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Background: Environmental endocrine disruptors (EEDs) had been proved as
significant risk factors for liver fibrosis. However, which specific pollutants
predominantly related to liver fibrosis remain unidentified. This study was
aimed to screen in the specific EEDs using NHANES data and further validate
the findings in BRL-3A hepatocytes.

Methods: A total of 5,843 adult participants (≥18 years) incorporating data on
EEDs/metabolites, demographics, lifestyle factors, and vibration-controlled
transient elastography (VCTE) measurements were gated from the NHANES.
Advanced analytical methods including LASSO regression, multivariable
logistic regression, and restricted cubic spline (RCS) modeling were
implemented for pollutant screening. In vitro validation involved treating BRL-
3A hepatocytes with identified EEDs, followed by comprehensive assessment of
fibrotic markers through quantitative PCR, Western blotting, and extracellular
matrix component analysis.

Results:Di-n-butyl phthalate (DBuP), themetabolites of tributyl phosphate (TBP),
was demonstrated to be the strongest EEDs associated with liver fibrosis (P <
0.05). Mechanistic studies revealed that 1 μM TBP significantly elevated
extracellular matrix components (HA: +130%, Ⅳ-Col: +22%) through
MMP9 upregulation at both transcriptional (1.8-fold increase) and translational
(1.73-fold increase) levels in hepatocytes.

Conclusion: Our findings establish TBP as a novel environmental determinant
positively correlatedwith liver fibrosis in U.S. adults. The profibrotic effects appear
mediated through transcriptional activation of extracellular matrix remodeling
genes, particularly via MMP9 pathway modulation.
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1 Introduction

Liver fibrosis, characterized by the progressive accumulation
of extracellular matrix (ECM) components, has exhibited a
concerning upward trajectory in global incidence rates,
emerging as a critical public health challenge. Recent
epidemiological data reveal that advanced liver fibrosis affects
approximately 3.3% of the general population (Zamani et al.,
2024). This pathological process represents precursor to severe
hepatic complications, including hepatocellular carcinoma
(HCC) (Roehlen et al., 2020; Parola and Pinzani, 2019).
Notably, emerging evidence implicates environmental
endocrine disruptors (EEDs) as novel modifiable risk factors
for fibrogenesis, with multiple cohort studies demonstrating
significant exposure-disease associations (Qi et al., 2023;
Quitete et al., 2024; Du et al., 2024).

EEDs, such as flame retardants (McGaha, 2024), metals
(Yilmaz et al., 2020), organophosphate insecticides
(Suwannarin et al., 2021), perfluoroalkyl and polyfluoroalkyl
substances (Ding et al., 2020), as well as phthalates (Dalamaga
et al., 2024), are widely used in food packaging materials,
cosmetics, children’s toys and other daily necessities (de Paula
and Alves, 2024; Li et al., 2024; Nicolopoulou-Stamati et al.,
2015). EEDs predominantly enter human biological systems via
three primary exposure pathways: dietary consumption, water
intake, and dermal absorption from personal care products
(Rashid et al., 2020; Gonsioroski et al., 2020). Epidemiological
studies have identified diverse EEDs and their metabolic
derivatives in human biofluids, with significant regional
variations in concentration profiles.

Notably, median concentrations of mono-n-butyl phthalate
(MBP) in general populations exhibited geographical disparities:
Asian cohorts demonstrated levels of 13.4–147 ng/mL, compared
to 9.30–57.6 ng/mL in American populations and 11.0–64.6 ng/
mL in European demographics (Zhang et al., 2021). Recent
biomonitoring data from Chengdu, China revealed peak
tributyl phosphate (TBP) concentrations of 0.531 ng/mL in
adult blood samples (Guo et al., 2023). Furthermore, urinary
bis(1,3-dichloro-2-propyl) phosphate (BDCPP) levels among
U.S. adults displayed substantial interindividual variability,
ranging from 0.30 to 1.79 μg/day in population-based studies
(Luo et al., 2020).

