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A short-term sublethal oral
exposure to microcystin-LR
disrupts cecal microbiome
homeostasis in mallard
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Robert J. Dusek?
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Introduction: The frequency of cyanobacterial blooms seems to have increased
globally in recent decades due to human induced eutrophication and climate
change. Cyanobacterial blooms can produce several groups of toxins, among
which microcystin-LR (MC-LR) is one of the most abundant. Effects of MC-LR on
avian microbiome have not been studied and studies in laboratory murines have
been limited to metabarcoding of prokaryotes.

Methods: Using RNA shotgun sequencing, we compared the richness and
composition of metabolically active prokaryotes, expressed virulence factors,
antimicrobial resistance genes, metabolic pathways, Gene Ontology terms,
enzymes, and proteins in mallards (Anas platyrhynchos) that were orally
exposed to a sublethal dose of MC-LR for one week and unexposed birds.
Results: Richness and composition of all compared features did not differ
between exposed and control birds and none were differentially expressed
between exposure groups. However, richness and/or composition of all
features except virulence factors and Carbohydrate Active enzymes had
multiple-fold greater dispersion in exposed birds than in controls. This effect
was especially pronounced in expressed metabolic (MetaCyc) pathways.
Discussion: Our results suggest that MC-LR exposure had a stochastic (rather
than deterministic) effect on cecal microbiota, especially its function. Observed
disturbance of the microbiota homeostasis is consistent with the Anna Karenina
Principle. This principle has been documented in a wide range of eukaryotes
using primarily microbial community metabarcoding. Although stochastic
disturbance of microbiota function has been hypothesized, our study seems
to be the first to demonstrate this in an experimental study.

KEYWORDS

microcystin-LR, mallard, cecum, microbiota function, Anna Karenina principle,
metatranscriptomics

1 Introduction

During recent decades, the frequency of harmful cyanobacterial blooms seems to have
increased in fresh and brackish waterbodies globally (Paerl and Paul, 2012; Buratti et al,,
2017; Anderson et al., 2021). Increasing anthropogenic eutrophication and global climate
change synergistically facilitate expansion of cyanobacterial blooms (Paerl et al., 2011; Paerl
and Paul, 2012; Michalak et al., 2013). Microcystin (MC) is the most frequently detected
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group of toxins produced by cyanobacteria (Campos and
Vasconcelos, 2010; Li et al., 2017). They are potent hepatotoxins
and among the >250 currently known congeners (Rattner, 2022),
MC-LR is the most frequently reported (Gupta et al., 2003).
MC-LR toxicity has been well studied in laboratory mice (House
mouse, Mus musculus). The intraperitoneal median lethal dose
(LD50) for MC-LR in adult VAF/plus CD-1 and BULB/c mice
was estimated at 0.065 mg/kg (Robinson et al., 1989; Yoshida et al.,
1997), whereas the 24-h oral LD50 was estimated to be over two
orders of magnitude higher - 10.9 mg/kg (Yoshida et al., 1997).
toxicity of MC-LR is less
LD50 concentrations have been estimated only for intraperitoneal

Avian well  known and
injections but not for oral exposure. Intraperitoneal 24-h
LD50 estimates for adult mallards (Anas platyrhynchos;
0.085 mg/kg body weight; mix of 96.4% MC-LR and 3.6% MC-
YR) and week-old ducklings (0.065 mg/kg body weight) were similar
to those of mice (Li et al., 2012). By more environmentally realistic
oral administration, an acute outcome has not been achieved
regardless of the dosage used. The highest concentration of MC-
LR in these failed attempts to induce acute toxicity in mallards is
reported at 17.5 mg/kg (Bong, 2021). Notwithstanding the failure to
induce an acute outcome in oral exposure experiments, studies
universally reported sub-lethal effects of MCs on different avian
organs and systems, including liver, kidney, spleen, gut, and
reproductive and immune systems (Paskova et al, 2008;
Damkova et al,, 2009; Damkova et al.,, 2 011; Peckova et al,
2009; Kral et al., 2012; Ondracek et al., 2012).

