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New Approach Methodologies (NAMs) hold great potential to fill data gaps for
chemicals and modernisation of chemical risk assessment practices. Current
toxicity testing is based on conventional approaches with high reliability on in-
vivo studies, but with time, regulators are trying to move towards in-vitro and in
silico tools enabling efficient risk assessment strategies. Herein, we discuss about
different emerging techniques which are or can become a NAM including both
in-vitro and in silicomodels with particular focus on reducing animal studies and
improving decision-making for hazard and exposure assessment. We also
discussed about the way to strengthen the regulatory and public confidence
in different NAMs and automation of these approaches. Some of these NAMs can
help in identifying biochemical mechanisms for toxicity, calculate the point of
departure (PoD), develop adverse outcome pathways (AOP), translate risk to
multiple species and quantify uncertainty frompredictions formultiple chemicals.
Scientists and regulators can work together to frame robust guidelines for the
practical application of these tools and ensure reproducible results.
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Highlights

• Contribution of in-vitro and in silico approaches towards building NAM.
• Automation of different approaches for risk assessment.
• Current limitations in data reporting and steps to improve data fairification.
• Integrating high throughput approaches for risk assessment.

1 Introduction

Development of alternative approaches based on the 3Rs principle; reduce, replace, and
refine which provides the framework for minimizing animal use in scientific testing has led
to different visions for improving toxicological risk assessment, like “toxicology for 21st
century”, and “new approach methodologies (NAMs)” for chemical safety risk assessment
(Bearth et al., 2025; Sewell et al., 2024; van der Zalm et al., 2022). Currently, there are more
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than ten thousand chemicals present in the market with thousands
of them lacking relevant data for meaningful risk assessment.
Testing that vast number of chemicals will take decades to
generate enough data, and additionally conducting animal tests
are too expensive and ethically difficult, posing challenges to
solve the issue of assessing risk from these chemicals to humans
and the environment (Sewell et al., 2024). Hence, there is a clear
need for NAMs, which can help in filling the existing gaps and
accelerate the process of risk assessment.

NAMs in simple words can be defined as emerging technology,
methodology, approach, or combination thereof, having the
potential to improve risk assessment for fulfilling critical
information gaps and avoid or reduce the reliance on animal
studies (Kavlock et al., 2018). Regulators like USEPA
(United States Environmental Protection Agency), EFSA
(European Food Safety Authority), ECHA (European Chemical
Agency), and other related agencies have been developing
frameworks to implement and use NAMs for regulatory
applications (Di Nicola et al., 2023). Integrated approaches for
testing and assessment (IATA) combine different data sources, to
conclude on the toxicity of chemicals and often include data from
NAMs. According to the OECD, an IATA combines multiple
sources of information for hazard identification, hazard
characterization, and chemical safety assessment. IATA
frameworks integrate and weigh all relevant existing evidence,

while also guiding the generation of targeted new data when
needed, to support regulatory decision-making on potential
hazards and risks (OECD, 2016). For simple endpoints or local
effects, animal studies can be replaced with in-vitro, in-chemico, or
in silico approaches, however, for complex endpoints, in the current
scenario the need for animal studies can be reduced, not eliminated.
These methods as NAMs provide data to be used within IATA
frameworks. However, by using a comprehensive “weight of
evidence” approach and leveraging emerging NAMs there is fair
possibility that by weighing and integrating different types of
available information decision making on complex endpoints can
also be taken without conducting additional animal studies. Further,
NAMs can be used to inform population variability, by identifying
susceptible populations especially pregnant females, infants, and
occupational exposure workers by considering individual health risk
and developing regulatory limits for narrow toxicological index
chemicals (Di Nicola et al., 2023; Kavlock et al., 2018).

Apart from providing data for risk assessment, NAMs can also
help in prioritization, especially supporting grouping approach or
read-across. For instance, Point of Departure (PoD) refers to the
dose at which a biological response is first observed and serves as the
basis for extrapolations in risk assessment (Sturla, 2018). A PoD can
be derived from different metrics, including the no-observed-
adverse-effect level (NOAEL), lowest-observed-adverse-effect level
(LOAEL), benchmark dose (BMD) (Izadi et al., 2012). PoDs can also
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be estimated using NAMs, which can help in setting safety values
when data are limited. This approach can reduce the need for high-
tier testing that is currently required to reach conclusions in risk
assessment (Levorato et al., 2019). Another approach can be the
utilization of publicly available data from ToxCast and
toxicogenomic to prioritize chemicals based on bioactivity
calculated through in silico models (Farmahin et al., 2017). These
data can also be used to enrich Adverse Outcome Pathways (AOPs),
which describe a sequence of causally linked biological events
leading to an adverse health or ecotoxicological effect, and serve
as a central framework for mechanistic risk assessment (Ankley
et al., 2023; Villeneuve et al., 2014). Computational methods are
therefore an integral component of NAMs, as they enable the
integration and interpretation of large datasets for hazard and
risk assessment. Importantly, computationally approaches have
been demonstrated to have clear cost-effectiveness by enabling
rapid, large-scale screening compared to resource-intensive
animal bioassays and have already been adopted in regulatory
contexts such as the U.S. EPA’s Endocrine Disruptor Screening
Program and Toxic Substance Control Act prioritization efforts.
International agencies including ECHA, Health Canada, and the
European Food Safety authority (EFSA) have also used these data,
reflecting the growing regulatory acceptance of computational

toxicology approaches for chemical risk assessment (Thomas
et al., 2019).

The objective of this review is to provide an overview on NAMs
being used by risk assessors all over the world, highlight their
limitations and challenges, discuss newly emerging NAMs which
can help in environment and human health risk assessment in field
like, high-throughput in-vitro, OMICS analysis, physics-based
(molecular docking, molecular dynamic simulations, and density
function theory), and data-driven methods (quantitative structure
activity relationship: QSAR, physiologically based pharmacokinetic
model: PBPK, systems biology models) (Figure 1). In addition, the
review addresses approaches to promote the acceptance of these
NAMs, including the role of AI/ML in their automation, and
discusses the harmonization and FAIRification of data generated
by NAMs, with emphasis on integrating evidence from in vitro and
in silico studies to support AOPs.

2 NAMs in chemical risk assessment

Integration of in-vitro and in silico approaches can be used to
assess risk and identify the endpoints for regulatory purposes. In
vitro approaches like 3D cell lines, organoids, spheroids, and

FIGURE 1
Different approaches which can be utilized for developing New Approach Methodologies (NAMs), along with automation for supporting chemical
risk assessment.
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microphysiological (MPS) systems are increasingly becoming
famous and gaining acceptance by the researchers and
toxicologists worldwide. But the OECD framework for the
generation of data using in-vitro pipeline is still quite blurry,
often limiting its usage for regulatory submissions. However, with
increased focus on non-animal-based approaches by regulators, the
translation of risk through in-vitro and in silico will become the
standard framework in near future (Madden et al., 2020). In-silico
based approaches can be divided into two categories, one being
physics-based cheminformatic with the potential to use at early
stages for extracting valuable insight about the chemical and the
other being data driven models which can be used at later stages to
translate the risk for humans. Techniques like molecular docking
can be used to predict binding affinities and can help in prioritizing
compounds with toxicity properties. Combining the initial data
from cheminformatics to in-vitro or integrating multiple in silico
models can help in building weight-of-evidence for newer and
existing molecules.

Novel approaches like the OMICS pipeline, along with
benchmark dose modelling (BMD) have the potential to reveal
common biochemical response pathways and calculate different
limit values like IC50 (Beale et al., 2022). However, due to
different types of data being generated, standardisation, data
quality, and interpretation are still the bottleneck for acceptance
by regulators. The OECDOMICS reporting framework (OORF) has
been developed to ensure the reproducibility and quality of data. It
can be further used for calculating the PoD and as well combined
with other in silico tools like PBK model for translation of risk
(Farmahin et al., 2017).

