in cord blood at birth. Additionally, literature
searches were sometimes conducted to identify case reports that
could provide evidence to support the assignment of either a high or
low risk to human health. For 5 exposure scenarios it was not
possible based on the available data to state with high confidence
that an exposure was high or low risk, and therefore these scenarios
were classified as uncertain. More detail on the 49 separate
benchmark chemical-exposure scenarios, as well as the associated
risk classifications and reasoning for these, including conclusions
from regulatory opinions where available, can be found in
Supplementary Data Sheet 1.

2.3 In silico predictions

There are numerous in silico tools available to predict general
DART effects, as well as specific modes of actions (MoAs) such as
estrogen (ER), androgen (AR), or thyroid (THR) binding and
activation. For this work 14 models within four platforms Derek
Nexus (Lhasa Limited)v. 6.2.0 (Marchant et al., 2008), OECD QSAR
Toolbox (https://qsartoolbox.org/), VEGA (Benfenati et al., 2013)
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TABLE 1 Exposure risk classifications for selected benchmark compounds.

Chemical CAS number Exposure scenario Exposure risk

1,2-Octanediol 1117-86-8 Cosmetic, 5% in body lotion Low Risk

2-Amino-6-chloro-4-nitrophenol 6358-09-4 Cosmetic, 2% in hair colourant Low Risk

2-Ethylhexanoic acid (2-EHA) 149-57-5 Dietary, 3.1 mg/daily Uncertain Risk

2-Methylresorcinol 608-25-3 Cosmetic, 1.8% in hair colourant Low Risk

Aspartame 22839-47-0 Dietary, 2,400 mg/daily Low Risk

all-trans-retinoic acid (ATRA) 302-79-4 Pharmaceutical, 0.1% cream Uncertain Risk

all-trans-retinoic acid (ATRA) 302-79-4 Pharmaceutical, 80 mg/daily High Risk

all-trans-retinoic acid (ATRA) 302-79-4 Dietary, <10,000 IU Retinol Low Risk

Butylated hydroxytoluene (BHT) 128-37-0 Cosmetic, aggregate (max 0.8%) Low Risk

2-Hydroxy-4-methoxybenzophenone, Oxybenzone, Benzophenone-
3 (BP3)

131-57-7 Cosmetic, 6% in sunscreen Low Risk

Caffeine 58-08-2 Dietary, 100 mg/daily Low Risk

Caffeine 58-08-2 Dietary, 400 mg/daily High Risk

Caffeine 58-08-2 Cosmetic, 2% in shampoo Low Risk

Chlorpyrifos 2921-88-2 Dietary, 0.0045 mg/daily Uncertain Risk

Chlorpyrifos 2921-88-2 Prenatal Exposure High Risk

Cyclophosphamide 6055-19-2 Pharmaceutical, 60 mg/daily High Risk

Cypermethrin 52315-07-8 Dietary, 0.3 mg/daily Low Risk

Dibutyl phthalate (DBP) 84-74-2 Dietary, 0.6 mg/daily Low Risk

DEET 134-62-3 Pharmaceutical, 15% in insect repellant Low Risk

Diethyl phthalate (DEP) 84-66-2 Cosmetic, aggregate (max 10%) Low Risk

Diethylstilbestrol (DES) 56-53-1 Pharmaceutical, 0.5 mg/daily High Risk

Dexamethasone 50-02-2 Pharmaceutical, 0.75 mg/daily High Risk

Digoxin 20830-75-5 Pharmaceutical, 0.024 mg/daily Low Risk

Dolutegravir 1051375-16-6 Pharmaceutical, 50 mg/daily High Risk

Ethylzingerone 569646-79-3 Cosmetic, aggregate (max 2%) Low Risk

Fenazaquin 120928-09-8 Dietary, 3 mg/daily Low Risk

Glutaraldehyde 111-30-8 Dietary, 9.6 mg/daily Low Risk

Glutaraldehyde 111-30-8 Cosmetic, 0.1% in body lotion Low Risk

HC Red 3 2871-01-4 Cosmetic, 3% in hair colourant Low Risk

Metformin 657-24-9 Pharmaceutical, 2,000 mg/daily Low Risk

Metoclopramide 364-62-5 Pharmaceutical, 60 mg/daily High Risk

Metoclopramide 364-62-5 Pharmaceutical, 10 mg/daily Uncertain Risk

Methotrexate (MTX) 59-05-2 Pharmaceutical, 10 mg/weekly High Risk

Nitrofurantoin 67-20-9 Pharmaceutical, 200 mg/daily High Risk

Panthenol 16485-10-2 Cosmetic, 5.3% in body lotion Low Risk

Paraquat 4685-14-7 Dietary, 0.27 mg/daily Low Risk

Retinol 68-26-8 Cosmetic, 0.05% in body lotion Low Risk

Retinol 68-26-8 Dietary, <10,000 IU Low Risk

(Continued on following page)
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and Open (Quantitative) Structure-activity/property Relationship
App (OPERA) v.2.8 (Mansouri et al., 2016) have been selected. The
models are summarized in Supplementary Data Sheet 2, Table S1
and will not be discussed here as they have been described elsewhere
(Weyrich et al., 2022). Briefly, the selected models represent
Structural Alerts (SAs) and rule-based, expert knowledge or
Quantitative Structure–Activity Relationship (QSAR) type of
models. To identify the predictive potential of the selected
models, an evaluation has been undertaken using data from
DART relevant studies collated from the literature (see

Supplementary Data Sheet 2). It is also worthwhile to mention
that for the evaluation of Derek Nexus, two subsets of endpoints
have been selected: the first one with 17 endpoints relevant to DART
and the second with 34 endpoints relevant to both DART and
systemic toxicity (see Table 2). Based on the predictive performance
from the evaluation (see Supplementary Data Sheet 2, Tables S2-S4)
as well based on the hands-on experience with the selected models,
seven models have been chosen for the final battery of in silico
models used in the DART Framework. These are Derek Nexus with
selected endpoints, OECD QSAR Toolbox DART Scheme, VEGA_

TABLE 1 (Continued) Exposure risk classifications for selected benchmark compounds.

Chemical CAS number Exposure scenario Exposure risk

Rosiglitazone 122320-73-4 Pharmaceutical, 4 mg/daily High Risk

Cyclamate 139-05-9 Dietary, 420 mg/daily Low Risk

Salicylate 69-72-7 Cosmetic, aggregate (max 3%) Low Risk

Salicylate 69-72-7 Pharmaceutical, 162.5 mg/daily Uncertain Risk

Salicylate 69-72-7 Pharmaceutical, 800–6,000 mg/daily High Risk

Thalidomide 50-35-1 Pharmaceutical, 50 mg/daily High Risk

Theophylline 58-55-9 Pharmaceutical, 800 mg/daily High Risk

Theophylline 58-55-9 Dietary, 0.14 mg/daily Low Risk

Valproic acid (VPA) 99-66-1 Pharmaceutical, 600 mg/daily High Risk

Valproic acid (VPA) 99-66-1 Pharmaceutical, 3,600 mg/daily High Risk

Warfarin 81-81-2 Pharmaceutical, 5 mg/daily High Risk

TABLE 2 Selected endpoints from Derek Nexus, with the first 17 endpoints defined as relevant to DART.

ID Endpoint ID Endpoint

1 Bone marrow toxicity 18 Bladder urothelial hyperplasia

2 Cardiotoxicity 19 Bladder disorders

3 HERG channel inhibition in vitro 20 Cumulative effect on white cell count and immunology

4 Methaemoglobinaemia 21 Carcinogenicity

5 Oestrogenicity 22 Bradycardia

6 Peroxisome proliferation 23 Cyanide-type effects

7 Androgen receptor modulation 24 alpha-2-mu-Globulin nephropathy

8 Glucocorticoid receptor agonism 25 Nephrotoxicity

9 Oestrogen receptor modulation 26 Kidney disorders

10 5alpha-Reductase inhibition 27 Kidney function-related toxicity

11 Uncoupler of oxidative phosphorylation 28 Neurotoxicity

12 Mitochondrial dysfunction 29 Hepatotoxicity

13 Cholinesterase inhibition 30 Pulmonary toxicity

14 Thyroid toxicity 31 Ocular toxicity

15 Developmental toxicity 32 Splenotoxicity

16 Teratogenicity 33 Urolithiasis

17 Testicular toxicity 34 Adrenal gland toxicity
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DEVTOX_PG, VEGA_ANDROGEN_COMPARA, VEGA_
ESTROGEN_CERAPP, OPERA CERAPP and OPERA
CoMPARA. The first three models are predicting general DART
toxicity, and the last four are MoA specific models predicting
binding affinity towards estrogen and androgen receptors.
Additionally, OPERA models are also predicting agonist and
antagonist activity. To simplify the interpretation of the
prediction results, only binary outputs have been considered here
without applicability domain or reliability/confidence information
when available.

The chemical structures for the 37 selected benchmark
substances have been obtained via the CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard/) as SMILES
(Simplified Molecular Input Line Entry System). In the next step,
the structures have been curated in terms of desalting and
neutralising.

To evaluate the performance of the in silico models predicting
general DART hazard (see above) we first needed to establish a
source of truth to assess the predictions against. We decided to
categorize each of the 37 chemicals as toxic or non-toxic. For a
chemical to be categorized as toxic, there had to be evidence of
developmental or reproductive toxicity in animal or human,
irrespective of exposure/dose administration. The same data
sources were used for this classification as for the chemical-
exposure risk classifications, however for this exercise exposure
was not considered, only presence or absence of effect. For four
compounds (DEET, Nitrofurantoin, Cyclamate, and Aspartame),
categorization was not possible due to uncertainty in the data. More
detail on the assignment of a chemical as toxic or non-toxic can be
found in Supplementary Data Sheet 1.