Upon exposure, EEDs circulate throughout the organism and
undergo extensive metabolic processing followed by elimination.
The liver plays a central role in this process, not only driving their
metabolic transformation but also functioning as the key repository
for their accumulation within the human body (Kabir et al., 2015).
Many studies have identified a positive relationship between EEDs
and liver fibrosis. An epidemiological study revealed that higher
levels of heavy metals and polyfluoroalkyl substances (PFAS) in
blood and urine samples are positively correlated with an increased
risk for liver fibrosis (Wei et al., 2024). Additionally, animal research
revealed that exposure to the organophosphorus pesticide
chlorpyrifos in female rats results in their male offspring
exhibiting a marked upregulation Col1a1 mRNA expression at
8 weeks of age (Guibourdenche et al., 2021). Our previous
research found that mono (2-ethylhexyl) phthalate (MEHP)

promoted liver fibrosis by downregulating STAT5A in BRL-3A
hepatocytes (Zhang et al., 2022). These findings suggest that
EEDs may exacerbate liver fibrosis. However, most current
research has primarily focused on the effects of single EEDs on
the occurrence of liver fibrosis. In reality, humans are typically
exposed to various kinds of EEDs. Therefore, identifying the specific
pollutants within this mixture that predominantly associated with
liver fibrosis, which could provide more targeted interventions for
preventing liver fibrosis caused by EEDs exposure.

The National Health and Nutrition Examination Survey
(NHANES) is a cross-sectional survey based on the health and
nutritional status of adults and children in the United States. The
NHANES provides detailed information on diseases and exposure
levels to EEDs, which is applied to investigate the relationship
between EEDs and liver damage (He et al., 2023; Li R. et al.,
2022). In this paper, NHANES was utilized to identify the
potential EEDs that related most significantly to the development
of liver fibrosis. Furthermore, we investigated the effects of TBP,
identified through the cross-sectional study, on BRL-3A hepatocytes
by measuring the levels of ECM components and matrix
metalloproteinases 2 (MMP-2) and 9 (MMP-9) mRNA and
protein. Our findings provide a more valuable target for the
prevention of liver diseases caused by EEDs.

2 Methods

2.1 Screening the major EEDs promoting
liver fibrosis based on NHANES

2.1.1 Data source and study population
The NHANES is a nationally representative cross-sectional

survey that enrolls participants using a stratified, multistage,
clustered probability sampling frame. This design ensures
representativeness of the civilian, non-institutionalized U.S.
population. It is conducted by the National Center for Health
Statistics (NCHS), which is a part of the Centers for Disease
Control and Prevention. The protocols of NHANES are
approved by the NCHS institutional review board. Written
informed consent is obtained from all participants. This paper
analyzes data from 2017-2018 cycle years. The data from this
analysis are publicly available at https://wwwn.cdc.gov/nchs/
nhanes/Default.aspx.

A total of 5,843 participants aged 18 years or older (with a
mean aged of 49 years) from the U.S. were included in our
research. All participants had both EEDs and their metabolites
levels measured, along with VCET data. The exclusion criteria
included (Zamani et al., 2024): Infected with hepatitis B or
hepatitis C (Roehlen et al., 2020); Heavy alcohol consumption,
defined as more than four drinks on any day or more than
14 drinks/week for men, and more than three drinks on any
day or more than seven drinks/week for women (Warner et al.,
2022); (Parola and Pinzani, 2019) Abnormal urine creatinine level
(<20 mg/dl or >300 mg/dl) (Merida-Ortega et al., 2022); (Qi et al.,
2023) Invalid liver ultrasound transient elastography data
(Quitete et al., 2024); Missing data of covariant. Ultimately,
this study included 545 male participants and 536 female
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participants. The detailed inclusion and exclusion process is
shown in Figure 1.

2.1.2 Detection method and definition of
liver fibrosis

VCTE is a tool used to measure liver stiffness (LS) using the
Fibroscan device (Echosens, Paris, France) which can estimate
fibrosis (Mikolasevic et al., 2016). Invalid data were excluded if
participants met any of the following criteria (Zamani et al., 2024):
Inability to lie down on the exam table (Roehlen et al., 2020);
Pregnant (Parola and Pinzani, 2019); Presence of an implanted
electronic medical device, a bandage, or lesions near the right ribcage
area. All eligible participants were required to fast for at least 3 h
prior to examination and received at least 10 complete stiffness
measurements using two types of transducers: medium (M,
3.5 MHz) or extra-large (XL, 2.5 MHz). Valid data were
considered when the interquartile range (IQR) of liver stiffness
did not exceed 30% of the median stiffness value. According to
previous studies, liver stiffness values ≥ 8 kPa were defined as fibrosis
(Wan et al., 2022). Furthermore, participants with cirrhosis, defined
by liver stiffness values ≥13 kPa, were not excluded from the study,
as fibrotic lesions can also coexist in the context of cirrhosis (Gines
et al., 2021).