Currently, PBK models are being used for risk translation,
exposure reconstruction, chemical-chemical interaction, and
much more to predict the fate of chemicals in living organisms
(8,9). Toxicokinetic tools like httk, TK-plate, and others are gaining
popularity and are continuously being improved to increase the
incorporation into risk assessment. EFSA used a PBK model to
calculate the tolerable weekly intake (TWI) for 4 PFAS considering
immunotoxicity as the endpoint (Schrenk et al., 2020). Similarly,
other in silico tools like QSAR for identifying chemical structural
features with relevance for human and environmental hazard,
systems biology models for evaluating toxicodynamics can
support risk assessment and NAMs approaches. OECD toolbox
currently uses a combination of multiple NAMs approaches like in-
vitro, OMICS, PBK, QSAR, etc. to build weight of evidence for
different chemicals and endpoints (Figure 1). Guidance for read-
across and structurally similar compounds has also been published
to support genotoxicity hazard by EFSA and ECHA (Henriquez
et al., 2024). Read-across is an approach in which data from well-
studied chemicals are used to predict the properties or toxicity of
structurally or mechanistically similar chemicals, thereby filling data
gaps while reducing reliance on animal testing. Recently, ECHA has
recommended various in silico methods like nanoQSAR, grouping
and read-across, PBK modelling, molecular dynamics simulations,
and adverse outcome pathways for the prediction of risk posed by
nanomaterials to humans and the environment (ECHA, 2022).
Additionally, techniques like text mining and natural language
processing support the curation of information from knowledge
sources and facilitate hypothesis development for risk assessment.
Implementations and advancement in QSAR, read-across, adverse

outcome pathway (AOP), and integrated approach to testing and
assessment (IATA) approaches, are always recommended by
regulators for toxicological risk assessment (Table 1). Many of
these approaches are already being accepted and used by
pharmaceutical industries, but the regulators need to develop
proper guidelines about using these tools considering their
strengths and limitations for improving risk assessment (Table 1).

2.1 In vitro methodologies

The field of in-vitro models is evolving rapidly and has become
crucial for toxicology and chemical assessment (Wang et al., 2024).
These models have gained popularity, especially after the
implementation of the 3Rs (replacement, reduction and
refinement) principle, as they offer a robust alternative to animal
testing. In the section below, we will be discussing about advanced
biological system which carries the potential to become NAM.

2.1.1 2D to 3D cell culture and organoids
Traditional in-vitro models mostly rely on 2D configurations

utilizing animal and human cell lines. These models have been
widely used because of their simplicity and cost-effectiveness, but
they fail to capture the complexity of human physiology, including
tissue architecture, cell-cell interactions and metabolic capacity
(Wang et al., 2024). This limits their predictive value for human
health outcomes. To address these limitations, a wide range of more
advanced models has emerged.

The 3D cultures, organoids derived from stem cells, and
microphysiological systems (MPS) such as organ-on-a-chip
platforms better mimics tissue architecture (Cacciamali et al.,
2022). These systems, more accurately, stimulate the complexity
of human tissue and its interactions, allowing for investigations of
organ-specific toxicity, barrier integrity, and multicellular responses
to chemical exposures (Duval et al., 2017; Ravi et al., 2015). Since
responses to substances can differ significantly across species, these
models also aid in identifying diseases that might not be evident in
animal models (Loewa et al., 2023). To provide a clearer
understanding of in-vitro models applicability in chemical risk
assessment, examples of these emerging models are presented,
highlighting both their potential and limitations.

3D culture particularly organoids, have been used to study the
toxic effect of different substances, such as pesticides, microplastics,
or particulate matter, on different organs. Although being simpler
than the whole organ, they exhibit fundamental features such as
cellular organization, differentiation and interaction (Wan et al.,
2024). For example, liver organoids have been applied to study
metabolism-mediated hepatotoxicity, while brain organoids have
been used to investigate neurodevelopmental toxicity. A review
conducted by Cong et al. summarized the recent advances in
relation to chemical risk assessment, concretely they recap the
toxicity of microplastics and other environmental compounds in
a wide variety of organoids (Cong et al., 2024).

In accordance with the examples mentioned above, Cheng et al.
(2022), Cheng et al. (2023) demonstrated that liver organoids
recapitulate hepatotoxic and lipotoxic effects induced by
microplastics, alone or in combination with BPA. Through
evaluations of cellular toxicity, lipid metabolism alterations,
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oxidative stress or inflammatory pathways, they predicted the
potential risk of microplastics in liver fibrosis and cancer,
highlighting the utility of organoids to assess chemical
interactions. Similarly, brain organoids treated with
organophosphate pesticides or particulate matter have been
observed to produce autism-related disorders by reducing the
CDH8 protein and affecting neuronal growth. In addition,
exposure to diesel particulate matter was associated with altered
mitochondrial function, while exposure to a common additive in
plastic products reduced neuronal proliferation and migration, and
induced apoptosis in brain organoids, further demonstrating the
value of organoids in revealing specific mechanism of chemical
toxicity (Albanese et al., 2020). Although organoids show great
potential in toxicity assessment, their ability to stimulate complex
pharmacokinetic processes is still limited. For example, they cannot
fully replicate the blood-brain-barrier, which is crucial for evaluating
drugs intended for central nervous system (CNS) disease (Wan
et al., 2024).

In the same line, to better capture organ complexity MPS, such
as organ-on-a-chip systems, have been developed. These
microfluidic devices mimics the mechanical and biochemical

environment of human organs, allowing multi-organ systems
with diverse cell co-cultures and 3D tissue structures connected
by microfluidic channels that replicate blood vessels (Bhatia and
Ingber, 2014). Among the different application of these models, they
have revolutionized respiratory disease research and have opened
new possibilities for studying kidney function (Ashammakhi et al.,
2018; Shrestha et al., 2020). A recent study, which evaluate
nanoparticles toxicity using a lung-on-a-chip model
demonstrated that organ-on-a-chip systems have a greater
accuracy in assessing adverse effects compared to animal models
(Shrestha et al., 2020). Specifically, Shrestha et al., found that
nanoparticles exposure increased the expression of the
intercellular adhesion molecule 1 and the production of reactive
oxygen species. In addition, lung-on-a-chip models allowed the
study of nanoparticles transport, demonstrating an acceleration
of the toxic effect on lung, underscoring the importance of
mechanical movements on toxicity assessment (Shrestha et al.,
2020). Similarly, kidney-on-a-chip models are potentially relevant
for chemical risk assessment, due to this organ is the main way of
excretion of environmental compounds (Lepist and Ray, 2016). Li
et al. found that cadmium exposure in a kidney-on-a-chip device

TABLE 1 Different NAM approaches with strengths and limitations for acceptance in risk assessment.

Models Methods Strength Limitation for regulatory
acceptance

Strategies for mitigation

In vitro 2D and 3D cells Study of specific molecular mechanisms
Mimics tissue architecture and cell-cell
interaction
Mimics the microarchitecture and
physiological responses of human organs

Under-representation of the target organ
Lesser cell density than the actual tissue
Monoclonal origin of cells does, impairs
intracellular signaling

Production of reproducible and high-
quality scientific data by following the six
principles of Good Cell and Tissue Culture
Practice (GCCP)

OMICS Identifying significant genes, proteins and
metabolites involved in interfering with
processes
Significant pathways being altered at
molecular level

Lack of standardization
Lack of transparency in data processing from
raw data to an interpretable result
Broad in scope and generate data that may
be applicable to a wide range of toxicological
endpoints

Use of OORF for reporting to ensure
critical details on study design, data quality,
and regulatory relevance to enhance
reproducibility

In silico Molecular
Docking

Calculating binding energy of chemicals with
receptors
Stability and reactivity of toxic compounds
Determination of LD50 by integrating it with
deep learning

Inadequacy in scoring function and
algorithms can compromise the results

Post-processing of docking results can
provide more accuracy in the docking
results

MDS Can simulate the behaviour of
macromolecules

Every change in system due to quantum
mechanics cannot be simulated due to
approximations
Understanding of the complete interaction is
not possible because of the very short scale of
time step

Longer simulation time can provide better
outcome
Use of different optimized/designed force
fields on the basis of specific contaminants
A OECD reporting guideline can be helpful
during regulatory filling where MDS has
been used

DFT Predict the reactivity and stability of
compound

Empirical force fields cannot capture bond
breaking and are limited by parametrization,
advances such as reactive force fields

QM/MM hybrid methods, and polarizable
force fields are making MD both more
accurate and more broadly applicable for
toxicological studies

QSAR
PBK

Enables prediction of chemical properties or
bioactivities by linking molecular structure
to experimental outcomes, allowing efficient
design of new compounds without extensive
testing
Estimating human exposure using IVIVE-
based mechanistic PBK models, with the
potential to integrate toxicokinetic with
AOPs by utilizing in vitro assay results to
quantify AOPs

Lack of acceptance threshold in the
assessment element such as applicability
domain fit, reliability scoring, or goodness-
of-fit criteria
Limited validation datasets due to
unavailability of PK data of many chemicals

Ensuring predictive models are built on
high-quality, well-characterized
experimental data, including details on test
variability, potential confounding factors,
and chemical purity to enhance model
reliability and structure-effect correlation
Following OECD PBK and other reporting
template while building models
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with glomerular endothelial cells declined cell-viability and
increased endothelial injury by increasing LDH in a dose-
dependent manner. Consequently, a reduction in the tight
junction protein was also observed, indicating that cadmium
disrupt barrier integrity and increase permeability depending on
the dose administered (Li et al., 2017). These studies help to
understand the alterations produced by environmental chemicals
that modify their absorption or excretion, making them more
aggressive.