Similarly, for the models that predict MoA-based toxicity (e.g.,
Estrogen Receptor activation or Androgen Receptor activation), a
source of truth was required to assess the predictions. For this
purpose, we used the outputs from the ToxCast ER pathway AUC
model (Judson et al., 2015) and the ToxCast AR pathway AUC
model (Kleinstreuer et al., 2017), both are available via the CompTox
Chemicals Dashboard. We were able to obtain this information for
only 22 of the benchmark substances.

The predictive performance of in silico models has been
described by following parameters: sensitivity measuring the
ability to correctly predict positive (toxic) compounds

SE � TP
TP + FN

specificity measuring the ability to predict negative (non
-toxic) compounds

SP � TN

FP + TN

accuracy assessing overall prediction performance by returning the
fraction of compounds that were correctly predicted

ACC � TP + TN
TP + TN + FP + FN

balanced accuracy assessing overall model performance while giving
each class equal weight

BA � SE + SP
2

and coverage assessing the proportion of compounds for which the
model can make positive or negative prediction

COV � TP + TN + FP + FN
Total

using the variables: true positive (TP), false negative (FN), true
negative (TN), and false positive (FP).

2.4 Computing chemical space

An in-house algorithm was developed to compute chemical
space, where all chemicals (benchmark and evaluation) were
represented by molecular descriptors computed using the python
library RDKit [library version: 2023.03.2, python version: 3.11.14].
The dataset then underwent a first reduction stage through active
removal of descriptors if the maximum tolerated cross-correlation
(defined as Pearson’s r2) and minimum accepted diversity criteria
were not met (0.8 and 0.3, respectively). A second reduction stage
was then performed via PCA to the number of components needed
to explain a desired amount of variance. The final reduction stage
was carried out using the t-distributed Stochastic Neighbour
Embedding (t-SNE) technique to project the dataset onto two
dimensions and to visualise it graphically (Cable et al., 2024)]

2.5 Exposure and PBK modelling

The approach applied to obtain estimates of systemic exposures
from in vivo PK data or through PBK modeling for the risk
classification scenarios for the population groups of interest is
illustrated in Figure 2.

2.5.1 PK datamining for non-pregnant
and pregnancy

For the benchmark chemicals (see Table 1), we systematically
searched the literature in PubMed for pharmacokinetic (PK) studies
and other systemic (plasma, serum, cord blood) concentration data
in non-pregnant and pregnant populations. To collate the largest
datasets, different combination of search keywords (see Table 3) was
used. PK studies were categorized by the type of studies (see Table 4)
depending on the dose and frequency of blood sampling
information provided in those studies.

2.5.2 PK data analysis
The collated human in vivo PK data (see Supplementary Data

Sheet 3) was visualized and analysed based on the reported mean
values and standard deviations for systemic concentrations (plasma/
serum/umbilical cord blood). Where this data was not available or
reported in a different format, data gaps were filled as follows:

• Mean: calculated from range as (highest-lowest value)/2
• Standard Deviation (SD):

○ From the range (difference between the maximum and
minimum) assuming a normal distribution, where about
99.7% of the data falls within three standard deviations from
the mean, therefore SD ≈ range/6
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○ Converting the standard error of the mean (SEM): SD �
SEM ×√N with N = population size

The units of the applied (external) and systemic (internal) dose data
reported in the PK studies were harmonized. External doses were
converted tomg per day based on an assumed body weight of 70 kg or a
body surface area of 1.7 m2 (estimated body surface area of a 70 kg
(thus – ‘average adult’) human https://www.chemeurope.com/en/
encyclopedia/Body_surface_area.html#google_vignette) and the
number of doses per day.

Internal exposure values (concentrations) were converted
to μmol/L based on the molecular weight of the undissociated
desalted chemical species.

To obtain an overview of the available PK data for each chemical
the reported mean values for systemic exposures were plotted
against the respective externally applied doses (see
Supplementary Data Sheet 3).

For each datapoint (reported mean exposure value and
standard deviation from a single study) the internal to external
dose ratio (concentration-dose ratio, CDR) in units of μM/mg/day
was calculated. The concentration-dose ratios from all obtained
studies for each compound was then combined into overall
weighted mean concentration-dose-ratios and weighted
standard deviations for non-pregnant, pregnant and fetus sub-
populations considering the different population sizes of the
different studies by applying formulas below as depicted
in Figure 4:

WeightedMean: Eachmean concentration value is multiplied by
its respective population size to get the weighted sum. This sum is
then divided by the total population size.

�xtotal � ∑�xi × Ni

Ntotal

Weighted Standard Deviation:

FIGURE 2
Schematic of the approach used to obtain systemic exposure values for the risk classification exposure scenarios.
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SDtotal �
��������������������������������∑ Ni − 1( ) × SD2

i +∑Ni × �xi − �xtotal( )2
Ntotal − 1

√

where:

• (Ni) is the population size for each reported mean
exposure value,

• (SDi) is the standard deviation for reported mean
exposure value,

• (�xi) is the reported mean exposure value for a study,
• (�xtotal) is the weighted mean of the entire dataset,

• (Ntotal) is the total population size i.e., sum of all individual
population sizes.

This formula accounts for the variance within each reported
mean value and the variance between the reported means from
different studies.

2.5.3 Calculation of toxicokinetic variability
factors (TKVF)

To quantitatively describe the toxicokinetic variability
within the different population groups (non-pregnant,

TABLE 3 Combination of primary and secondary search keywords used to identify relevant PK studies.

Criteria Search keywords

Primary Caffeine AND/OR 1-methyltheobromine AND/OR 7-methyltheophylline

Pharmacokinetics AND/OR absorption, distribution, metabolism and excretion AND/OR ADME AND/OR Relative Bioavailability AND/OR
Bioequivalence AND/OR Toxicokinetic

AND/OR

Oral AND/OR Intravenous AND/OR Dermal

AND/OR

Area under the curve AND/OR maximum plasma concentrations AND/OR AUC AND/OR Cmax

AND/OR

Healthy Adult AND/OR Pregnancy AND/OR or Trimester AND/OR Partum AND/OR Gestational AND/OR Delivery AND/OR Mother AND/
OR Maternal

AND/OR

Placenta AND/OR Prenatal AND/OR Preterm AND/OR Foetus AND/OR Foetal AND/OR Umbilical cord blood AND/OR Amniotic fluid

AND/OR

Ex vivo placental transfer AND/OR Foetal to maternal (FM) ratio

Secondary Physiologically based pharmacokinetics AND/OR PBPK AND/OR PBK AND/OR PBTK

AND/OR

Mother-Foetus PBPK Models

AND/OR

Biomonitoring AND/OR Blood AND/OR plasma AND/OR Serum concentration

Exclusions Preclinical AND/OR Rodent AND/OR Rat AND/OR Mice AND/OR Primate Pharmacokinetic studies

TABLE 4 Type of data found in PK studies across the non-pregnant and pregnant population.

Data type Dose characteristics Exposure metric characteristics

Clinical PK study Dose defined by amount, frequency, duration Cmax, AUC, time course data

Sparse PK Dose defined by amount, frequency, duration Only few blood sampling time points, not cmax, e.g., at
delivery

Therapeutic Drug Monitoring
Data (TDM)

Dose defined by amount, frequency, duration, chronic exposure Assumed steady state concentrations

Biomonitoring Data (BM) Dose often not defined, e.g., aggregate from multiple sources, etc.,; chronic
exposure

Assumed steady state concentrations

Case Studies, e.g., poisoning cases Dose often not known Single value, timepoint uncertain
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pregnant, fetus) the Toxicokinetic Variability Factor (TKVF) was
calculated.

The TKVF is defined as the ratio between the internal dose
metrics in a “sensitive” individual (e.g., 95th or 99th percentile,
p95 or p99) in a population to that in a “typical” individual (e.g.,
median or mean) (WHO/IPCS, 2005; WHO/IPCS, 2014). Here, we
calculated the TKVF95 for a 95th percentile individual.

For each population group TKVFs were calculated from the
weighted mean concentration dose ratio and the 95th percentile of
the distribution of concentration-dose values derived from the
weighted mean and weighted standard deviation and a z-score of
1.64 for p95 as follows:

p95 � �xtotal + z × SDtotal

TKVF95 � p95

�xtotal

2.5.4 PBK modelling
PBK models were developed using GastroPlus® 9.8 (Simulation

Plus, Lancaster, California). Models were built for each chemical-
exposure scenario and parameterized with a combination of in silico
and in vitro derived values for logP (logarithm of octanol-water
partition coefficient), pKa (logarithm of acid dissociation constant),
water solubility, unbound fraction in plasma (fup), blood: plasma
ratio (Rbp), hepatic intrinsic clearance (CLint), and intestinal
absorption (Peff). In silico parameter estimates were sourced
using ADMET Predictor (v.10) and in vitro data were sourced
from the literature (see Supplementary Data Sheet 4). The kidney
clearance rate was determined by the formula fup × GFR. Tissue-to-
plasma partitioning coefficients (Kt:p) were calculated in GastroPlus
using the Berezhkovskiy method (Berezhkovskiy, 2004) as a default
with the exception of 2-EHA and Diethyl- and Dibutyl phathalate
for which the Rodger and Rowland method was used (Rodgers and
Rowland, 2006). It was assumed that chemical distribution into all
tissues is perfusion limited.