2.1.3 EEDs selected in the research
This paper investigated five types of EEDs that are associated with

liver fibrosis: flame retardants, metals, organophosphate insecticides,
perfluoroalkyl and polyfluoroalkyl, phthalates and plasticizers and
their corresponding metabolites. While most of these substances have
established links to hepatotoxicity, their involvement in liver fibrosis
remains uncertain. The Supplementary Tables S1, S2 provide the
specific EEDs and their detection methods.

2.1.4 Covariates
The variables associated with liver fibrosis or the levels of EEDs

and their metabolites, including sex, age, race, educational level,
smoking status (Nigra et al., 2021), drinking status (Warner et al.,
2022), Body Mass index (BMI), activity status, blood pressure, and
cholesterol level were selected as covariate. The specific
classification of covariates and its basis were showed in Table 1.

2.1.5 Data pre-processin
All EEDs metabolites measured in urine samples were corrected

for creatinine levels. Spearman correlation analysis was used to
explore the correlation between variables, and the results are
presented in Supplementary Figure S1. Variables with Spearman
coefficients greater than 0.8 are listed in Supplementary Table S3.
Notably, no variables showed correlations above 0.95, which is
considered indicative of high collinearity. Therefore, all variables
were retained for further analysis.

Prior to proceeding with subsequent analyses, box plots were
generated for all variables to identify the outlier values which were
defined as beyond the box boundaries (1.5 times the interquartile
range). We deleted the outliers and used multiple imputation to
imputation the missing value through the R package “mice”.
Supplementary Table S4 shows the number of missing values of
EEDs. Supplementary Figure S2 shows the distribution of fill values
and original data. It could be found the distribution of the two types
of data are approximately the same.

2.1.6 Baseline data analysis
The participants were categorized into two groups: those with

liver fibrosis and those without liver fibrosis based on the baseline
data. Participant characteristics were presented using medians for
continuous variables and percentages for categorical variables. The

FIGURE 1
Flow-chart of the study participants selected from National Health and Nutrition Examination Survey (NHANES) 2017–2018.
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EEDs levels were presented as the median (95% confidence
intervals). Variables Screen and regressive analysis.

Firstly, LASSO was used for determining the penalized model
coefficients and perform variable selection. A 3-fold cross-validation
was employed to identify the model with the lowest mean square

error (MSE), which was used to determine the best LASSO model.
The importance of variables on liver fibrosis were reflected by the
absolute value of the compressed model coefficients.

Secondly, logistic regression was conducted to evaluate the
strength and direction of associations between the selected EEDs

TABLE 1 Stratification of covariates.

Covariates Stratification Basis

Age

<40

40–59

>59

Race

Mexican American

Other Hispanic

Non-Hispanic White

Non-Hispanic Black

Other races

Educational level

Below high school

High school

Above high school

Smoking status (Nigra et al., 2021)

Never Smoked less than 100 cigarettes in their lifetime

Former Smoked more than 100 cigarettes in their lifetime but currently did not smoke

Current Smoked more than 100 cigarettes in their lifetime and currently smoked

Drinking status (Warner et al., 2022)

Never drinking Never consumed at least one alcoholic drink in their lifetime

No-drinking Consumed alcoholic drinks in the past but did not drink in the last 12 months

Moderate drinking Man who reported an average consumption of 2 drinks or less per day, and women who reported an average consumption of
1 drink or less per day

BMI

Normal <25 kg/m2

Overweight ≥25 and <30 kg/m2

Obese ≥30 kg/m2

Physical activity

Strong physical activity

Moderate physical activity

No physical activity

Hypertension

Yes systolic blood pressure ≥140 mmHg, and diastolic blood pressure ≥90 mmHg, or self-reported history of hypertension
diagnosed by physicians

No
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and liver fibrosis. The EEDs were categorized into tertiles based on
their concentration levels. Odds ratios (ORs) and 95% CIs for liver
fibrosis were calculated for the second and third tertiles, using the
first tertile as the reference category. Four distinct logistic models
were established as follows (Zamani et al., 2024): Univariate
model without covariates (Roehlen et al., 2020); Univariate
model with covariates (Parola and Pinzani, 2019); Multivariate
model without covariates (Qi et al., 2023); Multivariate model
with covariates.