The great difference in outcomes between intraperitoneal
injection of MCs and their oral administration suggests that the
avian digestive system and microbiota may play an important role in
MCs metabolism, especially in species that have well-developed
ceca, such as galliforms and herbivorous waterfowl. The paired
intestinal ceca play a crucial role in fowl adaptation to extracting
nutrients from otherwise indigestible plant foods (Remington,
1989). They serve as microbial fermentation chambers in which
non-starch polysaccharides (dietary fiber) are broken into volatile
fatty acids (Clench and Mathias, 1995; Svihus et al., 2013) that can be
utilized by the host as an energy source (Bergman, 1990).
Furthermore, cecal microbiota are involved in detoxification of
(Kohl et al, 2016) and
environmental toxins (Jeong et al, 2013). In a study of the
greater sage-grouse (Centrocercus urophasianus), the greatest
seasonal differences in microbiota richness and composition

plant secondary compounds

related to dietary shifts from primarily insects and forbs in the
summer to chemically defended sagebrush (Artemisia sp.) leaves in
the winter were observed in the cecum (Drovetski et al.,, 2019).
Likewise, during a chronic MC-LR exposure experiment with male
BALB/c mice, the greatest changes in microbiota richness and
abundance of sentinel bacteria were observed in the cecum
(Chen et al., 2015). Given that gut microbiota plays a crucial role
in its host’s health, immunity, and protection against pathogens
(Hooper et al,, 2012; Liang et al., 2018), a full understanding of MCs’
effects on the host is unlikely to be achieved without elucidating their
effects on the gut microbiota. The authors are not aware of studies
reporting effects of MC-LR exposure on avian microbiome.
Several experimental studies reported effects of MC-LR
exposure on prokaryotic microbiota of laboratory mice (Chen
et al, 2015; Sarkar et al., 2019; Guilin et al., 2020; Lee et al.,
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2020; Mills et al,, 2021; Zhuang et al., 2021; Yang et al., 2022;
Song et al.,, 2024). All of these studies used 16S rRNA gene sequences
to assess changes in microbiota richness and composition. In one
study, MC-LR was administered through intraperitoneal injection of
0.01 mg/kg body mass five times a week for 2 weeks (Sarkar et al.,
2019), whereas in the other six studies MC-LR was administered
orally through gavage or drinking water. Despite the substantial
variation in MC-LR concentration (0.001-0.120 mg/L in drinking
water or 0.04-4 mg/kg of body mass every 24-48 h through gavage)
and duration of the administration period (1 week to 1 year), all but
one study indicated significant changes in abundance of sentinel
bacteria (e.g., decline in Firmicutes/Bacteroidetes ratio) in fecal or
colonic microbiota. The only study that failed to detect
compositional changes in fecal microbiota (Mills et al.,, 2021),
exposed mice to the highest concentration of MC-LR (daily
gavage of 4 mg/kg) for the shortest time period (1 week),
suggesting that time of exposure may affect detection of
microbiota changes. However, an equally short study with lower
daily dose (1 mg/kg) reported significant compositional changes in
Sprague-Dawley rat (Rattus norvegicus domestica) fecal microbiota
(Lin et al., 2015). Only two studies sampled cecal microbiota of mice
during experimental MC-LR exposure (Chen et al., 2015; Zhuang
et al,, 2021). In addition to changes in abundance of some bacterial
taxa, both studies reported increase in cecal microbiota richness.
Increased prokaryotic richness, likely due to colonization by
opportunistic pathogens, has been reported for cecal microbiota
of prairie grouse (Tympanuchus spp.) exposed to crop production
(Drovetski et al., 2022) and may represent a common outcome of
exposure to environmental stressors.