Adult consumers (i.e., consumers of reproductive age) were
represented by 60 kg adult female. This was selected as it was
considered conservative both in terms of body weight, and potential
use of cosmetics (SCCS Members, 2021).

Where a SED (systemic exposure dose) was reported systemic
exposure from a dermal administration was modelled as a slow
intravenous infusion of the SED, which corrects the applied dose for
the rate of skin absorption (%). Where no SED was available dermal
exposure route was predicted by the dermal module in GastroPlus®
administration.

The simulations were run until steady state was reached unless
the described exposure scenario specified a specific duration
of exposure.

2.6 Bioactivity measurements

2.6.1 In vitro pharmacological profiling (IPP)
In vitro pharmacological profiling is used to measure specific and

high affinity non-covalent binding interactions between chemicals of
interest and various targets with known safety liabilities. These targets
include G protein coupled receptors (GPCRs), nuclear hormone
receptors (NHRs), ion channels and enzymes. For this evaluation

we included 72 targets of interest a full list of which is available in
Supplementary Data Sheet 5, across a range of radioligand binding,
enzymatic and protein-protein interaction assays run in bindingmode
only. Forty-four of the targets in the IPP panel have been associated
with in vivo adverse drug reactions by the pharmaceutical industry
(Bowes et al., 2012; Brennan et al., 2024) and these were supplemented
with an additional 28 targets to expand coverage of DART relevant
targets based on a literature search (Rajagopal et al., 2022; Wu et al.,
2013) or for their finding as targets from cosmetics (Burbank
et al., 2024).

The process for deriving a PoD for each of the 72 targets
consisted of a two-step method that has been widely adopted
when conducting in vitro pharmacological profiling experiments
(Brennan et al., 2024). The first step consists of a screening phase
whereby compounds are screened at a single concentration in two
replicates (either 10 or 100 μM depending on solubility and
cytotoxicity information). Targets showing an inhibition or
stimulation greater than 50% of a maximal response produced by
a reference compound are followed up in a second phase which
includes an eight-point concentration response (in two replicates).
The choice of concentrations was informed by the % of inhibition/
stimulation from the screening phase so that both plateaus in the
sigmoid curves are sampled. EC50 values (concentration producing
a half-maximal response) and IC50 values (concentration causing a
half-maximal inhibition of the control agonist response) were
determined by the Bayesian probabilistic model of the
concentration-response curves and the Hill equation as per
(Labelle et al., 2019). The priors for IC50 were set to the median
experimental dose, the slope was set to 1.0 and low and high dose
responses were set to 0% and 100%, respectively. Calculated IC50s
were taken forwards as the IPP PoDs (Middleton et al., 2022).

IPP target was split into DART targets as well as broad screening
targets by using information received from the original publications
(Bowes et al., 2012; Brennan et al., 2024), the AOP wiki (https://
aopwiki.org/) the Integrated Chemical Environment (ICE) database
(ICE: Integrated Chemical Environment (nih.gov)) and mouse
genome informatics database (https://www.informatics.jax.org/).
Using these data sources, from the 72 targets within the IPP
panel 49 could be identified as DART relevant (see
Supplementary Data Sheet 5).

2.6.2 U2-OS ERα and AR CALUX
®
pre-screens

Perturbing the ER or AR pathways can cause endocrine
disruption, which may lead to DART. Upon compound binding
to the ER or AR, the receptor is activated, entering the nucleus to
bind to recognition sequences in promoter regions of target genes
called hormone response elements (HRE). CALUX bioassays
comprise human bone cell lines (U2-OS), incorporating the
firefly luciferase reporter gene coupled to HRE, to identify
compounds capable of activating the specific pathways linked to
these response elements. By addition of the appropriate substrate for
luciferase, light is emitted. The amount of light produced is
proportional to the amount of ligand-specific pathway activation
(or pathway inactivation, in the case of an antagonistic response),
which is benchmarked against relevant reference compounds
(Sonneveld et al., 2005).

To detect any direct ER or AR activity for the 37 compounds
both the ERα CALUX and AR CALUX assays were performed as
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pre-screens as described in the OECD test guidelines 455 (OECD,
2021) and 458 (OECD, 2023b) respectively. The OECD test
guidelines require a “comprehensive run”, in triplicate, to be
conducted following a pre-screen. However, the pre-screens
alone, also provide useful information on if a compound is an
agonist or antagonist of the ER or AR and enable calculation of a
lowest observed effect concentration (LOEC) for that activity. We
have taken the pre-screen LOEC as the PoD for these two assays in
our framework.

In addition to providing information on ER and AR activity for
the 37 compounds, the data generated in the CALUX pre-screens
were also used for interpretation of the H295R Steroidogenesis
Assay, described in the next section.

2.6.3 H295R steroidogenesis assay with AR/ER
CALUX detection method

Steroidogenesis is the process by which steroid hormones
(including estrogens and androgens) are synthesized mainly in
the gonads and adrenal glands by a combination of pathways.
Disruption of this process is a form of endocrine disruption
which is a key mode of action leading to DART. The H295R
assay uses a human adrenocarcinoma cell line which has the
unique property of expressing all of the genes required for
conversion of cholesterol to sex hormones (Haggard et al., 2018).

The H295R assay was performed as described in the OECD TG
456 (OECD, 2023a), with the exception that only one biological
repeat was performed in this evaluation rather than the
recommended two within the guideline. To quantify the levels of
estrogens and androgens produced by the H295R cells after
compound exposure, the assay medium was analysed on the ERα
and AR CALUX® bioassays. Briefly U2-OS cells were treated with
diluted H295R supernatant, and the hormone levels present within
the supernatant were quantified as reporter gene activities. Changes
in hormone levels compared to a vehicle control (DMSO) exposure
indicate that certain enzymes involved in steroidogenesis were being
affected by the test compound. In order to rule out carry over of ERα
or AR active compounds in the H295R media, and to ensure that
reporter gene activity was only due to changes in hormone levels in
the H295R cells, the data from the CALUX pre-screen was used to
rule out carry over of ER or AR active compounds in the media. For
detailed methods on this approach see Nikopaschou et al., 2023;
Nikopaschou et al., 2023).

2.6.4 ReproTracker
The ReproTracker assay assesses chemical perturbation of early

embryonic development by evaluating key events of cardiomyocyte,
hepatocyte-like (HLC) and neuronal cell differentiation using
human induced pluripotent stem cells (hiPSCs). The
ReproTracker protocol is described in (Jamalpoor et al., 2022;
Moreau et al., 2023) and was followed introducing a few
modifications to allow for concentration response analysis.
Briefly, following initial dose range finding experiment in
undifferentiated hiPSC, six non-cytotoxic concentrations of test
substance (1:3 dilution) and solvent controls were tested in tri-
lineage differentiation experiments in biological triplicate. Lineage
specific differentiation was then investigated by assessment of gene
expression patterns of cell-specific biomarkers, induced cytotoxicity
(AlamarBlue cell viability assay) and by morphological profiling.

Gene biomarkers quantified by multiplex qRT-PCR included BMP4
andMYH6 for cardiomyocytes, FOXA2 and AFP for hepatocyte-like
cells, PAX6 and NESTIN for neural rosette lineage. Dose range of
thalidomide was included in each cardiomyocyte and HLC
differentiation experiment as a positive control, whereas retinoic
acid served as a positive control in neural rosette differentiation.
Saccharin was used as a negative control substance for all 3 lineages.

For dose dependent qRT-PCR analysis quality control filtered
Ct values were normalised using an adaptation of the Pfaffl (Pfaffl,
2001) method to calculate ΔCt values with respect to biomarker
and housekeeping gene amplification efficiencies. BMDExpress2
(Phillips et al., 2019) dose response modelling methods have been
applied independently for all lineages and timepoints where
Williams Trend Test filter was applied (p < 0.05 and fold
change≥1.5) and 6 models (Poly 2, Hill, Power, Exponential 3,
4 and 5, with recommended default configurations) were fit.
Benchmark concentration/dose (BMD) and lower (BMDL)
values were calculated for each concentration response, based
on a benchmark response (BMR) factor of 10% using the model
which produced the lowest Akaike Information Criterion (AIC)
value. Concentration responses and estimated BMDs were deemed
as significant when the BMD for the response was under the
highest concentration tested and when the BMD upper to lower
ratio value (BMDU/BMDL ratio) was between 1.1 and 5,000 (filter
set to remove under extrapolated values). Only BMDLs of a
downregulated responses from 6 indicative biomarkers of
developmental toxicity (BMP4 D7, MYH6 D14, FOXA2 D7,
AFP D21, PAX6 D7 and 13 and NESTIN D13 (Jamalpoor et al.,
2022) were considered significant PODs.

In addition, Alamar blue read outs were taken from the
differentiating cells at day 7 and the end of each differentiation
to measure cell viability in a dose dependent way. The AlamarBlue
readout was normalised and transformed using a Bayesian
hierarchical approach The Bayesian model assumes measurement
between rows on the treatment plates are correlated but allows for
differences in average sample response between rows. Such models
reduce the plate effect between samples of different rows to increase
confidence effects seen in a concentration response are due to a
chemical effect A POD was calculated from sampled concentration
response curves, from the posterior distribution of the model, where
a 5% decrease from the baseline response is seen. Concentration
dependency scores (CDS) represent the possible values of the POD
distribution being below the highest tested concentration and
therefore used as measure of statistical confidence that a response
has been observed for the treatment, where a CDS over 0.5 was
considered a confident hit. The final cell viability PODs were those at
time point end (day 14 for cardiomyocytes, day 21 for HCLs and day
13 for neural) and had CDS above or equal to 0.5. Both the gene
biomarker PODs and cell viability/cytotoxicity PODs for each tested
lineage are considered for BER calculation.