Finally, to enhance the accuracy of this research, Restricted
Cubic Splines (RCS) were performed to examine both linear and
non-linear dose-response relationships between EED
concentrations and liver fibrosis outcomes.

2.2 The effects of TBP on the liver fibrosis in
BRL-3A hepatocyte

2.2.1 Cell culture, differentiation and treatment
BRL-3A hepatocytes were gated from the Cell Bank, Chinese

Academy of Science. The cells were cultured in DMEM medium
(Gibco, United States) supplemented 10% fetal bovine serum (BI,
Kibbutz Beit Haemek, Israel) at 37°C and 5% CO2. BRL-3A
hepatocytes were seeded into 6-well plates (2 × 106 cells/well)
and treated with different concentrations of Tributyl phosphate
(TBP) (10–5, 10–6 and 10–7 M) for 24 h. The lowest concentration
set in this study was comparable to environmental monitoring
levels (10–7 mol/L was equivalent to 26.6–43.1 ng/mL of the tested
TBP) (Zhao et al., 2016; Li et al., 2017). The control group was
treated with equal volume of DMEM, while 1%DMSO was set as
solvent control.

2.2.2 Cell viability assessment
CCK-8 assay kit (Dojindo, Japan) was used to detect the viability

of BRL-3A cells. The cells were seeded into 96-well plates at a density
of 1 × 105 cells/well and subsequently exposed to TBP at
concentrations of 10–7, 10–6 and 10–5 M for 24 h. Two hours
before the ending of exposure period, the absorbance of each
well was measured using a microplate reader at 450 nm. The
survival rate of the BRL-3A cells was calculated according to the
absorbance values.

Cell survival rate %( )

� Sample hole A450–Culture solution hole A450( )

Control hole A450–Culture solutionA450( ) x100%

2.2.3 Extracellular matrix detection
The levels of Collagen Type Ⅳ(Ⅳ-Col) and hyaluronic acid

(HA) secreted by BRL-3A hepatocytes were detected with ELISA
commercial kits (Shanghai Langdun Bioengineering Institute,
China). The detection limits of Ⅳ-Col and HA were 1.5–240 ng/
mL and 0.15–24 ng/mL respectively and the CVs ofⅣ-Col and HA
were all<12%.

2.2.4 RNA extraction and real time-PCR analysis
The total RNA was extracted using Trizol reagent

(Invitrogen, United States). 500 ng RNA was reverse

transcribed into cDNA using Strand cDNA Synthesis Kit
(Tolobio, China). Real-time PCR was performed with a SYBR
Green Real-time PCR kit (Tolobio, China). Supplementary Table
S5 shows the primer sequences for MMP2 and MMP9 used for
amplification of each gene, and GAPDH was used as an internal
reference gene.

2.2.5 Western blot
The total cellular protein was extracted with RIPA Lysis Buffer

(Solarbio, China). The concentration of protein was measured by
BCA protein assay kit (Beyotime, China). Equal amounts of protein
(20 μg protein/well) were loaded onto an SDS-PAGE gel and then
transferred to a nitro-cellulose membrane. The membranes were
blocked with 5% nonfat milk in PBS-Tween-20 for 2 hours and then
were incubated with anti-rabbit MMP2 (Proteintech, United States),
anti-rabbit MMP9 (Proteintech, United States) and anti-mouse
GAPDH (Proteintech, United States) overnight at 4°C. The
specificity of antibodies were shown in the Supplementary Figure
S3. After washing with Tris-buffered saline and Tween 20 three
times, secondary antibodies that could specifically bind to the
primary antibody were added. An enhanced chemiluminescence
kit (Proteintech, United States) was used to visualize the protein
bands, and the gray values of the bands were analyzed by Image-Pro
Plus 6.0 software.

2.2.6 Statistical analysis
All data were analyzed by R4.0.2 and IBM SPSS 24.0, and each

experiment was performed independently at least three times. The
differences among different groups were compared by One-way
ANOVA or Rank Sum Test with the LSD or Kruskal–Wallis test
between two groups. A two-tailed P value <0.05 was considered
statistically significant.

3 Results

3.1 Screening the primary EEDs promoting
liver fibrosis based on NHANES

3.1.1 Demographic characteristics
Table 2 presents the demographic characteristics of participants

divided into those with liver fibrosis and those without. Compared to
participants without liver fibrosis, those with liver fibrosis exhibited
higher frequencies of older age, smoking behavior, physical
inactivity, obesity, and hypertension (P < 0.05).