In the present study, we evaluate effects of an experimental
week-long sublethal exposure to purified MC-LR administered
through oral on metabolically active

gavage prokaryotic

microbiota, expression of virulence factors, antimicrobial
resistance genes, and metabolic pathways in the ceca of the
mallard. To achieve this goal, we employ deep shotgun
metatranscriptomics (median of 121,129,328 sequences/sample)
of the cecal content of fully-grown juvenile female mallards
divided into two exposure categories: birds exposed to a daily
dose of 0.75 mg MC-LR (n = 8) and control birds with no MC-

LR exposure (n = 8).

2 Materials and methods
2.1 Experimental design and sampling

We used 16 fully grown juvenile (16-20 weeks old) female
mallards raised together on an outdoor farm in Wisconsin,
United States (Table 1). During the experiment, all birds were
kept in individual cages in the same environmental conditions
and fed the same diet. MC-LR doses were prepared by diluting
1 mg/mL MC in >99.95% ethanol, dispensing 0.75 mL of the
mixture into a gelatin caplet, and allowing the ethanol to
evaporate. Mallards were randomly assigned to two groups: those
that received a caplet daily with 0.75 mg MC-LR for 7 days orally
(hereafter exposed birds; n = 8) and birds that received a similarly
prepared caplet with no MC-LR (hereafter control birds; n = 8). The
dosage was confirmed and liver MC-LR concentration was
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TABLE 1 Mallard (Anas platyrhynchos) cecal content sample IDs, sequencing depth, National Center for Biotechnology Information (NCBI) accession
numbers, exposure categories (Supplementary Table 1 in Drovetski et al., 2025).

|D] NWHC case number-ID Number of pair-ended reads NCBI accession Exposure category
PI202111 46882-01 69269328 SRX22659392 Control
P1202112 46882-02 59914980 SRX22659393 Control
PI202113 46882-03 74399926 SRX22659400 MC-LR
PI202114 46882-04 63006094 SRX22659401 MC-LR
PI202115 46882-05 61214348 SRX22659402 Control
P1202116 46882-06 65352132 SRX22659403 Control
P1202117 46882-07 73182852 SRX22659404 MC-LR
P1202118 46882-08 57385111 SRX22659405 MC-LR
P1202119 46882-09 64965961 SRX22659406 Control
P1202120 46882-10 49218452 SRX22659407 Control
P1202121 46882-11 54965880 SRX22659394 MC-LR
P1202122 46882-12 49817301 SRX22659395 MC-LR
P1202123 46882-13 53046416 SRX22659396 Control
PI202124 46882-14 59180630 SRX22659397 Control
P1202125 46882-15 58290957 SRX22659398 MC-LR
PI202126 46882-16 66641048 SRX22659399 MC-LR

measured in exposed birds (Jenkins et al., 2025). All birds were
euthanized approximately 24 h after their last dose.

Immediately after each bird was euthanized, its abdominal
cavity was opened with a sterile scalpel blade to expose ceca. One
cecum was sliced across with a sterile scalpel blade and
approximately 100 mg of cecal content was expelled directly into
a2 mL screw cap tube pre-filled with 1 mL of DNA/RNA Shield and
a mix of 0.5 mm and 0.1 mm ultra-high density BashingBeads
(Zymo Research, Irvine, CA, USA). Samples were kept at 4 °C until
DNA extraction within a maximum of 30 days after collection. Age
of birds was confirmed by bursa Fabricii presence (well developed,
fleshy in juvenile birds, atrophies in adults), and sex was confirmed
by gonad examination.

2.2 Molecular procedures

Total RNA from the cecal content was extracted using the
ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research,
Irvine, California, USA) following the manufacturer’s
instructions. RNA quantity was measured on a Qubit 4.0 using
the High-Sensitivity RNA Assay Kit (ThermoFisher Scientific,
Waltham, Massachusetts, USA). To test the collection tubes and
the extraction kit for possible contamination, we included a single
blank sample (a collection tube with 1 mL of DNA/RNA Shield and
a mix of 0.5 mm and 0.1 mm ultra-high density BashingBeads but
without sample) into our RNA extraction process. The Qubit assay
did not detect any RNA using 10 pL of the blank sample (lower
detection limit is 0.2 ng/uL), whereas the lowest RNA concentration
estimated using 2 pL of our samples was 37.8 ng/uL (median 53.5 ng/
pL). We did not sequence this negative control sample as our
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previous re-sequencing of the negative controls produced
inconsistent sets of microbial strains reflecting other samples in
the sequencing lane and did not bias microbial composition of real
samples containing multiple orders of magnitude greater quantities
of nucleic acids.