2.6.5 devTOX quickPredict
devTOX quickPredict is a human induced pluripotent stem cell

(hiPSC) -based assay that predicts the concentration at which a
compound may elicit developmental toxicity. The assay uses the
metabolic perturbation of two biomarkers, ornithine and cystine,
in a ratio (o/c ratio) to predict the concentration at which a test
article shows developmental toxicity potential (dTP). Assays were
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performed as described in Palmer et al. (2013) with modifications.
Briefly undifferentiated hiPSCs are exposed to the compound for
48 h, with media and test article replacement every 24 h. Ornithine
and cysteine concentrations were measured from the final 24-h
treatment using Ultra-Performance Liquid Chromatography-High
Resolution Mass Spectrometry (UPLC-HRMS). Cell viability was
assessed after sample collection using the CellTiter-Fluor Cell
Viability Assay (Promega).

Dose-response analysis for the o/c ratio, cell viability, ornithine
response and cystine response were performed with GraphPad
Prism (version 9.1 or newer, GraphPad Software). Each data set
was fit with a nonlinear model. The standard model used for analysis
is a four-parameter log-logistic nonlinear model. However, the
Akaike information criterion (GraphPad Prism) was used to
determine if an asymmetric (five-parameter) or multiphasic
nonlinear model was a better fit for the data than the four-
parameter model. The developmental toxicity potential (dTP, o/c
ratio) and toxicity potential (TP, cell viability) concentrations were
predicted from the respective dose-response curves using the hiPSCs
cell developmental toxicity threshold (dTT, 0.85).

2.6.6 Cell stress panel (CSP)
The CSP used in our framework detects multiple mechanisms

leading to cellular stress, including mitochondrial toxicity, DNA
damage, inflammation, etc. Cell stress is a fundamental factor in
many systemic and DART relevant adverse outcome pathways
(AOPs), either as a molecular initiating event or as key event. It
has also been reported as a key characteristic of male and female
reproductive toxicants (Arzuaga et al., 2019; Luderer et al., 2019).
Compounds were tested using the previously developed cell stress
panel (Hatherell et al., 2020) and the expanded biomarker panel
outlined in Middleton et al. (2022). HepG2 cells were treated with
compounds for 24 h across 8 concentrations prior to biomarker
analysis. The same plate layout and number of replicates
(3 biological and 2 technical) were used as described previously
for each assay within the panel.

2.6.7 High throughput transcriptomics (HTTr)
HTTr measures transcriptional changes of biological

perturbations caused by any interaction of a chemical with the
cell. HTTr is a well-established method for determining bioactivity,
chemical potency and mode of action across diverse chemistry.
HepG2, HepaRG and MCF7 cells were treated with each compound
for 24 h across a dose range of 7 concentrations and lysed using
TempO-Seq lysis buffer (BioSpyder Technologies, proprietary kit,
see Middleton et al. (2022) for method details). Sequencing was
performed using TempO-Seq (BioClavis) version 2 of the human
whole transcriptome panel and analysed as described previously in
Middleton et al. (2022).

2.7 BER calculation

For each of the 49 exposure scenarios across the 37 chemicals,
the ratio between a minimum platform PoD and the estimated
Cmax is calculated giving the bioactivity exposure ratio. Aminimum
platform PoD is defined as the lowest PoD of the following possible
platform PoDs or a subset of:

1. The minimum Bayesian derived PoD from the in vitro
pharmacological profiling platform

2. The global PoD from the cell stress panel when analysed using
the BIFROST method.

3. The global PoD from the HTTr platform (for each cell line
tested) was derived using the BIFROST method.

4. The minimum BMDL from the HTTr platform (for each cell
line tested) using BMDExpress2.

5. The minimum PoD from the ReproTracker cytotoxicity or
gene biomarker dose response (for each lineage tested)

6. The minimum PoD from the devTOX quickPredict
cytotoxicity or developmental toxicity potential (dTP)
dose response.

7. The minimum LOEC from the H295R steroidogenesis assay
8. The minimum LOEC from the screening CALUX assay

2.8 Protectiveness and utility metrics

The protectiveness and utility metrics as defined in Middleton
et al. were used to assess the overall performance of the toolbox and
workflow. Using a BER threshold of 1, where exposure scenarios
with BER <1 are determined as uncertain risk (i.e., not low risk) and
those with BER >1 as low risk, we define protection as the percentage
of high-risk exposure scenarios which are correctly identified as
uncertain risk and utility gives the percentage of low-risk exposure
scenarios which are correctly identified low-risk using.

3 Results

3.1 Chemical space and in silico predictions

To determine if the selected benchmark compounds fall within
the same chemical applicability domain as the approximately
3,000 chemicals used for evaluating the in silico tools (see
Supplementary Data Sheet 2), their chemical space and structural
diversity were compared to those of the 37 benchmark chemicals
(see Figure 3). An initial visual inspection of the 37 structures shows
that majority of the chemicals are cyclic chemicals, with aromatics
rings being the most frequent. Only a few chemicals represent the
aliphatic, acyclic chemistry. Another remark is that most of the
compounds have a carbonyl group. These observations have been
confirmed by characterisation of the chemotypes with ToxPrint
(Yang et al., 2015). From the 174 chemotypes identified in the
37 compounds, the two most frequent chemotypes are: bond:C=O_
carbonyl_generic (present in 24 compounds) and ring:aromatic_
benzene (present in 20 compounds) (see Figure 3A).

To investigate the structural diversity of the 37 chemicals, they
were compared against the larger set of chemicals used for the initial
evaluation of in silico models (see Supplementary Data Sheet 2).
From the entire repository of 729 chemotypes, 513 chemotypes have
been identified in the evaluation set. Figure 3A shows the first two
most frequent chemotypes in both sets are: ring:aromatic_benzene
and bond:C=O_carbonyl_generic. It can be also noticed that
benchmark chemicals are also heavily represented by chemotypes
describing presence of alcohols (bond:COH_alcohol_generic) and
alkanes attached with aromatic rings (chain:aromaticAlkane_Ph-
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FIGURE 3
Structural diversity of benchmark and in silico evaluation chemicals. (A) Histogram of the 30 most frequent chemotypes present within benchmark
(shown in red) and evaluation chemicals (shown in black). (B) t-SNE visualisation of the chemical space covered by benchmark (grey dots) and evaluation
chemicals (red dots). The hazard categorisation (toxic/non-toxic) is displayed by the shapes, circle represents non-toxic and triangle- toxic substances.
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FIGURE 4
In silico predictions for the 37 benchmark chemicals. Results of the different in silico tools for prediction of general DART toxicity (A) and ER and AR
activity (B) is shown in comparison to the “true call” hazard characterisation for each chemical. Green is indicating non-toxic/non-active and red
indicating toxic/active and white–not predicted by the tool.
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C1_acyclic_generic), both chemotypes with frequency above 40%.
The structural diversity was also represented by the visualisation of
chemical space of both datasets. As shown in Figure 3B, benchmark
chemicals are scattered over most of the chemical space represented
by the evaluation chemicals. There are also some regions within the
evaluation chemical set which are not represented by benchmark
chemicals. This is not surprising considering the small number of
benchmark compounds comparing to the significantly larger
evaluation set (37 vs. 2,944 compounds). Figure 3B illustrates
that there are no structural differences between DART toxicants
and non-toxicants, as both groups are evenly distributed.

3.2 Evaluation of tier 0 in silico predictions
for DART

Most of the DART toxic benchmark chemicals (see Table 1)
have been correctly identified by at least one of the general DART in
silico models (see Figure 4A). Only one toxicant–Metoclopramide
has been falsely predicted as non- toxicant by all models. Figure 4A
and Table 5 show that Derek Nexus with 34 endpoints has the
highest sensitivity (95%), with one false negative prediction.
Reducing the Derek Nexus endpoints to the 17 endpoints
identified as most relevant for DART (see Table 2) resulted in
one more false negative chemical–Dolutegravir. The other two tools
based on the P&G decision tree (OECD QSAR Toolbox DART
Scheme and VEGA_DEVTOX_PG) have slightly lower sensitivity,
each model incorrectly predicting the same five chemicals (BHT,
Dolutegravir, Metoclopramide, Rosiglitazone and Sodium salicylate)
as non-toxicant. Additionally, the DART Scheme in the OECD
QSAR Toolbox was not able to categorise two toxic compounds
(Chlorpyrifos and Cyclophosphamide) as the applicability domain
of the tool is not covering organophosphorus compounds. From
13 non-toxicants, only three chemicals (Digoxin, Fenazaquin and
Paraquat) have been correctly predicted by all models. Derek Nexus
(34 endpoints) has produced the highest number of false positive
predictions; nine compounds were predicted incorrectly giving very
low specificity of ~30%. This is not surprising as the broader set of
endpoints covers both DART as well as systemic adverse effects. The
other models predicted approximately 70% of non- toxicants
correctly. Two DART non-toxicants (DEP and HC Red 3) were
predicted as toxicants by all models. Overall, Derek Nexus with
17 selected endpoints provides the best performance in terms of
accuracy (~85%) with well-balanced sensitivity (90%) and specificity
(77%). The two models based on the P&G decision tree gave similar
predictive performance with accuracy above 70%. The Derek Nexus

with 34 endpoints has the lowest accuracy caused by generating the
highest number of false positive predictions.