3.1.2 The characteristics of EEDs
Supplementary Table S6 presents the levels of EEDs and their

metabolites in human urine or blood, categorized according to the
presence or absence of liver fibrosis. Notably, participants with liver
fibrosis exhibited significantly lower concentrations of Dibutyl
phosphate (DBuP), Di-ethylthiophosphate (DETP),
Dimethyldithiophosphate (DMDP), Perfluorooctane sulfonamide
(PFDeA), Mono-2-methyl-2-hydroxypropyl phthalate (MHiBP),
and Mono-3-hydroxy-butyl phthalate (MHBP). Conversely,
higher levels of Mono(2-ethyl-5-carboxypentyl) phthalate
(MECPP) and Mono-oxo-isononyl phthalate (MONP) were
observed in this group (P < 0.05).
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TABLE 2 The characters of participants.

Characteristic Total Fibrosis Non- fibrosis Pa

N 1,081 95 986

Sex(n,%)

Female 536 (49.6) 46 (48.4) 490 (49.7) 0.897

Male 545 (50.4) 49 (51.6) 496 (50.3)

Age(n,%)

mean 49 (18.3) 56 (16.0) 49 (18.4) <0.001

18–39 364 (33.7) 16 (16.8) 348 (35.3) <0.001

40–59 330 (30.5) 31 (32.6) 299 (30.3)

≥60 387 (35.8) 48 (50.5) 339 (34.4)

Race-Ethnicity(n,%)

Mexican American 166 (15.4) 18 (18.9) 148 (15.0) 0.314

Non-Hispanic Black 221 (20.4) 22 (23.2) 199 (20.2)

Non-Hispanic White 387 (35.8) 32 (33.7) 355 (36.0)

Other Hispanic 108 (10.0) 12 (12.6) 96 (9.7)

Other Race 199 (18.4) 11 (11.6) 188 (19.1)

Eduction (n,%)

Below high school 201 (18.6) 20 (21.1) 181 (18.4) 0.634

High school 273 (25.3) 26 (27.4) 247 (25.1)

Above high school 607 (56.2) 49 (51.6) 558 (56.6)

Smoke (n,%)

Current 156 (14.4) 13 (13.7) 143 (14.5) <0.001

Ever 249 (23.0) 37 (38.9) 212 (21.5)

Never 676 (62.5) 45 (47.4) 631 (64.0)

Alcohol(n,%)

Non-drinker 222 (20.5) 32 (33.7) 190 (19.3) 0.004

Never drinker 112 (10.4) 9 (9.5) 103 (10.4)

Moderate drinker 747 (69.1) 54 (56.8) 693 (70.3)

Active (n,%)

Moderate active 242 (22.4) 21 (22.1) 221 (22.4) <0.001

Non-active 546 (50.5) 64 (67.4) 482 (48.9)

Vigorous active 293 (27.1) 10 (10.5) 283 (28.7)

BMI(n,%)

Normal 301 (27.8) 8 (8.4) 293 (29.7) <0.001

Obese 437 (40.4) 71 (74.7) 366 (37.1)

Over weight 343 (31.7) 16 (16.8) 327 (33.2)

Blood pressure (n,%)

Hypertension 458 (42.4) 56 (58.9) 402 (40.8) 0.001

Non-hypertension 623 (57.6) 39 (41.1) 584 (59.2)

(Continued on following page)
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TABLE 2 (Continued) The characters of participants.

Characteristic Total Fibrosis Non- fibrosis Pa

Total Cholesterol(mg/dL) 4.76 (4.11, 5.51) 4.76 (3.95, 5.51) 4.7 (4.11, 5.51) 0.404

Urinary Creatinine(g/dL) 1.16 (0.66, 1.68) 1.27 (0.76, 1.82) 1.15 (0.64, 1.66) 0.157

Data are presented as the median (Inter Quartile Range) or frequency (percentage).
aRank sum test was performed for continuous variables, and Chi-square test was performed for categorical variables.