Other new advanced in-vitro approaches, particularly tissue
engineering, have shown promising applications for chemical risk
assessment (Cui et al., 2018). This strategy enables the creation of
functional tissue models such as skin, bone, skeletal muscle and
cardiovascular systems, which can be used for drug screening,
toxicity testing and disease modeling (Mirshafiei et al., 2024). For
instance, mesenchymal stem cells (MSCs) have been applied to
regenerate bone tissue, differentiating it into osteoblasts with specific
growth factors such as TGF-β, TGF-α or HGF, providing platform to
assess compound-induced effect on bond formation and scaffold
integration (Stamnitz and Klimczak, 2021). Similarly, human PSCs-
derived cardiomyocytes, when combined with extracellular matrix
scaffolds, can mimic myocardium contraction and electrical
function, offering a model to evaluate cardiotoxicity of chemicals
(Jackman et al., 2015). Despite these advances and their high
potential for risk assessment, tissue-engineered systems remain in
development, and challenges such as vascularization, scalability, and
standardization of bio-ink still need to be addressed to facilitate its
broader applications in chemical risk assessment (Cui et al., 2018).

Despite these advances, regulatory uptake of these methods has
been limited due to challenges in validation, reproducibility and
harmonization. Several OECD guidelines already incorporate in-
vitro approaches which have been approved such as OECD TG 439,
487 and 496 used for the hazard identification of irritant chemicals
or those with the potential to induce serious eye damage by the
reconstruction of human epidermis or cornea, as well as
genotoxicity test (OECD, 2021b; OECD, 2023; OECD, 2024).
However, addressing complex endpoints such as repeated-dose
toxicity, carcinogenicity or reproductive toxicity remains a
significant challenge in the validation and implementation of in-
vitro models (Miccoli et al., 2022; Schmeisser et al., 2023). Further
progress will depend on standardized protocols, international
validation efforts, and the integration of different methodological
domains (ECHA, 2022; Schmeisser et al., 2023; Perkins et al., 2022).

2.1.2 In vitro data for hazard assessment
Many laboratories around the world are working to develop and

optimize alternative in-vitro test methods for hazard assessment of
compounds for either pre-screening of compounds or to identify
toxicity and mechanism of action. Many developed in-vitro models
as well as high throughput techniques like imaging, high content
screening etc. have the potential to reduce cost and animal usage but
the validation of such models and techniques is complex and
challenging and it takes years for such approaches to get official
regulatory acceptance. Nonetheless, there have been a lot of
examples in recent years with pre-validated and validated
methods related to genotoxicity, developmental neurotoxicity,
safety testing in cosmetic products and much more to partially or
fully replace animal testing for hazard assessment.

One good example is OECD guideline 493 which is well
characterized, validated and accepted providing in-vitro
procedure for identification of skin irritants. Reconstructed
human epidermis composed of epithelial cell layers is
recommended along with validated test method for cell viability.
As per the regulation 1907/2006 for REACH, this alternative testing
can be used for skin irritation and corrosion for substances allowing
complete replacement of animal experimentation (Bas et al., 2021).
Data shows that non-animal test methods have increased three times
for skin corrosion/irritation, four times for eye irritation/damage
and twenty times for skin sensitization for period 2017–2019 under
REACH (Burden et al., 2021). There is also a lot of effort ongoing for
developmental neurotoxicity NAM incorporating high content
imaging (HCI) for apoptosis, proliferation, synaptogenesis and
neurite outgrowth. Carsten et al. in his work evaluated a dataset
of 92 chemicals for 57 assays including both microelectrode array,
network formation assay (NFA) and HCI assay relevant to DNT.
They found that NFA along with HCI can help in assessing key
functional processes in neuronal development which is a good
starting point for classifying DNT positive and negative
chemicals. To improve classification of DNT NAM evaluation
chemicals, addition of DNT NAM assay to integrated screening
paradigm should include both neuronal and non-neuronal cell types
which should represent important neurodevelopmental processes
like neuronal crest cell migration and myelination that are not
included currently (Carstens et al., 2022). Genotoxicity is another
area where in-vitro test methods are advanced and accepted by
regulators (OECD TG 471, 473, 476, 479, 481, 482, and 487). But,
still many of alternative in-vitro test methods are not fully accepted
by regulators due to lack of validation. Test method validation refers
to a process based on scientifically sound principle by which
relevance and reliability of a particular approach, method,
process or test are established for a specific purpose (Kandárová
and Letašiová, 2011). In brief, any in-vitro test method, whether new
or updated, needs to be relevant and reliable, i.e., validated to be
accepted by regulators. Establishing this aspect is a critical step in
validation for NAM. Often, comparison of data generated using in-
vitro test methods between laboratories and within labs is
challenging as most researchers do not work with standardized
and detailed protocols. Implementing standard operating
procedures (SOP) in the laboratory for tests can help to achieve
harmonization and also help with validation and regulatory
acceptance of the test methods. Also, the concept of IATA in
which different test methods are combined to predict one end
point is challenging as there are multiple test guidelines. A
successful example of such approach is endpoint for human skin
sensitization where IATA is based on AOP describing the linkage
between chemical interaction with a biological system at molecular,
subcellular, cellular, tissue and organ level (Bas et al., 2021).

2.1.3 OMICS analysis
It is important to note that, in addition to demonstrating toxic

effects, in-vitro models allow the acquisition of mechanistic
information like the interaction between molecules, alterations in
cell metabolism or the specific functions of each organ,
understanding how chemical perturb biological pathways. This is
essential for establishing safety thresholds and relevant human PoD
(Zhang et al., 2018). Therefore, by integrating these advanced in-
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vitro systems with other approaches such as OMICS, it becomes
possible to link cellular responses to AOPs and derive quantitative
safety information, enhancing their relevance for chemical risk
assessment (Perkins et al., 2022). In addition, integrating these
innovative technologies with in silico approaches like IVIVE
based PBK modelling can help in improving risk assessment
(Kreutz et al., 2024; Zhang et al., 2018). This strengthens their
regulatory relevance and highlights how in-vitro models, when
combined with complementary techniques enhances our
understanding of the biological processes underlying human
exposure to chemicals.

The use of NAMs in the context of 3D cell cultures, MPS, and
organoids presents a promising future for chemical risk assessment,
providing more accurate, ethical, and human-relevant alternatives to
traditional animal models. Although these in-vitro models have
potential, they remain limited in their ability to reproduce human
physiology and predict systemic toxicity (Schmeisser et al., 2023). To
maximize their usefulness, NAMs must be standardized and
validated for their regulatory acceptance and complemented with
analytical approaches that provide specific information at the
molecular level. To this end, OMICS is a potential new tool that
allow us to capture cellular and molecular responses in our models.
Combining in-vitro models with these techniques improves the
interpretability, reproducibility and regulatory relevance of in-
vitro models.

OMICS technologies provide the essential molecular and cellular
readings needed to turn in-vitro systems into robust tools for chemical
risk assessment. Toxicogenomics approaches, in particular, can help
in characterizing human risk and have the potential to becomeNAMs
by analyzing the toxicity of the chemicals at the molecular and cellular
level. In the broader aspect, OMICS encompasses genomics,
transcriptomics, metabolomics and proteomics study which can
identify changes in the genotype and phenotype of the organism
and relate them to the AOPs (Addicks et al., 2023).