Figure 4B compares the in silico predictions from four MoA
specific models with the ER and AR active/inactive categorization
for 22 compounds. DES was correctly predicted by all ER models,
being identified as an ER agonist as well as antagonist in OPERA. All
models do not predict any ER activity for cyclophosphamide
monohydrate. DES, the only compound with known AR activity
in the compounds set, is also correctly identified by all AR related
models. Although all MoA specific models have been developed
using the same ToxCast data, differences in the predictions can be
observed (see Figure 3B). In general, the OPERA models predict
more receptor binding/activity than corresponding models in the
VEGA platform. Because of the small amount of ED active
chemicals (only two actives from 22 compounds), evaluation
with a different set of compounds would be needed to better
reflect the predictive power of MoA specific models.

3.3 Exposure and PBK modelling

In a first step in vivo literature data were derived to obtain
insights into observed internal concentrations for non-pregnant,
pregnant and fetus sub-populations. Figure 5 shows, that for 23 out
of the 37 chemicals some in vivo data was available which informed
the internal exposure estimates. However, only for 12 of these
23 compounds data on systemic concentrations were available for
both, mother and fetus (i.e., from serum and cord blood samples
taken at birth). Where no in vivo data could be found, internal
exposures were predicted using a generic PBK modelling for a non-
pregnant population. From both, in vivo and PBK predicted plasma
concentrations, concentration-dose ratio’s (CDR) were calculated
and applied for the calculation of plasma concentrations for the risk
classification scenarios of interest. A full summary of all
concentrations-dose ratios can be found in the Supplementary
Material (Supplementary Data Sheet 6).

3.4 Comparing intra- and inter-population
exposure differences

An analysis of the variability among the three subpopulations for
the 12 substances with available data (see Figure 6) indicates that
there is no clear separation between life stages. Showing that the
variability within each life stage is greater than the difference
between the means of those life stages. To quantitatively describe

TABLE 5 The predictive performance of in silico models for general DART toxicity.

20 tox and 13 non-tox TP FN TN FP SE (%) SPE (%) ACC (%) BA (%) COV (%)

Derek Nexus (34 endpoint) 19 1 4 9 95.00 30.77 69.70 62.88 100.00

Derek Nexus (17 endpoints) 18 2 10 3 90.00 76.92 84.85 83.46 100.00

OECD Toolbox DART scheme 13 5 10 3 72.22 76.92 74.19 74.57 93.94

VEGA DevTox 15 5 9 4 75.00 69.23 72.73 72.12 100.00

TP, true positive, FN- false negative, TN, true negative; FP, false positive, SE- sensitivity = TP/(TP + FN), SP, specificity = TN/(TN + FP), ACC, Accuracy = (TP + TN)/(TP + TN + FP + FN),

BA, Balanced Accuracy = (SE + SP)/2, COV, Coverage = (TP + TN + FP + FN)/Total.
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FIGURE 5
In vivo PK data availability matrix. Data is classified according to Table 4 into Clinical PK, Sparse PK, Therapeutic Drug Monitoring, Biomonitoring or
Case Study data.
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the population variability observed in the collated data, a
toxicokinetic variability factor was calculated for each chemical
and population group (see Table 6). This factor reflects the
variability of pharmacokinetics within the population as well as
any resulting effects of external factors such as different routes of
exposure and formulations, etc. The fold differences between the
mean concentration-dose-ratios of pregnant or fetus populations
groups and a non-pregnant population was calculated to quantify
the inter-population variability. Intra- and interpopulation
variability are compared in Table 6.

The toxicokinetic intra-population variability as characterized
by the TKVF ranged from 1.06 to 5.73, with a mean of 2.36. The fold
difference between pregnant/fetus and non-pregnant concentration-
dose ratios was in the range 0.19–2.35, i.e., for most of the chemicals
the variability within a population group was greater than the
differences observed between populations suggesting that in most
cases variability caused by pregnancy or due to gestational changes is
within the toxicokinetic variability in the general population. More
importantly, for the majority of chemicals the fold difference
between pregnant/fetus and non-pregnant was less than one,
meaning that the internal exposure resulting from the same
external exposure was lower in the pregnant/fetus population
group. Exceptions are Caffeine, Theophylline, Warfarin and
Dexamethasone for which the fold differences between means

were 1.13, 1.58, 2.35 and 1.50, respectively. Overall, the analysis
of the data shows that in most cases internal exposure estimates for a
general population–considering variability within the population -
would cover the exposures in the pregnant and fetal sub-group.

3.5 Is tier one of the DART NGRA framework
protective for human health?

The primary objective of this evaluation was to understand if tier
one of our DART NGRA framework provides sufficient protection
for human health with respect to DART. To evaluate the
protectiveness of the framework we compared the risk
classifications assigned to each of the 49 chemical-exposure
scenarios using traditional risk assessment methods, with the
BER calculated by dividing the estimated internal exposure of the
chemicals at the given external exposure scenario by the lowest PoD
obtained from all NAMs (PoD from either HTTr, IPP, CSP,
ReproTracker, devTOX quickPredict, H295R, or screening
CALUX assay). The purpose of this comparison is to determine
whether similar conclusions can be made on the risk of DART at a
given chemical exposure in human, using the two different methods
(i.e., traditional risk assessment methods using animal (and
sometimes human) data, versus this novel NGRA approach).

FIGURE 6
Comparison of concentration-dose ratios between non-pregnant, pregnant and foetus. The box and whisker plots show the fold-difference from
the median of the distribution of concentrations-dose ratios for a non-pregnant (blue), pregnant (yellow) and foetal (green) sub-population. Boxes show
the interquartile range with the First (Lower) Quartile being themidpoint of the lower half and the Third (Upper) Quartile the midpoint of the upper half of
the data. Lower whiskers represent the lower boundary as the first quartile minus 1.5 times the interquartile range, upper whiskers show the upper
boundary as the third quartile plus 1.5 times the interquartile range. The y-axis scales are not shown but are different between subplots. Actual values for
the dose-concentration ratios are summarized in Table 5. * Indicates that data is from fewer than 10 subjects.
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TABLE 6 Intra- population variability and differences between non-pregnant, pregnant and fetus population groups.

Chemical Population Total
population size

TKVF CDR fold difference
to non-pregnant

p-value CDR fold difference
to pregnant

p-value

VPA Non-Pregnant 673 1.62 1.00

VPA Pregnant 112 1.85 0.69 0.00 1.00

VPA Fetus 33 1.52 0.78 0.00 1.13 0.11

Theophylline Non-Pregnant 119 1.43 1.00

Theophylline Pregnant 62 1.73 1.58 0.00 1.00

Theophylline Fetus 26 1.81 1.33 0.11 0.84 0.11

Salicylate Non-Pregnant 57 1.96 1.00

Salicylate Pregnant 16 2.34 0.79 0.26

Salicylate Fetus 3 1.95 1.95

ATRA Non-Pregnant 333 2.14 1.00

ATRA Pregnant 180 1.47 0.77 0.00 1.00

ATRA Fetus 10 1.06 0.55 0.00 0.71 0.00

Retinol Non-Pregnant 56 2.32 1.00

Retinol Pregnant 180 1.64 0.88 0.30

Retinol Fetus 10 1.86 0.82 0.32

Caffeine Non-Pregnant 331 1.89 1.00

Caffeine Pregnant 264 2.42 1.13 0.05 1.00

Caffeine Fetus 1,687 2.84 0.67 0.00 0.59 0.00

Dolutegravir Non-Pregnant 278 1.87 1.00

Dolutegravir Pregnant 101 2.64 0.70 0.00 1.00

Dolutegravir Fetus 22 1.40 0.46 0.00 0.65 0.00

Paraquat Non-Pregnant 67 3.16 1.00

Paraquat Pregnant 4 0.05 1.00

Paraquat Fetus 3 0.06 1.15

Digoxin Non-Pregnant 211 2.32 1.00

Digoxin Pregnant 106 2.35 0.55 0.00 1.00

Digoxin Fetus 68 2.38 0.54 0.00 0.98 0.89

Nitrofurantoin Non-Pregnant 281 3.36 1.00

Nitrofurantoin Pregnant 125 5.73 1.29 0.40 1.00

Nitrofurantoin Fetus 15 2.90 2.25 0.09 1.74 0.22

Metoclopramide Non-Pregnant 37 2.85 1.00

Metoclopramide Pregnant 20 2.71 1.45 0.25 1.00

Metoclopramide Fetus 20 1.97 1.50 0.07 1.04 0.89

Metformin Non-Pregnant 219 3.15 1.00

Metformin Pregnant 191 2.75 0.73 0.01 1.00

Metformin Fetus 144 2.99 0.41 0.00 0.56 0.00

MTX Non-Pregnant 242 2.74 1.00

MTX Pregnant 20 2.65 1.11 0.68

(Continued on following page)
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17 of the 49 exposure scenarios are considered high risk for DART
using traditional risk assessment methods. The optimal outcome of
this evaluation would be for the NGRA framework to allow the
identification of these same 17 exposure scenarios as high risk.