FIGURE 2
The Association between EEDs and liver fibrosis. (A) showed the change of prediction error of LASSO regressionmodel with penalty parameter log λ
of liver fibrosis. (B) showed the filtering path of the LASSO regression models of liver fibrosis. Covariates were not displayed in the picture in order to
understanding better. (C) RCS curves of DBuP (ng/Cr) and liver fibrosis. (D) RCS curves of DPhP(ng/Cr) and liver fibrosis. (E) RCS curves of MHBP(ng/Cr)
and liver fibrosis. (F) RCS curves of MHibP (ng/Cr) and liver fibrosis.
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3.1.3 Screening of EEDs associated with
liver fibrosis

The results of LASSO analysis demonstrated that DBuP,
MHBP, MHibP and Diphenyl phosphate (DPhP) exhibited
significant associations with liver fibrosis (Figures 2A,B). The
coefficients of the variables after compression in the model by
LASSO were provided in regression analysis. Among these, DBuP,
as the TBP metabolites, exhibited the highest coefficient in the
models (Table 3).

3.1.4 The associations between EEDs with
liver fibrosis

The concentration of DBuP had a positively association with
liver fibrosis in the fully adjusted models (P < 0.05) in Logistic
regression analysis (Table 4). The highest concentrations of MHBP
and MHiBP showed a positively association with liver fibrosis in the
univariate model overal (P < 0.05).

The linear and dose-response relationships between EEDs and
liver fibrosis were shown in Figures 2C–F. DBuP, MHBP, MHibP
and DPhP all exhibited a linear relationship with liver fibrosis. The
value of OR of liver fibrosis significantly increased with the
enhancing concentration of DBuP (P < 0.05).

3.2 Effects of TBP on the liver fibrosis

3.2.1 The effect of TBP on cell survival rate
Supplementary Figure S4 showed the cell survival rate of BRL-

3A. With the increased levels of TBP, the cell survival rate showed a
trend of first increasing and then decreasing. The TBP dose selected
in this study did not induce significant cytotoxic effects on cells and
is suitable for subsequent research.

3.2.2 The effect of TBP on the extracellular matrix
levels in BRL-3A hepatocytes

Given that DBuP demonstrated a significant association with
liver fibrosis in mixed EEDs within the NHANES dataset, we further
investigated the harmful effect and mechanisms of TBP on the liver
fibrosis. Two key representative components of the extracellular
matrix, hyaluronic acid (HA) and type IV collagen (Ⅳ-Col), were
quantified as surrogate markers for assessing liver fibrosis.
Compared with the control group, the secretion levels of HA in
BRL-3A hepatocytes were increased by 1.44-flod and 2.30-fold at
concentrations of 10–5 and 10–6 M TBP, respectively (P < 0.05).

TABLE 3 The coefficients of variable in the model by LASSO.

Variables Beta coefficients

DBuP 4.812,702 × 10−4

MHBP 3.488405 × 10−5

MHibP 2.893609 × 10−5

DPhP −3.873801 × 10−6

TABLE 4 Association between EEDs and liver fibrosis using logistic regression.

Variables Model 1 Model 2 Model 3 Model 4

DBuP

Quartile 1 1.00 1.00 1.00 1.00

Quartile 2 1.69 (1.04–2.72)* 1.85 (1.09–3.12)* 1.61 (0.99–2.60) 1.79 (1.05–3.05)*

Quartile 3 1.89 (1.06–3.46)* 2.30 (1.21–4.47)* 1.64 (0.9–3.04) 2.08 (1.08–4.10)*

DPhP

Quartile 1 1.00 1.00 1.00 1.00

Quartile 2 0.88 (0.50–1.48) 0.92 (0.50–1.62) 0.8 (0.46–1.36) 0.81 (0.44–1.45)

Quartile 3 0.76 (0.41–1.38) 0.67 (0.34–1.28) 0.62 (0.33–1.13) 0.53 (0.26–1.05)*

MHBP

Quartile 1 1.00 1.00 1.00 1.00

Quartile 2 1.15 (0.70–1.85) 1.13 (0.66–1.88) 1.04 (0.62–1.72) 0.95 (0.54–1.65)

Quartile 3 2.04 (1.08–3.99)* 1.99 (1.01–4.08)* 2.06 (0.99–4.47) 1.32 (0.6–2.95)

MHibP

Quartile 1 1.00 1.00 1.00 1.00

Quartile 2 1.11 (0.68–1.79) 1.18 (0.69–1.97) 1.02 (0.61–1.70) 1.09 (0.62–1.90)

Quartile 3 2.39 (1.24–4.85)* 2.60 (1.29–5.51)* 1.5 (0.73–3.15) 2.3 (1.04–5.30)

Data were presented as the OR (95%CI). Model 1: Variables were included individually without adjusting for covariates. Model 2: Variables were included individually adjusting for age, year,

race, education, smoking, BMI, blood pressure; TC, active status and drinking. Model 3: Variables were includedmixed without adjusting for covariates. Model 4: Variables were includedmixed

adjusting for age, year, race, education, smoking, BMI, blood pressure; TC, active status and drinking. *P < 0.05.
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Similarly, the levels of type IV collagen (Ⅳ-Col) were also elevated
by 1.05-flod and 1.66-flod under the same conditions (Figures 3A,B).