Transcriptomics data obtained from cell lines can be used to
identify activation of specific targets and also to calculate PoD based
on changes in gene expression as an approach to screen large
number of chemicals. This can identify molecular initiating
events (MIE) and key events (KE) within the AOP to understand
the chemical’s mode of action based on targeted differential gene
expression identification (Harrill et al., 2024). Multiple studies used
transcriptomics data for risk assessment. For example, Matteo et al.
analyzed BPA and 15 data poor alternatives and their effects on
human breast cancer cell lines to analyze the toxicity using the BMD
and PoD analysis (Matteo et al., 2023). Similarly, Addicks et al.,
evaluated the effects of Per- and polyfluoroalkyl substances (PFAS)
on the human liver spheroids using the transcriptomic PoD (t-PoD)
(Addicks et al., 2023). This, high-throughput transcriptomics data
allows us to look for responses across multiple molecular pathways
compared to traditional in-vitro data. Although, multiple
approaches have been applied to calculate molecular level PoD,
there is no consensus on t-POD, primarily due to its variability
across cell types and experimental conditions.

Metabolomics includes identifying and quantifying the complete
set of metabolites whereas proteomics identifies and characterizes
the entire set of proteins providing a holistic understanding of
cellular response. Malinowska et al., illustrated integration of in-
vitro metabolomics with high-throughput screening to support

decision-making in risk assessment of chemicals using HepaRG
cells and CdCl2 as a case study (Malinowska et al., 2022). Viant et al.,
demonstrated the usability and reliability of in-vivo metabolomics
study of 8 chemicals in rats to group them based on the activity of
the metabolites ensuring to make the analysis FAIR and more
reproducible, following guidelines from OECD and ECHA, and
reflect the need to establish standard quality control steps for
processing the data and improving risk assessment (Viant
et al., 2024).

To improve accuracy and overcome the limitation of averaging
signals across heterogeneous cell population leading to false
discoveries, single-cell omics techniques are gaining attention to
provide better insights into the complexity of the tissue of interest.
This can provide information about how chemicals affect specific
cell types or pathways, identify rare toxicologically relevant cell
populations, and enable molecular phenotyping. However, one of
the challenges in this study is isolation of cells from whole tissue
before analysis, which employs more complex and costly techniques
like Magnetic-activated cell sorting (MACS), Fluorescence-activated
cell sorting (FACS), cell barcoding and various microfluidic
techniques. To address this limitation, several platforms have
been developed (Gierahn et al., 2017). Single-cell omics have a
wide range of applications in cancer-research, immunology, and
developmental biology. Wu et al., used single-cell RNA sequencing
and multi-omics analyses to characterize a novel signature
comprising 33 genes related to tobacco carcinogens to elucidate
the progression of bladder cancer through fibroblasts-induced
immune invasion and epithelial mesenchymal transition (Wu
et al., 2024).

In spite of obtaining accurate information with the single-cell
omics technique, in response to toxicants, multimodal single-cell
omics should be used effectively to understand cellular behavior and
regulation, as well as to correlate findings with toxicity pathways and
AOPs. An advanced approach like spatial transcriptomics provides
insights into the spatial distribution of changes in gene expression in
the tissue and captures the specific position of changes in the
transcriptome of the tissue sample. The combination of single-
cell omics strategies and spatial transcriptomics can be very
useful in identifying the organ-specific toxicity, which can help in
AOP identification and related biomarkers discovery with more
precision. Chen et al., analyzed the progression of cerebral malaria in
the murine brain and its treatment with artemisinin using
spatiotemporal profiling, which demonstrates the potential of the
technique to be used in risk assessment of the chemical (Chen
et al., 2025).

Currently, the major challenge in omics analysis is data analysis
and integration of data generated from multi-omics techniques,
Since the dimension of data generated is different, Multi Omics
Factor Analysis (MOFA) (Argelaguet et al., 2018) and Regularized
Generalized Canonical Correlation Analysis (RGCCA) (Tenenhaus
and Tenenhaus, 2011) are two of the promising algorithms that can
be used for the integration of multi-omics datasets. A combination
of multimodal single-cell omics analysis and one of these algorithms
may help toxicologists with better risk assessment of the chemicals.
For the data analysis of omics data, preprocessing is a crucial step for
the quality of the analysis, which should be uniform and robust for
better reliability of the results for the regulatory bodies. OECD
provides a framework called OECD Omics Reporting Framework
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(OORF) for reporting elements for the regulatory use of omics data
from laboratory-based toxicology studies. The main aim for
developing this framework is to facilitate data sharing and
promote reproducibility in omics toxicology to make it more
harmonized and standardized. It provides guidelines for
reporting different microarray data: RNA-seq, qRT-PCR, NMR
metabolomics, and proteomics along with data analysis and
experimental designs. It also provides standard preprocessing
steps for the analysts to be followed for improved analysis and
minimum false discovery rate (OECD Omics Reporting
Framework, 2023).

2.2 In-silico methodologies

2.2.1 Physics based methods
These methods are frequently used in drug discovery but is less

utilized in NAMs for human health risk assessment. In recent years,
computational chemistry approaches such as molecular docking,
density functional theory (DFT) calculations, molecular dynamics
simulations, and binding energy calculations using Molecular
Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) and
Molecular Mechanics Generalized Born Surface Area (MM/
GBSA) have gained significant attention as several studies have
been published in environmental science journals (Trisciuzzi et al.,
2018; Zheng et al., 2025). These approaches help predict the
interactions between hazardous chemicals and human receptors,
providing insights into their binding mechanisms.

Molecular docking is a technique in computational chemistry
which elucidate the interaction between a ligand and a receptor
complex by simulating the spatial and energy matching between
ligands and receptors. Through this the mechanistic of the
toxicological effect due to any chemical can be understood.
Through this technique large scale screening of chemicals based
on their affinity to a specific target can be done. By providing
information on binding energies, interaction residues and
interaction patterns, Ortega-Vallbanaet et al. demonstrated that
tools like DockTox can facilitate the virtual screening of small
compounds that target MIE-associated proteins (Ortega-Vallbona
et al., 2025). This approach hence has potential to inform AOPs and
mechanistic understanding in risk assessment. Advances such as
semi-empirical quantum charge calculations like PM6 have
improved accuracy in pose prediction, particularly for charged
systems and metalloproteins (Bikadi and Hazai, 2009).
Importantly, docking can generate hypotheses about potential
toxicological targets when experimental data are lacking,
supporting the reduction of animal testing and aligning with the
3Rs principle. The potential of the method can be validated in the
fact that EFSA in its scientific opinion document also suggest the use
of docking for grouping of multiple chemicals based on structural
similarity considering multiple features like class of chemicals,
presence of functional groups, breakdown products or similar
precursor to increase the confidence in the assessment (More
et al., 2021). However, the accuracy of results depends heavily on
the quality of input structures, and docking programs/algorithms
used for the purpose. They generate binding poses that resemble
experimentally determined structures; however, challenges remain
in accurately reproducing ligand conformations and in accounting

for protein flexibility, since most docking approaches still treat the
receptor as rigid proteins, which reduces reliability when
conformational flexibility is essential. Apart from this no single
program deems fit for all the targets (Warren et al., 2006). False
positives are common and docking predictions are rarely sufficient
as standalone evidence. A critical limitation arises from the reliance
on scoring functions as they rely on large approximations to simplify
complex molecular recognition processes, which introduces
inaccuracies and reduces predictive performance (Cross et al., 2009).

On the other hand, molecular dynamic simulations (MDS)
apply Newtonian mechanics to model the movements and
interactions of atoms over time. By solving the equations of
motion, MDS enables investigation of protein flexibility,
conformational changes, and stability during ligand binding.
These simulations provide valuable insights into the dynamic
behaviour of proteins and their complexes, offering a mechanistic
understanding that is critical for both elucidating biological function
and supporting chemical risk assessment. Beyond structural
dynamics, MDS can quantify conformational stability, residual
mobility, compactness, solvent-accessible surface area (SASA),
essential dynamics, and Gibbs free energy (FEL) analysis. FEL
analysis helps identify high- and low-energy transition states and
visualizes the dynamic behaviour of the system. Furthermore, MM/
PBSA and MM/GBSA calculations use molecular dynamics
simulation data to estimate binding energy components such as
van derWaals, electrostatic, polar solvation, SASA, and total binding
energy (ΔG) of toxic chemicals with estrogen related receptor
gamma (Pathak et al., 2024).