2.3 Shotgun metatranscriptomic sequencing
and bioinformatics

RNA extracts were shipped on dry ice to GeneWiz/Azenta Life
Sciences (South Plainfield, New Jersey, USA) for quality control and
sequencing. RNA libraries were prepared using the NEB Ultra II
RNA kit (New England Biolabs, Inc., Ipswich, Massachusetts, USA)
and QIAseq FastSelect -rRNA HMR Kit (QIAGEN, Germantown
Maryland) for rRNA depletion. To control for possible batch effects,
all libraries were sequenced simultaneously on an Illumina HiSeq
4000 platform (2 x 150bp; Illumina, Inc., San Diego, California,
USA). The total number of resulting sequences was 1,959,702,832 or
979,851,416 pair-ended reads from our 16 samples. The number of
reads obtained from individual samples ranged from 49,218,452 to
74,399,926 with a median of 60,564,664 (Table 1).

Raw sequences were uploaded to the CosmosID Metagenomics
Cloud app.cosmosid.com (CosmosID Inc., Germantown, Maryland,
USA, www.cosmosid.com) for taxonomic identification, virulence
and antimicrobial resistance profiling, and functional analyses. The
CosmosID Metagenomics Cloud uses the KEPLER pipeline
(CosmosID Hab, 2025¢) for host-agnostic microbial taxonomic
profiling. KEPLER utilizes k-mer exact-matching and
probabilistic alignment to identify and estimate normalized
abundance of microbial taxa. Antimicrobial resistance (AMR)
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genes and virulence factors (VF) are classified using the Resfinder
(Florensa et al, 2022) and VFDB (Liu et al., 2022) databases
respectively, and the KEPLER-AMR/VF Profiler (CosmosID Hub,
2025a). For metatranscriptomic functional profiling, the quality-
controlled and adaptor-trimmed in BBduk (Joint Genome Institute,
2023) reads are translated and searched against a comprehensive
and non-redundant protein sequence database, UniRef 90 provided
by UniProt (The UniProt Consortium, 2017). The mapping of the
reads to genes is weighted by mapping quality, coverage and gene
length to estimate community-wide weighted gene family
abundances following Franzosa et al. (Franzosa et al, 2018).
Gene families are then annotated to MetaCyc (Caspi et al., 2008;
Caspi et al.,, 2018) metabolic pathways (Franzosa et al., 2018) and
grouped into gene ontology (GO) terms, carbohydrate active
(CAZy) and Enzyme Commission and protein
domains (Pfam).

enzymes,

We used the normalized read frequency of prokaryotic strains
provided by the CosmosID Metagenomics Cloud for statistical
analyses. The normalized read frequency is a probabilistic
estimate of the number of reads aligning to a reference genome
normalized by its size and is suitable for comparative or differential
abundance analyses. The normalized read frequencies were
cumulative sum scaled (CSS; McMurdie and Holmes, 2014) and
log, transformed to account for unequal sequencing depth among
samples and non-normal distribution of strains in the samples.
Because VFs and AMRs databases are gene-based rather than
organism-based, we used the percent total matches (the number
of total k-mers identified out of all possible k-mers), which
approximates gene abundance in the sample and is directly
comparable among samples without normalization. We
multiplied these percentages by 10° to produce “copies per
million” which we CSS + log, transformed for analyses. For the
functional classification, we used copies per million values that
the Total-Sum Scaled (TSS)
normalized for comparisons across samples with unequal
sequencing depth (CosmosID Hub, 2025b). Detailed description
of the CosmosID Metagenomics Cloud methodology is provided on
the CosmosID Methods page (CosmosID Hab, 2025¢).