Conceptionally a BER greater than 1 indicates a low risk for the
chemical at the given exposure, as bioactivity occurs at a higher
concentration than the estimated internal Cmax value. Conversely, a
BER of 1 or below suggests that bioactivity is expected at that
exposure level. It should be stressed that a BER below 1 does not
necessarily mean an adverse effect will occur, as the toolbox is
measuring bioactivity which does not equate to adversity. Therefore,
in practice, this NGRA approach uses the BER to identify chemical
exposures with uncertain risk (BER <1), triggering additional
evaluation before concluding on safety. This tiered approach
ensures that potentially high-risk chemical exposures are
captured and assessed in a protective manner. Ultimately the
larger the BER calculated, the lower the risk to human health.
Therefore, in our evaluation of the DART framework, we would
expect all high-risk benchmark exposure scenarios to have BER
values <1, and all low-risk benchmark exposure scenarios to obtain
a BER >1.

16 of the 17 (94%) high risk exposure scenarios, as determined
by traditional risk assessment methods, had a BER of 1 or below (see
Figure 7A). BERs do not materially change if non-pregnant,
pregnant and fetal exposure is considered (see Supplementary
Image 1). The one high risk exposure scenario which could not
be identified as uncertain risk was the pharmaceutical use of
warfarin (5 mg/daily/oral). The BER calculated for Warfarin was
9.5 indicating that this particular use would not result in any
bioactivity and therefore, would be considered a low-risk
exposure. This is a misclassification by the framework, as
warfarin is a known developmental toxicant and is
contraindicated in pregnancy at any exposure due to recognized
patterns of major malformations (warfarin embryopathy),
hemorrhage, an increased risk of spontaneous abortion and
mortality (Hall et al., 1980; Stevenson et al., 1980).

Of the 27 low risk exposure scenarios, 16 (59%) were identified
having a BER of above 1 and were therefore classified as low risk
(Figure 7C) defining the utility of the framework. While tier one of

the framework is designed to be protective to prevent harm, it
must also be practical and distinguish true low-risk exposures if
possible. However, some safe chemicals can show biological
activity at exposure scenarios which are classified as safe to use.
One of these exposure scenarios is low dietary caffeine intake
(100 mg/daily, BER 0.8). This is considered a low-risk exposure for
DART defined by the threshold established by EFSA for risks
associated with both fetal growth restriction and late miscarriage
and stillbirths (>200–300 mg/day) and corresponds to
approximately one cup of coffee in a day (see Table 1 and
Supplementary File S1). The lowest PoD used to calculate the
BER of 0.8 comes from the Adenosine A2A receptor (5.2 μM),
which is in the subfamily of receptors which promote caffeine
‘wakefulness’ effect. This example reflects the fact that bioactivity
can drive pharmacological effects desired by the consumer (e.g.,
mental alertness following consumption of one caffeinated
beverage) but that the degree of desired bioactivity seen at
lower exposures does not necessarily lead to adversity. Further
evaluation in subsequent tiers would aim to differentiate between
the bioactivity seen at this low exposure which would be
considered low risk and possible adversity seen for much higher
exposures of caffeine which would be considered high risk.

For 5 of our 49 benchmark chemical exposure scenarios various
regulatory authorities were unable to conclude on safety due to
various degrees and sources of uncertainty in the traditional risk
assessments, or differences in opinion between regulatory
authorities (see Table 1 and Supplementary Data Sheet 1).
Although not ‘true’ benchmarks for our evaluation (as no
conclusion on high or low risk can be made) we were interested
in comparing the outcome of our NGRA framework to these
examples. Three of the five examples have BERs less than 1,
which is expected for a true high-risk exposure (see Figure 7B).
These are pharmaceutical use of metoclopramide (10 mg/daily/oral),
pharmaceutical exposure to salicylate (via aspirin, 162.5 mg/daily/
oral) and pharmaceutical use of ATRA (0.1% dermal). 2 of the
5 have BERs >1 which would be expected for any true low risk
exposure, these included dietary intake of chlorpyrifos via pesticide
residues (0.0045 mg/daily) and dietary intake of 2-ethylhexanoic
acid as a flavoring (3.1 mg/daily).

TABLE 6 (Continued) Intra- population variability and differences between non-pregnant, pregnant and fetus population groups.

Chemical Population Total
population size

TKVF CDR fold difference
to non-pregnant

p-value CDR fold difference
to pregnant

p-value

Cyclophosphamide Non-Pregnant 154 3.15 1.00

Cyclophosphamide Pregnant 1 2.85

Warfarin Non-Pregnant 124 1.82 1.00

Warfarin Pregnant 21 1.93 2.35 0.00

Rosiglitazone Non-Pregnant 233 4.34 1.00

Rosiglitazone Pregnant 31 1.71 0.19 0.00

Dexamethasone Non-Pregnant 99 1.99 1.00

Dexamethasone Pregnant 83 2.51 1.50 0.00

Marked in green are values that are significantly lower, in red those which are higher compared to the CDR, for Non-Pregnant. In cursive grey are values for which the population size was

considered too small (<10) to calculate any statistics (standard deviation, TKVF, and p-value).
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3.6 How is protectiveness achieved?

In addition to assessing overall protectiveness, we were further
interested in determining whether both untargeted broad
screening tools and targeted NAMs are necessary to achieve a
protective approach for DART. We therefore separated tools into
NAMs which are intended to detect DART- specific activity (from
here on called DART-targeted NAMs) and broad screening tools.
DART-targeted NAMs are DevTox quickPredict, ReproTracker,
H295R, CALUX, and the IPP targets which could lead to DART
specific effects (see Supplementary Data Sheet 5). The broad
screening NAMs are the remaining IPP targets, the CSP and
HTTr. The distribution of PoDs and BERs across the different
NAMs was evaluated (see Figures 8A,B). For most compounds, the
lowest PoD is achieved from broad screening tools (27/37), with
HTTr most often generating the lowest PoD (20 compounds). For
only 10 compounds a lowest PoD were derived from DART-
targeted NAMs (see Figure 8A). Warfarin received equivalent
lowest PoD concentrations from HTTr and ReproTracker with
only 0.015 μM differences. Considering exposure and risk
classification of the given exposure scenarios of the compounds,

Metoclopramide, and DES are the only two compounds where
protectiveness is achieved from DART-targeted NAMs alone (see
Figure 8B). For both lowest PoD is achieved from receptor specific
activity reflecting their specific mode of action (MoA), namely,
estrogen activation and dopamine-2 receptor antagonism. For
both compounds this receptor specific activity is thought to
cause in vivo DART-related adverse events, namely, erectile
disfunction for metoclopramide (Melis et al., 2022) and
estrogen related reproductive effects for DES (Zilliacus et al.,
2024). The only case where assays for screening for
developmental toxicity show the lowest PoD is for Thalidomide
(see Figure 8B). This finding is in line with the effects of
thalidomide corresponding to perturbations in early embryonic
development (Vargesson, 2022). For all other compounds with a
high-risk exposure scenario a DART-targeted NAM can be found
with a BER ≤ 1, indicating that at the given exposure, some form of
DART-relevant bioactivity could occur. Altogether this data shows
that a combination of DART-targeted and broad screening tools is
needed to provide protectiveness for DART.

For most low-risk scenarios, BERs >1 can be found fromDART-
targeted NAMs, indicating low risk at the given exposure for DART.

FIGURE 7
Estimated bioactivity exposure ratios (BERs) for each adult exposure scenario. (A)High risk scenarios (yellow), (B) uncertain risk scenarios (black) and
(C) low risk scenarios (blue). BERs are plotted on a log10 scale and a conceptual BER threshold is shown by vertical dotted line at BER = 1. Points are
shaped by the source of the Cmax used to calculate each BER. *Where no adult Cmax was available for ‘Salicylate–Oral 800-600 mg/daily’ and
‘Chloropyrifos- Mother to Fetus Prenatal’ exposures, BERs plotted are from the fetal exposure instead.
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This is not unexpected, as many of the selected benchmark
compounds show indications for DART at higher concentration
in vivo as well (see Supplementary Data Sheet 1). For example, the
tolerable daily intake (TDI) for dibutyl phthalate (DBP) is based on
a NOAEL from developmental toxicity studies in rats; by using a
safety factor for inter species differences of 200, concentrations
below the TDI are judged to be safe for humans (see Table 1 and
Supplementary Data Sheet 1). This is well reflected in the in vitro
data where a positive response from devTox quickPredict and
other in vitro data at concentrations above the TDI can be
observed. For Retinol and ATRA bioactivity was detected
within almost all NAMs at low concentrations leading to
BERs <1 also for the low-risk scenario of normal dietary
exposure to retinol and its metabolite. Vitamin A (retinol) and

its metabolite is a crucial micronutrient especially needed in
pregnancy. Deficiency during pregnancy is known to cause
similar DART effects as seen for increased exposure above
3,000 μg RE/day in vivo (see Table 1 and Supplementary Data
Sheet 1). Bioactivity of both substances are found at low
concentrations which would indicate uncertain risk triggering
further evaluation at higher tiers. BER <1 was also found for 2-
methylresorcinol thyroid peroxidase (TPO) binding. TPO activity
is known for resorcinol, a compound with a similar structure
(Motonaga et al., 2016). For the low-risk exposure scenario for
DEP, binding to the serotonin receptor HTR2B was seen with
BER < 1. While no connection between the compound and the
serotonin receptor could be established from literature, these
findings would trigger higher tier testing in an NGRA

FIGURE 8
Distribution of PoDs and BERs from DART targeted NAMs versus broad screening tools. (A)Overview of lowest PoD from each NAM corresponding
to dose -concentration calculations. NAMs are separated as DART targeted (green) versus broad screening (purple). IPP was split in two corresponding
NAMs (see Supplementary File S5). (B) BERs for adult/non pregnant chemical exposure scenario for each compound as used before (see Figure 7). Shown
are lowest BERs for each DART targeted NAM versus overall lowest BER from broad screening tools. Left panel shows DART targeted NAMs for
developmental toxicity comprising of the ReproTracker and DevTox quickPredict assay and the right shows BERs of NAMs targeting DARTMIEs including
DART targeted IPP assays and both the steroidogenesis and Calux screening assays. Broad assay BER point are the BER derived from the lowest PoD from
HTTr, cell stress panel (CSP) and broad IPP assays.
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approach. BERs below 1 for low-risk exposure scenarios for
Fenazaquin, Digoxin and Panthenol are also unexpected and
would also trigger higher tier testing.