Density Functional Theory (DFT) can be used to calculate the
highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energies. The HOMO-LUMO gap is an
important parameter for determining the stability and reactivity of
toxic chemicals (Pathak and Kim, 2024). Apart from these
characteristics DFT can also provide quantum-chemical descriptor
such as atomic charge distributions, which when combined with
energy gaps and stability profile captured the mechanistic aspects of
metabolic activation and have been successfully applied to predict
Ames mutagenicity of primary aromatic amines (Kuhnke et al.,
2019). Conceptual DFT has also been successfully applied in
screening of emerging pollutants where a rule of thumb was
provided for differentiation between pollutants. The study gave
evidence about the bioaccumulation of pollutant to be “too hard”
which binds with protein e.g., PFAS compounds and “too soft”which
binds with lipids. This approach overcame the barrier of the non-
availability of experimental data where computational method can be
applied to decipher the properties of any chemical (Li X. et al., 2024).
These approaches can find their value as NAM since they provide
atomic-level insights into the binding strength of chemicals with
their target receptors in humans. They bridge the gap between
hazardous chemicals and their receptors by revealing key
interactions, facilitating the identification of hazardous chemicals
with varying affinities for specific targets. This information can
support risk assessment and aid in developing strategies to
mitigate the effects of harmful chemicals by designing competitive
inhibitors that disrupt their interaction with human receptors
(Jaeger-Honz et al., 2025). Together, they can provide a tiered
approach that balances computational cost with predictive power
for chemical risk assessment.
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2.2.2 Data driven methods
Computational modeling techniques like QSAR, read-across,

PBPK, and IVIVE play a pivotal role in toxicology prediction and
chemical safety assessment and can be used as an alternative to
animal testing for REACH regulation (European Chemicals
Agency, 2020).

QSAR/quantitative structure property relationship (QSPR) is one
of themethods recommended by REACH for supporting the substance
registration process which basically relates the set of descriptors (X)
with the response (Y). These models can be used to predict physico-
chemical properties of compounds as well as biological activity or
toxicity based onmolecular structure for newer and existing chemicals.
However, to facilitate the consideration of QSARmodels for regulatory
purposes, it should follow the QSAR modeling reporting framework
(QMRF) which can ensure reproducibility and confidence in model
predictions. Apart from individual models, platforms like OECD
QSAR toolbox is being used by regulators to perform initial
screening of chemicals as well as to predict ADMET properties
(Yordanova et al., 2019). However, still the data for environmental
chemicals is limited compared to the drugs, as a result most QSAR
models are trained on drug data, leading to biasness for the prediction
of environmental chemicals (Moreau et al., 2022). Additionally, poor
performance of QSAR model could be due to multiple factors,
including data quality and relevance, choice of descriptors, model
complexity, quantification of uncertainties, and ensuring predictions
fall within the model’s applicability domain. These aspects should be
carefully evaluated by model developers, users, and third-party
assessors so that the poor performance of the model can be
avoided (Cronin et al., 2025). Importantly, QSAR models not only
support hazard prediction but can also generate input parameters that,
when integrated with PBK framework, enhance toxicokinetic
modelling and translation of in vitro data to in vivo exposure.

Read-across is an important data-driven approach widely applied in
regulatory toxicology, particularly for data-gap filling in chemical risk
assessment. It uses information from a source (data-rich) chemical to
predict the properties of a target (data-poor) chemical, thereby reducing
the need for experimental testing (Read-Across Assessment Framework,
2017). The approach typically relies on showing the similarity of an
analogue to a target substance by comparing chemical structure,
physicochemical properties, metabolism and toxicokinetics,
toxicodynamics, and structural alerts identified through predictive
QSAR approaches. Such similarities and differences should be clearly
documented, ideally within a data matrix that highlights consistent
trends across the category. The robustness of read-across can be
strengthened by applying the ECHA assessment framework, which
requires a hypothesis-based justification, evaluation of potential
contradictions, credible extrapolations, and clear specification of
substance identity and composition, including impurities. Collectively,
these practices increase transparency and regulatory confidence in read-
across predictions (Alexander-White et al., 2022; Read-Across
Assessment Framework, 2017).

For toxicokinetics of chemicals, a generic PBK model can be used
to predict the concentration-time profile or toxicokinetics of
chemicals (Deepika & Kumar, 2023). Currently, QSAR along with
PBK model can help in generating parameterization data required for
building the model. Open access models like HTTK generate data for
parameters like absorption rate constant based on Caco-2 cell lines,
metabolic data, protein binding, etc., which helps in reducing

dependence on animal studies. OECD PBK model reporting
framework includes the guideline for developing confidence in the
model with integration of in-vitro through IVIVE, QSAR, along with
PBK for toxicokinetic prediction, which is a step toward next-
generation PBK modeling (NG-PBK) (Paini et al., 2019). Next-
generation models can utilize “big data” such as information from
high-throughput or high-content in-vitro screening assays or omics
technologies along with PBK for predictive toxicology and safety
assessment (Ram et al., 2022). Quantitative IVIVE (QIVIVE) which
combines in vitro data with in silico methods such as PBK modelling
together with information on metabolism, transport, and binding to
estimate the likelihood of harmful effects from environmental
exposures also plays a key role in NAMs-based risk assessment by
translating in vitro toxicity data to in vivo exposure, aiding chemical
prioritization (Moreau et al., 2022). The IVIVE uses in-vitro high-
throughput biological responses for the prediction of in-vivo exposure
to estimate the safety threshold for humans. The utilization of PBK
enables the consideration of factors like redistribution and
metabolism in the results obtained from in-vitro test that
ultimately translates it into exposure relevant at the organism level
(Hines et al., 2022; Najjar et al., 2022). The reliability of QIVIVE-PBK
is limited by constraints in clearance predictions, metabolic kinetics,
and focus on parent chemical toxicity, necessitating improvements for
broader application (Moreau et al., 2022). For instance, in a QIVIVE
study predicting nicotine delivery product exposure, the model
successfully estimated toxic effects but faced challenges in
addressing the potential interaction occurring between the
chemicals since modelling and parameterizing could be done only
for nicotine (Moreau et al., 2024). In a similar manner another study
highlights the challenge of building the QIVIVE model for
chlorpyrifos exposure to predict developmental neurotoxicity since
the model was limited to multiple oral exposures rather than the real-
world exposure scenario, which occurs simultaneously from different
routes like dermal and inhalation (Algharably et al., 2023).

Nonetheless, these in silico models have potential applications
for different regulatory purposes and the potential to become NAMs
by facilitating efficient translation of risk. For instance, USFDA
supports the use of IVIVE and PBK for filling data gaps to support
drug development (Hines et al., 2022). Similarly, these approaches
can be used for risk assessment but the clear guidelines about its
usage for regulatory purposes are still lacking. HTTK was used to
calculate the PoD for 448 chemicals using in-vitro bioactivity data
(Paul Friedman et al., 2020) and to prioritize chemicals for further
screening, supporting the potential of these tools for facilitating
interpretation of experimental data.

2.3 Approaches for regulatory acceptance
of NAMs

NAMs despite having the potential to replace animal experiments
usually suffer from the scrutiny of the risk assessors due to either lack
of proper validation or huge uncertainty or lack of harmonization. In
case of in-vitro studies, OECD has published a guidance document
(OECD guidance document 211) with the intent to assess the
relevance of the large amount of data generated by the alternative
in-vitro tests which might be of practical value. To check the scientific
robustness and context appropriateness, OECD suggest these
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methods to be reported in a definite framework which should be
helpful in evaluating uncertainties and scientific confidence (OECD,
2014). In line to this, to address the problem of overlooking to the test
method details, Krebs et al. developed a template called as ToxTemp
to follow the requirements of the OECD guidance document
211 which can guide the users to get the information details along
with inclusion of acceptance criteria for test elements with sufficient
description of cells employed in the study (Krebs et al., 2019). To
operationalize this, OECD introduced Harmonised Template 201
(OHT 201) in 2016, a standard format for reporting mechanistic
and intermediate effects across NAMs, including in vitro, in silico, and
ex vivo methods (Carnesecchi et al., 2023).