3.2.3 Effects of TBP on themRNA and protein levels
of MMP2 and MMP9 in BRL-3A hepatocytes

The expression levels of MMP2 and MMP9 mRNA and
protein in BRL-3A hepatocytes are shown in Figures 3C–G.
Compared with the control group, the expression level of
MMP9 mRNA and protein was obviously increased by 1.94-

flod and 1.80-flod at the 10–7 and 10–6 M TBP groups, respectively
(P < 0.05). However, TBP did not significantly promote the
expression of MMP2.

4 Discussion

Exposure to EEDs has been linked to hepatic toxicity. However,
limited research has been conducted to elucidate the specific

FIGURE 3
The levels of extracellular matrix and fibrosis genes in BRL-3A hepatocytes. (A) The levels of IV Col (ng/mL) in BRL-3A hepatocytes; (B) The levels of
HA (ng/mL) in BRL-3A hepatocytes; (C) The relative mRNA expression levels ofMMP2 in BRL-3A hepatocytes; (D) The relative mRNA expression levels of
MMP9 in BRL-3A hepatocytes; (E) The relative protein expression levels of MMP2 in BRL-3Ahepatocytes; (F) The relative protein expression levels of
MMP9 in BRL-3A hepatocytes; aComparisonwith 0M TBP (P < 0.05); bComparison with solvent control (P < 0.05); cComparison with 10–7 M TBP (P <
0.05); dComparison with 10–6 M TBP (P < 0.05); Values are means ± SD (n ≥ 3).
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compounds within these EEDs that are primarily related to the
progression of liver fibrosis. In this study, we employed a
combination of LASSO, logistic and RCS to identify the specific
substance showing the strongest association with liver fibrosis
among the mixtures EEDs analyzed from NHANES data. To
further investigate its effects and underlying mechanisms, BRL-
3A hepatocytes were treated with TBP, a compound identified
through our statistical models. This study provides a target for
preventing liver fibrosis caused by EEDs.

The LASSO is a statistical technique for variable selection
and regularization, which has been extensively employed in
studies examining the associations between environmental
pollutants and their adverse health effects. For instance,
LASSO was used to identify organic pollutants associated
with disrupted female hormone levels (Peng et al., 2023).
Furthermore, Amine (Amine et al., 2023) reported that
prenatal exposure to methylparaben is a significant predictor
of lower general health scores during early life and childhood. In
this study, we first identified the EEDs associated with liver
fibrosis by utilizing the LASSO approach. The results indicated
that DBuP, MHBP, MHiBP and DPhP all exhibited significant
positive correlations with liver fibrosis, with DBuP notably
demonstrating the strongest correlation among these
variables. The logistic regression analysis indicated that
higher concentrations of DBuP are positively associated with
an increased risk of liver fibrosis. However, this study observed
lower urinary levels of DBuP in individuals with liver fibrosis.
Previous research has demonstrated that liver damage, such as
fibrosis, can impact drug metabolism by altering the expression
of metabolic enzymes and transferrin (Palatini and De Martin,
2016; Congiu et al., 2009). Numerous environmental pollutants
can impair the liver’s metabolic function (Zh et al., 2024; Maerten
et al., 2024). Moreover, research has demonstrated that the
accumulation of TBP in the liver is significantly higher
compared to that in other tissues and organs (Choo et al., 2018;
Bekele et al., 2018). Based on these theory and results, we
hypothesized that liver fibrosis may impair the metabolic
capability of chemicals to which individuals are exposed, which
could, in turn, result in reduced levels of their metabolites. The
results of cross - sectional studies suggest that DBuP, MHBP,
MHiBP, and DPhPmay be associated with liver fibrosis to a certain
extent. Among these substances, DBuP appears to have the most
pronounced correlation. Moreover, the fibrogenic effects of MHBP
(Huo et al., 2023), MHiBP (Jin et al., 2023), and DPhP (Chu and
Letcher, 2019) have been previously reported. Consequently, in
our in vitro studies, we will focus on investigating the impact of
TBP on the progression of liver fibrosis.