4 Discussion

In recent years, substantial progress has been made in evaluating
and adopting NGRA for human-relevant safety decision-making in
systemic toxicity. This proof-of-concept study demonstrates that
NGRA can be applied to DART, allowing for protective safety
decisions concerning adults, pregnant women, and embryos to be
made in a concentration-dependent manner in a first-tier
assessment (see Figure 7; Supplementary Image 1). Using
37 benchmark compounds across 49 exposure scenarios, we
achieved protectiveness for 17 out of 18 high-risk scenarios, with
an overall framework utility of approximately 59%. Protectiveness
was ensured through a combination of broad screening tools and
targeted NAMs (see Figure 8).

Traditional risk assessment methods use data from several
guideline studies to assess for systemic and DART effects
throughout the entire reproductive cycle, using the lowest
LOAEL/NOAEL to ensure overall human protection (Browne
et al., 2024). As shown here, similar protection of human
health can be achieved in a first-tier NGRA, providing that the
selected NAMs offer the necessary biological coverage. The main
difference is that while traditional risk assessments evaluate
adverse effects such as malformations in pups, sperm motility,
or maternal toxicity, NAMs used in NGRA focus on molecular
initiating events (MIEs), early key events, or on general
perturbations like transcriptional changes or stress responses.
This means that while a first tier might not be predictive of
DART effects in humans it can be protective, which is similar
to the reality of the animal models we have previously relied on
Browne et al. (2024). We are increasingly understanding from the
high drug attrition rates in the pharmaceutical industry that effects
in animal pre-clinical studies are not particularly predictive of
clinical effects in humans (Weaver and Valentin, 2019; Pognan
et al., 2023). An important point of consideration is that the same
MIE’s or key events can lead to toxic effects in different tissues or
in different life stages. For instance, many original IPP targets
(Bowes et al., 2012) were selected to be protective for systemic
toxicity in adults but are also crucial targets for reproduction and
embryo development (see Supplementary Data Sheet 5). For
example, targets relevant to the central nervous system, like the
NMDA receptor or monoamine oxidase A, are also identified from
the Integrated Chemical Environment (ICE) database as targets
for developmental neurotoxicity. Therefore, using this example, if
specific activity is detected, it could lead to adverse reactions in
adults and/or the developing embryo, which might be dependent
on exposure specifics (e.g., window of exposure or tissue specific
accumulation/excretion) as well as tissue sensitivity. This means
that while the MoA of a compound might lead to adaptive/
reversible effects in an adult the same MoA could lead to an
adverse reaction in the developing embryo or vice versa. General
systemic effects in adults and DART specific effects can also occur
at similar concentration which is often seen in vivo making
separation of general systemic and DART specific effects

difficult (Browne et al., 2024) and can lead to overlapping
classification of substances (Worth and Berggren, 2024).

The finding that HTTr is most often the lowest PoD is not
surprising, as perturbation of expression of DART-relevant genes
and pathways, which could manifest as DART-related toxicity in a
whole organism, can be identified in simple cell systems (Rajagopal
et al., 2022; Janowska-Sejda et al., 2021). Transcriptomic analysis is
able to identify known MoA for certain compounds associated, for
example, with estrogen, glucocorticoid or retinoic acid activity in a
dose dependent manner, resulting in protective PoDs (Harrill
et al., 2024; Harrill et al., 2021; Basili et al., 2022). It is also
known that maternal transcriptomic PODs are similar to fetal
apical endpoint PODs in vivo (Johnson et al., 2022) showing
similar protectiveness as compared with traditional risk
assessments (Paul Friedman et al., 2020). While pathway or
signature related analysis was out of scope for this work, one
obvious example in our evaluation where data from
transcriptomics analysis provides a protective PoD is VPA.
VPA’s MoA for in vivo DART-related adverse events is at least
partially thought to be caused by its histone deacetylase activity
(LLoyd, 2013). Effects on local chromatin regions can result in
improper expression of specific genes in different cell types (Park
and Kim, 2020). As orchestrated transcriptional changes are a
major part of iPSC differentiation and therefore successful embryo
development, failure can cause dramatic effects which in the case
of VPA can lead to craniofacial abnormalities and neural tube
defects. The downstream consequences of transcriptional
perturbation are detectable within the results of our framework
evaluation with BERs <1 also coming from the ReproTracker and
devTOX quickPredict assays (see Figure 8B). This demonstrates
how using PoDs derived from transcriptomic data might reflect a
more conservative approach addressing the same MoA.

Similarly, broad screening tools can conservatively detect the
MoA for Methotrexate (MTX), a compound used for
chemotherapeutic treatment, and a known human teratogen
(Verberne et al., 2019), which can also lead to spontaneous
abortion if taken within the first 8 weeks of pregnancy. MTX is
a folic acid antagonist which can bind to dihydrofolate reductase,
which converts dihydrofolate to tetrahydrofolate (van Gelder et al.,
2010). Folate metabolism plays a pivotal role in various
physiological processes like DNA biosynthesis, epigenetic
maintenance, and redox defense (Ducker and Rabinowitz,
2017). By inhibiting DNA biosynthesis, MTX is expected to
impact all proliferating cells. In line with this the lowest PoD
for MTX derives from cell health measurements within the CSP,
and the compound leads to cytotoxicity in proliferating iPSC cells
in the devTOX quickPredict assay as well as within dose range
finding experiments in ReproTracker at or below Cmax values.
Folate metabolism also serves at the methyl donor for DNA
methylation, an important factor for cell fate decision during
early embryonic development (Breton-Larrivee et al., 2019).
Inhibition thereby might be directly corelated to the teratogenic
effects of MTX. While no effects on differentiation can be observed
in ReproTracker this might be explained by the fact that
cytotoxicity measurements are performed for 7 days in dose
range finding experiments limiting the highest dose tested
for the tri-lineage differentiation to 0.0085 μM. Additional
testing in ReproTracker at concentration above 0.0085 μM also
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lead to effects on iPSC differentiation indicating potential
embryotoxicity of the compound (data not shown). In
comparison disruption to iPSC metabolism was detected in the
devTOX quickPredict assay at 0.06 μM, resulting in a BER ~1
(see Figure 8B).

The complex and numerous mechanisms leading to DART are
still not well understood and are only known for a few well studied
substances like VPA andMTX. Establishment and confidence in this
mechanistic knowledge can take years or even decades for a single
compound, as seen for Thalidomide, for which the teratogenic MoA
was only determined in recent years despite decades of research.
This might be even more challenging for compounds where adverse
effects, such as reduced fetal or tissue-specific weight, might be
caused as secondary effects. For example, changes in the
morphology of the placenta could lead to malnutrition in the
fetus, which, as a consequence, would result in reduced fetal
weight. Therefore, using broad screening tools together with
targeted assays (comprised of either a limited number of
established targets for DART (IPP) and models of early
embryonic development (ReproTracker and devTOX qP)), is one
way of providing the broad biological coverage needed and presents
an elegant solution to facilitate the replacement of animal testing for
DART safety assessment now. We previously demonstrated 80%
biological coverage of our DART tier 1 approach by comparing a
marker list of genes involved in human reproduction and embryo-
fetal development to the read-outs from our NAM toolbox
(Rajagopal et al., 2022). This reduces slightly to ~70% if the
marker list is combined with the gene list identified in the
DARTable genome (Janowska-Sejda et al., 2021) (data not
shown). This is likely to increase after expanding to the
ReProTracker gene base line expression over time which is not
available. Identification of existing essential gaps are needed to
achieve comprehensive protectiveness for DART. This could be
achieved iteratively by further testing of additional benchmarks
compounds. Identifying the MoA for benchmark chemicals
exposures that the approach did not protect against will aid in
discovering additional NAMs to be incorporated in future into tier 1.
As an example, the current tier 1 framework did not identify
pharmaceutical use of Warfarin as a high-risk scenario for
DART. However, clinical data indicate that even the lowest
recommended dose of Warfarin (5 mg daily), which we selected
for our high-risk exposure scenario, can cause Warfarin
embryopathy in humans (Sousa et al., 2018). Warfarin’s
pharmacological mechanism of action involves inhibiting the
vitamin K epoxide reductase complex, potentially leading to
hemorrhage within the embryo and skeletal malformations which
might be caused by defects in osteoblast differentiation (Jeong et al.,
2011). While the ReproTracker assay flags potential embryotoxicity
at higher concentrations, it is in the current state not sensitive
enough to provide a protective PoD. Therefore, we initiated an
additional osteoblast differentiation protocol. Preliminary data from
this ongoing work shows lower PoD compared to the current
ReproTracker analysis (Horcas Nieto et al., 2024). These
preliminary findings are encouraging and suggest that including
osteoblast lineage differentiation could enhance the protectiveness
of the framework.