According to EFSA, to enhance regulatory acceptance, docking
outcomes should be interpreted within a defined applicability
domain, integrated with complementary in silico approaches
(QSAR, ML) under a weight-of-evidence framework, and linked
to mechanistic anchors such as MoA or AOPs. Use of standardized
open-source tools (e.g., OECD QSAR Toolbox, VEGA) can further
increase transparency and reproducibility, thereby strengthening
regulatory confidence (More et al., 2021).

In a similarmannerOECDguidance document for PBKmodeling
guides the development of PBK models with their validation to
increase their scientific validity. The main objective of this
guidance document is to offer a transparent and uniform structure
for model assessment in order to facilitate communication between
PBKmodel developers and regulators who evaluate and approve their
use (OECD, 2021a). To further streamline the data-driven NAMs
OECD has developed its toolbox. The primary advantages of the
QSAR Toolbox are its ability to screen for environmental fate
endpoints, acute ecotoxicity endpoints, and toxicity endpoints like
mutagenicity, skin/eye irritation, and sensitization. Early in the R&D
process, the toolbox can also be used to screen possible novel
chemicals to find those that are most likely to have a favourable
hazard profile. It also has the capacity for clustering chemicals for
read-across study as the toolbox incorporates the information and tool
from diverse sources into a logical workflow (OECD). A list of
discussed NAMs with their strengths, limitations and mitigation
strategies has been provided in Table 1.

3 Combining in-vitro and in silico
methods with AOP

AOP represents the shift from conventional toxicity testing to
more mechanistic framework for establishing disease map or moving

to adverse outcome. In general, in-vitro test methods by informing the
biological pathways, in silicomodels for quantification and prediction
of events, and AI methods for data-gap filling along with other
experimental data can help in enriching the information for an
AOP (Corradi et al., 2022). AOPs have seen a significant growth
in last few years with many in silico approaches being developed to
make them suitable for human risk assessment by considering real-
exposure scenarios. In short, an AOP can help in addressing specific
endpoints but currently they are more qualitative rather than
quantitative which limits their usage for regulatory purpose.

There is already a lot of ongoing work related to quantification of
AOPs using in-vitro and in silico approaches where in-vitro assays
can provide data on mechanistic end points and in silico approaches
like Bayesian network, generalized linear or regression model or
mechanistic modelling can incorporate the data into quantitative
framework to predict adverse outcome. Sewer et al. used data from
advanced organotypic airway model exposed to tobacco heating
system aerosol or combustible cigarette smoke for AOP 411 which is
on decreased lung function due to oxidative stress. They used
regression model for key event relationship (KER) using gene
expression and other data from in-vitro model. Two
mathematical modelling-based approach: 1) empirical data based
for KER related to oxidative stress, and 2) mechanistic systems
biology-based approach for other key events related to AOP 411 was
used. Overall, this is a good example of AOP-based approach
aligning with IATA principles by integrating in-vitro data with
computational modelling to predict decreased lung function with
aerosol exposure (Sewer et al., 2024).

The huge mechanistic knowledge captured in AOP network
(AOPN) can help in the shift towards non-animal and human-based
NAM. Vinken et al. showed a framework for NAM to predict
hepatotoxicity composed of in-vitro systems which can allow
tiered testing at transcriptional, translational and functional level
for enriching AOP network. In vitro systems and a battery of assays
mechanistically anchored in an AOP network can be helpful towards
NAM development. Some chemical-induced liver toxicity like
cholestatic and steatotic drug induced liver injury (DILI) can be
predicted by simple in-vitro models like monolayer culture of
hepatocytes while some liver endpoint needs complex models like
MPS (Vinken, 2024).

Another successful example of NAM is where the health-based
guidance value was calculated for PFOA using in-vitro
transcriptomics data (Figure 2). An in silico workflow was
developed with PFOA as lead molecule comprising of calculating
a) PoD for significant genes, b) calculating freely available PFOA in-

FIGURE 2
NAM based framework integrating in-vitro and in silico models for calculating human health-based guidance value.
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vitro, and c) using QIVIVE for estimating in-vivo dose and later
tolerable daily intake (Silva et al., 2024). This framework can provide
vital information for risk assessment and, by including the
uncertainty factor, can further help in reducing the risk and
choosing a conservative value for a sensitive population. There
are some limitations to this approach. For instance, the relevance
of molecular pathway perturbations in predicting apical toxic
endpoints, the linkage between molecular and apical changes and
guidelines for the uncertainty factor for PoD need to be established
(Cattaneo et al., 2023).

NAMs carry the potential to transform risk assessment,
especially with the improvement in computational modelling and
high-throughput in-vitro data. NAM for specific endpoints like skin
sensitization, skin and eye irritation, genotoxicity and endocrine
activity are sufficient stand-alone with potential to inform about risk
assessment. However, there is instance where a battery of NAMs has
been used to conclude for the estimation of safety margin for
pthalates; di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl
phthalate (DnBP) highlighting the value of integrating diverse
NAMs within IATA. In this study, the AOP framework was
applied to guide the selection of an in vitro assay for bioactivity
testing, while Aggregate Exposure Pathways (AEPs) were developed
to capture critical exposure information. These exposure data were
then incorporated into a PBK model to predict internal metabolite
concentrations. Finally, the model outputs were combined with in
vitro-derived relative potency factors to calculate an internal margin
of safety of ~13,000 (Clewell et al., 2020). In a similar manner, a
read-across case study on thirteen branched aliphatic carboxylic
acids demonstrated how multiple NAMs can be integrated to
strengthen regulatory confidence in data-gap filling. Structural
similarity served as the starting point, but biological similarity
was established using omics approaches—specifically,
transcriptomic analysis of differentially expressed genes in human
HepG2 liver cells. An AOP network for hepatic steatosis guided
targeted in vitro testing of MIEs and KEs across multiple human
liver models (HepG2, HepaRG spheroids, primary human
hepatocyte), complemented by functional assays for
mitochondrial dysfunction and lipid accumulation. In parallel,
zebrafish embryo assays provided organism-level supporting
evidence. To integrate the diverse mechanistic evidence,
Dempster–Shafer decision theory (DST) was applied, allowing
uncertainties to be quantified and to combine different evidence
collected from in vitro assays. Collectively, these data supported a
hypothesis-driven read-across, illustrating how in vitro NAMs,
omics profiling, in silico integration, and AOP-guided testing can
be combined within IATA to enhance confidence in predictions for
chronic toxicity and reduce reliance on animal studies (Escher
et al., 2022).

However, still NAM has some of the limitations especially to
predict systemic toxicity, however efforts are ongoing in different
project clusters like ASPIS which is a joint collaboration of three
European projects for animal-free safety assessment of chemicals. A
recent survey indicated that NAMs are being used by manufacturers
at the internal level, but currently they are not considered sufficiently
validated to be included in the REACH regulation. Also, the time
needed for acceptance of NAM is quite high with limited NAM-
based test guidelines adopted per year (Bearth et al., 2025). As a
general perception, NAMs are considered less safe and traditional

idea about animal testing being the “gold standard” needs to be
changed to improve the acceptance of NAM in the
regulatory framework.

4 Automation of different NAMs
approaches

Over past few years, machine learning (ML) and artificial
intelligence (AI) has played significant role in generating high-
throughput data by in-vitro models, toxicogenomic and in silico
modeling. AI approaches are becoming increasingly famous for
toxicity prediction as NAM for next-generation risk assessment
(NGRA). Integration of AI with high-throughput data can help in
identification of bioactivity pattern across thousands of chemicals
supporting prioritization of compounds and grouping them for
reducing the experiments. Kim et al. used ToxCast database to
develop mechanism-based toxicity-prediction models. Almost
1,485 bioassay dataset was collected and used for model training
with 5 ML algorithms: logistic regression, decision tree, random
forest, gradient boosting tree and XGBoost providing 24,500 models
for 980 assays. 311 models were selected related to endpoints like
acute toxicity, carcinogenicity, endocrine disruption and
developmental and reproductive toxicity providing a starting
point to incorporate AI based models for NGRA using in-vitro
data (Kim et al., 2025).