A key methodological limitation of cross-sectional studies is
their inherent inability to definitively establish a temporal causal
relationship between TBP exposure and the development of liver
fibrosis. Hence, we assessed the expression levels of extracellular
matrix-related and fibrosis-associated genes in BRL-3A hepatocytes.
Existing research has demonstrated that changes in the secretion
levels of IV Col and HA, as well as the gene expression of MMP2 and
MMP9 in BRL-3A cells, can reflect liver fibrosis in the body to a
certain extent. In this study, TBP treatment significantly elevated the
levels of IV Col and HA. Furthermore, both the mRNA and protein
levels of MMP9 were markedly upregulated in the TBP - treated

group. Despite the data from RCS and BRL-3A hepatocyte studies,
no clear dose–response relationship was observed between TBP
exposure and liver fibrosis. A study found 1 µM TBP induced a
greater increase in total triglyceride levels compared to 10 µM TBP
in HepG2 cells (Hao et al., 2019). Our previous research identified a
non - monotonic dose - response relationship between MEHP and
the Noth signaling pathway in 3T3-L1 cells. EEDs have a
characteristic of nonmonotonic dose–response (Wu et al., 2024).
We hypothesize that the nonlinear relationship stemming from TBP
might be associated with the threshold effect of EEDs on bodily
harm. However, additional research is imperative to validate this
hypothesis.

DBuP, the primary metabolite of TBP, serves as a flame
retardant, defoamer and rubber plasticizer in various
applications within daily life (Garcia et al., 2007). Global
consumption of TBP has reached an annual volume ranging
between 3,000 and 5,000 metric tons, with a sustained
compound annual growth rate (CAGR) of 4%–5% observed in
recent years (Ahire et al., 2012). TBP has been detected in various
environmental media, including indoor air, surface water,
atmosphere, dust, sediments, and soil (Li S. et al., 2022; Zhang
et al., 2020). Humans are exposed to TBP through both diet and
airborne pathways, with its metabolites having been detected in
human urine samples in various studies (Yoshida et al., 2022;
Fromme et al., 2014). Extensive studies have consistently
demonstrated the hepatotoxic effects of TBP. Research has
shown that DBuP is linked to liver function impairment in
adolescent populations (Li R. et al., 2022). Additionally, in the
adult population in the United States, increased concentrations of
urinary DBuP have been associated with a higher risk of
nonalcoholic fatty liver disease (NAFLD) (Chai et al., 2022).
Animal studies revealed that C57BL/6 mice exposed to 30 mg/kg
TBP for 14 days exhibited significant increases in binuclear
hepatocytes and nuclear hyperchromatic cells in liver
pathological sections (Zhou et al., 2017). Furthermore, Elvira
Mennillo’s research (Mennillo et al., 2019) demonstrated that
oxidative stress enzymes, including glutathione S-transferase
(GSTs), which play a key role in the conjugation of xenobiotics,
were elevated in a rat hepatic cell-line (H4IIE) exposed to 50 μM
and 100 µM TBP. Our study represents the initial discovery of the
association between TBP and liver fibrosis in the human population.
This finding further corroborates the hepatotoxic effects of TBP.

However, there are some limitations to this research. First, the
investigation was restricted to five specific EEDs available in the
NHANES dataset, potentially overlooking other environmentally
relevant endocrine disruptors and limiting the comprehensive
assessment of chemical exposures. Second, while our in vitro
cellular models provided initial insights into TBP-induced hepatic
fibrosis mechanisms, the use of BRL-3A hepatocytes has limitations
when extrapolating to human disease. In the future, we should utilize
models like human liver organoids to better simulate the complex
structure and function of the human liver, thereby enabling a more
accurate evaluation of the impact of TBP on liver fibrosis. Finally,
our analysis did not account for potential synergistic interactions
with other biological and environmental factors, including
concomitant medication use, dietary components, and co-
exposure to unmeasured environmental contaminants, which
could collectively influence hepatic outcomes.
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5 Conclusion

TBP was filtered from the mixture of EEDs that are associated
with liver fibrosis. After treatment with TBP, the BRL-3A
hepatocytes exhibited increased secretion levels of extracellular
matrix and fibrosis-related genes. Our study provided an accurate
target for the prevention of the damaging effects of EEDs on
liver fibrosis.
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