Safety frameworks must evolve over time, remaining flexible to
incorporate new tests or NAMs or remove existing ones if they can

be replaced by simpler, more cost-efficient, or more relevant
systems. These systems should be adapted to meet upcoming
needs and facilitate early decision-making for other regulatory or
pre-regulatory uses, such as hazard labeling and classification, or
within the context of safe and sustainable by design principles.
While in this evaluation the DART targeted assays provide the most
conservative PoDs for only a small number of substances, including
them in the first tier may provide additional information for
designing and refining subsequent tiers of the risk assessment in
a hypothesis driven manner (see also (Paul Friedman et al., 2025)).
This information can be obtained not only through in vitro results
but also through in silico tools. Predictive in silico methods are
increasingly recognized as alternatives to bridge the lack of
knowledge about chemical properties and their biological
activities (Mansouri et al., 2021). From our evaluation within this
study the in silicomodels utilised show potential for providing useful
information to incorporate into an NGRA for DART, what remains
to be determined is a strategy in which in silico predictions can be
generated and interpreted in tier 0 to better inform subsequent tiers
of the framework and safety decision making process. Given the
complexity of DART, the current battery of in silicomodels needs to
be expanded in the near future covering other MIE’s, pathways and
mechanisms important for DART. However, more well curated,
high-quality data especially in the area of DART toxicity (in vivo and
in vitro) is needed for further development of MoA specific models.

Furthermore, the evolution of these safety framework needs to
go hand in hand with an evolving tiered approach to integrate
population differences as well as DART subpopulation specific
changes into exposure estimates. However, the available data on
systemic exposure in those population groups is limited. For our
benchmark chemicals, the quality and quantity of data varied
considerably between chemicals and between different
populations (see Figure 4) Whilst clinical PK data characterized
by a clearly defined external dose and dosing schedule, and full time-
course plasma concentration or as a minimum Cmax data was often
available for exposures of non-pregnant study populations for
pharmaceuticals, such data in general is not available for
pregnant individuals and absent with regards to fetal exposures.
There is a general lack of in vivo data for non-pharmaceuticals e.g.,
cosmetics or industrial chemicals. Data describing maternal and
fetal exposures are in general less well-defined and less detailed and
therefore carry greater uncertainties, e.g., Therapeutic Drug
Monitoring (TDM) or Biomonitoring (BM) data can provide
information regarding (assumed) steady state concentrations.
However, it is in general not known in how far reported plasma
concentrations are close to Cmax. For biomonitoring data, the
external exposures resulting in the reported plasma concentration
are usually not known and varied, hence this data can often only
provide information on “typical” systemic exposures in selected
populations. On some occasion, e.g., for nutrients or contaminants
external exposures can be estimated from, e.g., dietary intake or
product use information (e.g., for consumer products), or exposome
studies (Cui et al., 2016). E.g., in the case of retinoic acid and retinol
we used dietary intake data for retinol to relate to the reported
biomonitoring data for retinol and ATRA. “Snapshots” of systemic
exposure are available from poisoning cases or other case studies.
However, this data as well is highly uncertain as dose and time from
administration to hospitalization are often not exactly known, and
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high doses might be well outside the linear range of
pharmacokinetics as enzyme and other physiological processes
might get saturated.

The analysis of benchmark compounds with human-relevant
clinical data (see Figure 6) indicates that exposure levels in non-
pregnant populations are often similar to or higher than those in
pregnant populations or fetuses. This suggests that general
population exposure estimates could serve in most cases as
conservative surrogate metrics for more specific sub-populations.
However, instances such as Warfarin and Dexamethasone, where
exposure levels in pregnant populations and fetuses seem to be
higher than in non-pregnant populations, indicate that this may not
always be the case. Therefore, it is important to understand when
and to what extend physiological changes during pregnancy and
specific transport mechanisms between the mother and the fetus
might result in increased plasma concentrations to define criteria for
when a more specific approach for the characterization of exposure
is required.

In the absence of chemical-specific human in vivo data PBK
modelling is often used to derive estimates of systemic
concentrations based on parameterization of generic PBK models
with chemical specific in silico and in vitro ADME parameters
(Moxon et al., 2020; Cole et al., 2020). Often, in a first step, PBK
simulations are performed for a “conservative” representative
individual, e.g., in our case studies a 60 kg 30-year-old female,
based on the assumption that a low body weight/size results in a
comparatively higher Cmax for the same external dose. However,
where we cannot be confident that exposure estimates for the general
population are protective for DART-specific sub-populations more
complex PBK models are required. These need to adequately
represent the physiological changes occurring during pregnancy
as well the physiology of the developing fetus and the ADME process
involved in the transfer of chemicals between the mother and the
fetus. Despite generic pregnancy PBK models being available in
various PBK platforms (GastroPlus, SimCyp, PKSim, Httk, etc.)
(Abduljalil et al., 2012; Chaphekar et al., 2021), model structures
reflecting the embryo and fetus as well as placental transfer of
chemicals differ significantly in their complexity. Whilst the more
general and well understood physiological changes occurring during
pregnancy are usually built into these models, processes that might
more specifically impact on the biokinetics of some chemicals but
not others, e.g., expression levels and changes of enzymes and
especially transporters are often not, in particular with regards to
DART relevant barriers and organs such as the placenta or blood-
brain barrier. Chemical-specific knowledge and quantitative
characterization of these process is required to extend the
usefulness of PBK modelling beyond the generic.

Deterministic predictions of exposure in one (representative or
“worst case”) individual can only be considered the starting point in
the risk assessment process. Several studies collectively emphasize
the need to consider population variability in toxicokinetic
assessments to better protect public health (Dorne and Renwick,
2005). Hence, to account for the biokinetic variability within
populations probabilistic PBK simulations should be performed
in future to make predictions about distributions of exposures in
populations of interest. For those simulations it must be defined
what kind of variations and magnitudes of variability in physiology,
product use and product formulations occur in the population. This,

however, is currently still rather challenging to do. Other than with
regards to general physiology, e.g., organ sizes, we often do not know
and therefore cannot accurately parameterize the variability in
metabolism, protein binding, differences in absorption, product
formulations and use habits, and the impact of those on external
and internal exposures. Therefore, PBK population simulations
currently are unlikely to reflect the complete variability in a
population. More understanding of the true variability of
biokinetics and exposure in the population are needed to allow
adequate parameterization of PBK models and development of
uncertainty factors or other approaches to account for this
uncertainty in model predictions. We found that for the majority
of chemicals in our case study the TKVF calculated from the collated
pharmacokinetic data is in good agreement with the uncertainty
factor of 3.16 which is applied in traditional risk assessments, e.g., to
the reference dose (RfD) or concentration (RfC) to account for inter-
individual toxicokinetic variability with the objective to ensure that
the derived exposure limits are protective of the most sensitive
individuals in the population (Committee on Toxicity of Chemicals
in Food, 2007). However, for some chemicals variability might be
greater than this, e.g., as in the case of Nitrofurantoin (see Figure 5).
For chemicals with unique toxicokinetic properties that differ
significantly from the average, a more chemical specific
uncertainty factor or more flexible approach for accounting for
uncertainty is required for a more accurate and tailored assessment
of risk. The challenge is–in the absence of in vivo data, i.e., in a
NGRA setting, how to identify when a general uncertainty factor is
not sufficient, and how to derive a more chemical specific estimate of
uncertainty.

While our initial results show how a tier 1 NGRA framework can
be protective for DART safety assessment further testing of more
chemical exposures and additional NAM development (in silico,
in vitro, and exposure) is essential to build confidence in this
approach. It is particularly important to expand into already
identified areas of interest where tools are missing (Sachana
et al., 2019; Crofton and Mundy, 2021; Noyes et al., 2019) or
where it is known that processes are still not well understood in
human biology and species-specific differences are expected to make
the approach more human relevant but also to account for different
outcomes between human relevant NAMs and animal tests in future
(Niethammer et al., 2022). To keep lower-tier approaches simple
and affordable, it may be sufficient to add assays or in silico tools to
measure or predict MIEs or early key events for toxicity, or tissue-
specific transporters and metabolism in the first tier, while using the
physiologically relevant system in a higher tier. However, there
might be a transition period where higher-tier cell systems need to
be integrated as a first-tier approach to accurately define the targets
of interest before they can be replaced. This transition period is
essential to validate that the identified targets are relevant and
accurately reflect the underlying biological processes. Or to
ensures that no additional targets are necessary within the first
tier, as the desired level of protectiveness is already achieved. This
process will help build confidence in the approach, demonstrating its
robustness and reliability in various regulatory contexts. With this, it
is important to continuously update and refine the NGRA approach
as new data and insights become available. This iterative process will
help to improve the accuracy and reliability of the risk assessments,
ultimately leading to better protection of public health.
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Moreover, collaboration between different scientific disciplines
and stakeholders is essential to address the challenges and
uncertainties in NGRA. By working together, we can develop
more robust and comprehensive approaches (Fritsche et al.,
2024). This collaborative effort will also facilitate the
development of new methodologies and technologies that can
enhance the predictive power of NGRA and ensure its
applicability to a wide range of chemicals, exposure scenarios and
regulatory uses.
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