New risk assessment methods can be developed by training ML
models with large biological and chemical databases which can
predict molecular interaction between chemicals and how the
chemical is interacting with different receptors. ML models are
being developed to predict ADME properties like caco-2 cell
permeability, plasma unbound fraction, clearance to later
incorporate in PBK models for predicting toxicokinetic of
compounds (Li Y. et al., 2024; Vallance, 2016). Different type of
ML based QSAR models are being developed by researchers to
prioritize compounds and reduce the experimental burden (Pore
and Roy, 2024).

With increasing computational power, large language models
(LLMs) with contextual learning capabilities are emerging to
improve automation, and with larger datasets they can be trained
and fine-tuned to reduce the experimental burden for both existing
and emerging chemicals (Klambauer et al., 2023). Recent
advancements demonstrate the potential of LLMs like GPT-4 in
the complex process of AOP construction, showing high accuracy in
identifying MIEs, KEs, and linking them to adverse outcomes, thus
accelerating data identification and synthesis from vast scientific
literature (Shi and Zhao, 2024). LLMs can also help bridge
multidisciplinary knowledge gaps and enhance standardization in
AOP development (Shi and Zhao, 2024). Similarly, the GPT-3
model has been explored for data extraction and validation in
the context of NAMs and AOPs, proving effective in recognizing
semantic differences and extracting specific, often challenging,
parameter-related entities from full-text articles, outperforming
some traditional NLP tools in these areas (Viganò et al., 2024).
This capability of LLMs to rapidly learn from limited examples and
generate structured output can save significant manual effort in data
curation and labelling, moving towards more automated and
quantitative AOP mapping (Viganò et al., 2024).
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Currently, efforts are ongoing toward automation of different
approached for human safety assessment. KNIME analytics
platform was used to develop automated workflow by integrating
PBK, dynamics model and virtual cell-based assay (VCBA) model to
evaluate chemical fate, kinetics and toxicity. VCBA can be used to
guide in-vitro experiments especially test concentrations and time
point for specific endpoint which can be later combined with PBK to
calculate safe exposure levels for human (Sala Benito et al., 2017).
AutomatedML approaches are also coming up in recent years where
autoML platforms like Vertex AI, dataiku and azure were employed
by the researcher to develop a model for nanotoxicity prediction.
However, none of three autoML platform outperform the
conventional ML models, but it is beneficial for researchers with
limited knowledge on ML based predictive model development
(Xiao et al., 2024). Automation is not limited to computational
models, but some work is ongoing for lab automation
i.e., automation for compound dilution, cell seeding, media
exchange, viability assessment and so on. Lab automation was
achieved for embryonic stem cells (EST) for routine applications
in 96- well format, enabling evaluation of several compounds in
parallel (Witt et al., 2021). Automation in cell culturing and other
experimental methods can help in improving reproducibility,
achieving high standardization, low material consumption and
increasing the confidence by reducing manual errors. Some work
is also ongoing in European project like PARC where researchers are
working on automated approach combining different in silico tools
to develop an IATA for endocrine disruption. In a recent study,
effort was made to develop a pipeline combining molecular docking
simulation with chatGPT to simulate pharmacokinetic prediction of
Oritavancin (Fatoki et al., 2024). Overall, it helped in deciphering
pharmacological profile of drug along with clinical application.
Similar work can be adopted for chemical risk assessment and
improved by combining lab automation with molecular docking,
QSAR, PBK and pharmacodynamic (PD) which can help in
enriching biological knowledge about newer and existing
compounds. Combining these approaches together through LLM
and making them automatized can be a step towards IATA using
NAMs data, however, there remain multiple challenges, especially
the quality of data and format of output parameters and
completeness of training data, addressing the “black box” nature
of some LLMs, managing computational costs, and overcoming
token limitations for full-text processing (Shi and Zhao, 2024;
Viganò et al., 2024).

5 Harmonization and data fairification

Harmonization and data fairification are important pillars since
implementing these steps can lead to the creation of machine-
readable models, improve data reporting, and hence facilitate the
application of NAMs. Experimental and measurement data are
necessary and essential resources for modelling, analysis, drawing
conclusions, and providing recommendations or guidelines.
However, it is common that the background information needed
in areas such as hazard, health, environment, epidemiology or
toxicogenomics, among others, is found in different sources or
databases, requiring their integration, which presents great
difficulties (Mattes et al., 2004; Ball et al., 2022; Rozony, 2024;

Samsa et al., 2005). These databases usually present heterogeneity in
terms of format differences, lacking semantic integrity of form,
structure, and terminologies or definitions, and may exist in
structured, semi-structured or unstructured form (Samsa et al.,
2005; Sindhu and Hegde, 2017). An example of this is presented
in environmental risk studies, where the influence of the short- and
long-term exposure to a pollutant on human health requires the
unification of data from air quality, climate, meteorology and
orography databases, together with public health data reflecting
the outcomes or injuries. In addition, it is worth mentioning the
quality of the data, which are shown to be redundant, with noise in
the measurements, lack of quantity or even missing data that it is not
always clear how to fill in, leading to the use of data from other
sources that are sometimes used inappropriately (Ball et al., 2022).
The difficulties increase in the current generation, where data grows
exponentially and dynamically, which on the one hand, makes it
difficult to analyze in real time and on the other hand, complicates
its storage, availability, and use due to its large size.

Given the variability of the base data sources, there is a notorious
need for harmonization in order to obtain standardized and quality
data (Mattes et al., 2004; Ball et al., 2022). The difficulties present in
this step in terms of low data quality, lack of standardization, and
heterogeneity imply the need to involve experts who, on many
occasions, must possess extensive knowledge in disparate fields such
as database programming and manipulation, data analysis, and
model development and simulation. This is where data science
takes importance, which can notoriously help to reduce the
amount of data and combine information from different domains
into a single, reliable base from which to perform subsequent
analyses, especially when manual manipulation is becoming
impossible, given the large volume of real-time data. This
requires novel methods for information manipulation and
cleaning, and for this purpose NAMs present many advantages
in extrapolation, data analysis and decision making. However, in the
field of human health assessment, among others, data generated with
NAMs are not performed or reported in a standardized way.
Contrary to this, animal research benefits from established
guidelines that simplify these aspects, as indicated in some
reviews, which is a prerequisite for the implementation of
alternative methodologies for risk assessment (Schmeisser et al.,
2023). The use of these guidelines in human health would facilitate
the extraction and interpretation of results and conclusions on the
quality and usefulness of the information, as well as replicability. In
this area, harmonization is even more relevant given the possibility
of obtaining databases of great value and size, with information of
great interest and quality, increasing the statistical power of future
analyses (Cheng et al., 2024).

In the field of data processing, NAMs have strengths and
limitations depending on their specific application. In terms of
heterogeneity, ontology-based frameworks and tools such as
schema-matching are a good option for data transformation and
integration, due to their ability to standardize and structure
semantics, defining terminological relations. However, it presents
difficulties in terms of scalability, due to the need for manual
intervention. In addition, schema-matching is limited in its use
in large unstructured databases (Rozony, 2024). In this sense, tools
such as Machine Learning (ML) or Artificial Intelligence (AI) allow
reducing the manual cost by their automation capacity, thus dealing
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with scalability, as well as increasing data quality in their task of
filtering, cleaning and searching for errors, inconsistencies or
missing values, and in harmonization by the identification of
patterns. However, both require a large amount of real and
reliable data for the initial learning (Dinov, 2016). Moreover,
another drawback is that these tools compromise data security
(Rozony, 2024) and therefore present a significant limitation in
the health field, given the sensitivity of these data and confidentiality,
marked by the regulation of the competent institutions, which also
affects their storage and use (Pezoulas and Fotiadis, 2024). Big
healthcare is complex due to its lack of structure and
heterogeneity, requiring extensive pre-processing. In these fields,
blockchain technologies are decentralized and secure, accessible in
real time, and therefore of great utility in their use on sensitive data,
despite the fact that scalability shows some difficulty in certain
studies (Rozony, 2024).

In order to deal with all the aspects mentioned above, there are
studies that propose systems based on standardized models in terms
of syntax and semantics, facilitating the use by other researchers
(Horsburgh et al., 2009). Others have focused on the development of
technological frameworks and platforms, such as standardized
ecosystems for environmental sensor data manipulation that
integrate data visualization, manipulation, collection, storage and
modelling, in web-friendly formats (Borges et al., 2018; Bumberger
et al., 2025). Thus, it can be seen that the multiple new
methodologies present advantages and limitations. A key
requirement is the uniformity in syntax, vocabulary, and format
to ensure consistency. Additionally, the ability to process large
datasets rapidly, and with confidentiality is essential to adhere to
the FAIR (Findable, Accessible, Interoperable, Reusable) principles
and use standardized interfaces (Ali et al., 2023; Kush et al., 2020;
Pezoulas and Fotiadis, 2024). Open data sharing through platforms
such as GitHub and Open Science Framework (Dinov, 2016) enables
broader access for researchers. This is especially important in those
domains where up to 80% of the total time is spent on data
preprocessing (Huber et al., 2021).

To make the data and model machine-readable, ontology can be
used, which integrates symbolic knowledge representations with text
mining techniques to enhance the extraction and categorization of
information from unstructured text data. Unlike traditional text
mining, which relies heavily on statistical methods, it utilizes
predefined ontologies to provide a structured framework for
interpreting the semantic content of text.

Currently, there are multiple life-science related ontologies
that can help in providing harmonized vocabulary and construct
models by embedding ontology, especially to learn features for
machine learning models (Kulmanov et al., 2021). Currently,
there are more than 800 ontologies on the BioPortal to describe
biomedical and biological entities. For instance, while building
machine learning models, ontology is playing a role in
predictions like drug-target protein function, protein-protein,
gene-disease association, and other biologically relevant
relationships. Gene ontology is one of the biggest ontologies
which includes findings from more than 180,000 papers
representing almost 1,000,000 annotations, providing a
comprehensive model of biological systems (Gene Ontology,
2023). Recognizing the current lack of ontologies for many
NAMs like PBK modeling and AOPs, multiple partners in the

European Partnership for the Assessment of Risks from
Chemicals (PARC) are actively developing solutions. For
instance, partners within PARC’s Work Package 7 (WP7)
recently developed PBPKO (pbpko). This new ontology and
supporting tools are tailored for annotating PBK models to
enhance their FAIRification.

AOP ontology was initially used in 2017 by Lyle Burgoon, with
the motivation of developing of artificial intelligence approach to
predict the adverse outcome of chemicals based on chemical
screening data from high-throughput assays. This approach
utilizes computational reasoners using first order logic to infer
potential adverse outcome from specific chemical. The AOP
Ontology organizes AOPs as a parent class with child groupings,
including Developmental Toxicology AOP, Disease AOP, Liver
Toxicity AOP, and Reproductive Toxicology AOP. Each grouping
contains specific AOPs, such as NeuralTubeDefect and
DiabetesMellitusType2. Specific instances, like “AOP Neural Tube
Defect via Hoxb1,” are developed from these AOPs.

Within Work Package 7 of the PARC initiative, partners are
collaborating with international experts to further refine the AOP
ontology. The goal is to create a comprehensive AOP-ontology
covering the entire domain, which will significantly simplify
annotation processes and improve machine-readability. Overall
advancing domain ontology represents a crucial step towards
data harmonisation and developing more reproducible and
robust predictive models. Ultimately, this refined biological
domain ontology will be instrumental in advancing NAMs that
support IATA.

6 Conclusion

Overall, this paper discusses about the different approaches
which are or can become a part of NAMs. Integration of multiple
techniques to extract useful information is one of the goals of
IATA and other regulatory frameworks for risk assessment. This
paper illustrates the scope and challenges in the existing
frameworks and the level of complexity required to develop
them including the approaches to increase their regulatory
acceptance. Complete transition from in-vivo to in-vitro is still
not possible nor is intended, since there could be challenges in
translation of different output data into meaningful human or
environmental risk assessment. Instead, a multifaceted
integration of in vitro, in silico, omics-based, and data-driven
approaches is required, with ongoing challenges in translating
diverse outputs into meaningful human and environmental risk
assessment. For some frameworks to convert into NAMs, data
harmonization and processing steps are required. Inclusion of
ontology and training large language models can help in
accelerating the process of risk assessment; however, a major
bottleneck remains the quality and amount of data required to
perform this task.
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Glossary
ADMET Absorption, Distribution, Metabolism, Excretion, and

Toxicity; pharmacokinetic/toxicokinetic properties
of chemicals

AEP Aggregate exposure pathway

AI Artificial intelligence

AN Artificial neural network

AOP Adverse outcome pathway; sequence of linked biological
events leading to an adverse health or ecotoxicological effect

BMD Benchmark dose; dose–response modeling approach used
to derive PoD

BPA Bisphenol A; chemical known for its endocrine
disrupter property

CNN Convolutional neural networks

CNS Central nervous system

DFT Density functional theory; quantum chemistry method for
predicting electronic structure of molecules

DILI Drug induced liver injury

ECHA European chemicals agency; EU regulatory authority
managing chemical safety under REACH

EFSA European food safety authority; EU regulatory agency for food
and chemical safety

FEL Free energy landscape; representation of conformational
states in molecular simulations

LD50 Lethal dose 50

LLM Large language model

ΔG Total binding energy

GCCP Good cell and tissue culture practices

HOMO/LUMO Highest occupied molecular orbital/Lowest unoccupied
molecular orbital; descriptors of molecular stability and
reactivity

HepG2 A cell line exhibiting epithelial-like morphology that was
isolated from a hepatocellular carcinoma of a 15-year-old,
White, male youth with liver cancer

IATA Integrated approaches to testing and assessment; framework
combining multiple data sources including NAMs

IC50 Inhibitory concentration 50

IVIVE In vitro to in vivo extrapolation; translation of in vitro test data
into in vivo exposure estimates

KE Key events

LOAEL lowest-observed-adverse-effect level; metric to derive PoD

MACS/FACS Magnetic-activated cell sorting/Fluorescence-activated
cell sorting

MIE Molecular initiating events

ML Machine learning

MM/PBSA and
MM/GBSA

Molecular mechanics methods (Poisson–Boltzmann and
Generalized Born surface area) to estimate binding free
energies in molecular dynamics

MOFA Multi omics factor analysis

MPS Microphysiological systems (e.g., organ-on-a-chip); advanced
in vitro models mimicking organ-level functions

MSC Mesenchymal stem cells

NAM New approach methodologies; emerging non-animal tools
and approaches for chemical risk assessment

NG-PBPK New generation physiologically based
pharmacokinetic modeling

NGRA New generation risk assessmen

NLP Natural language processing; AI techniques for extracting
knowledge from scientific text

NMR Nuclear magnetic resonance; technique for structural and
metabolomics analysis

NOAEL No-observed-adverse-effect level; metric to derive PoD

OECD Organization for economic co-operation and development;
develops international testing guidelines for chemical safety

OMICS High-throughput biological data approaches such as
genomics, transcriptomics, proteomics, and metabolomics

OORF OECD Omics reporting framework; guidelines for reporting
and regulatory use of omics data

PARC Partnership for the assessment of risks from chemicals; EU-
funded project supporting NAM development

PBK Physiologically based kinetic model; similar to PBPK, often
used interchangeably

PBPK Physiologically based pharmacokinetic model; computational
model simulating chemical ADME in organisms

PFAS Per- and Polyfluoroalkyl substances; a group of persistent
environmental chemicals of regulatory concern

PoD Point of departure

POS Part-of-speech

PPP1 Phosphoprotein phosphatases1

QMRF QSAR modeling reporting framework

QSAR/QSPR Quantitative structure–activity relationship/Quantitative
structure property relationship; predictive models linking
chemical structure to biological activity or toxicity

REACH Registration, evaluation, authorization and restriction
of chemicals

RF Random forest

RNN Recurrent neural network

SASA Solvent accessible surface area; measure of protein surface
exposed to solvent in molecular dynamics

t-PoD Transcriptomic PoD

TWI Tolerable weekly intake

USEPA United States environmental protection agency.
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