represent abundance values

2.4 Data analyses

We compared richness and Shannon Index (Shannon, 1948)
values of metabolically active microbial strains, expressed VFs, AMR
genes, MetaCyc pathways, Gene Ontology (GO) terms, CAZy and
Enzyme Commission enzymes, and Protein families (Pfam) between
MC-LR exposure categories (exposed birds and controls; Table 1)
using linear model regression (Im function) implemented in Lme4 v.
1.1-36 (Bates et al., 2015) R package and asymptotic test for the
equality of coefficients of variation (Feltz and Miller, 1996)
implemented in cvequality v.0.2.0 (Marwick and Krishnamoorthy,
2019) R package. To compare composition of microbial strains, VFs,
AMR genes, MetaCyc pathways, GO Terms, CAZy and Enzyme
Commission enzymes, and Pfam between exposure categories, we
calculated pairwise Bray-Curtis dissimilarities (Bray and Curtis,
1957) among samples and used them for permutational
multivariate analysis of variance PERMANOVA (Anderson,
2001), tests of multivariate dispersion, and principal coordinate
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analyses (PCoA) implemented in vegan v. 2.4-4 (Oksanen et al,
2019) R package. In all analyses listed in this paragraph, we used p <
0.05 as indicative of the null hypothesis rejection.

To identify the microbial strains, VFs, AMR genes, MetaCyc
pathways, GO Terms, CAZy and Enzyme Commission enzymes,
and Pfam that best explain differences between exposed and control
birds, we used the Microbiome Multivariate Associations with
Linear Models MaAsLin 3 (Mallick et al., 2021) implemented in
R (R Core Team, 2025). Although MaAsLin 3 includes a variety of
statistical models for identifying differentially abundant features, we
chose the log-transformed linear model on Total Sum Scaled (TSS)
strain abundance data but did not normalize other data because they
were normalized during processing in the CosmosID Metagenomics
Cloud. We used minimum prevalence of 0.25 to exclude features
that were found in less than half of the individuals sampled in a
single exposure category. We used the maximum false discovery rate
corrected p-value (g-value) of 0.05.

3 Results
3.1 Prokaryotes

The Kepler pipeline identified a total of 263 metabolically active
prokaryotic strains in our dataset - two archaeons and 261 bacteria
(Supplementary Table 2 in Drovetski et al., 2025). Archaea were
represented by a mesophilic ammonia-oxidizing
chemolithoautotroph Nitrososphaera viennensis (Thermoproteota,
3.2% of total abundance, detected in all 16 birds) (Stieglmeier et al.,
2014) and a methanogen Methanobrevibacter_A
(Methanobacteriota, 0.7%, detected in two exposed and two
control birds) (Miller and Lin, 2002). Bacteria were represented
by 11 phyla: Bacteroidota (37.9% of total abundance; detected in all
16 birds), Bacillota_C (29.1%, n = 16), Spirochaetota (10.80%, n =
16), Actinomycetota (5.92%, n = 16), Bacillota_A (5.90%, n = 15),
Bacillota (2.37%, n = 14), Desulfobacterota (1.87%, n = 15),
Pseudomonadota (1.64%, n = 16), Fusobacteriota (0.49% control
n = 4, exposed n = 3), Campylobacterota (0.06%, n = 1 in each

woesei

exposure category), and Deferribacterota (0.05%, control n = 2,
exposed n = 3).

Prokaryotic richness in individual samples varied from 21 to
126 strains with a median of 84. Control birds had higher median
richness (89.5) than exposed birds (75.5) but this difference was not
statistically supported (Adj. R*> = 0.041, F(;, 14) = 1.638, p = 0.222;
Figure 1a), apparently due to 2.5 times greater coefficient of richness
variation in exposed birds (0.430) than that in controls (0.171;
D’AD = 4405, p = 0.036). Shannon Index values varied from
1.611 to 3.565, with a median of 2.829. Neither Shannon Index
values nor their coefficients of variation differed between exposed
and control birds (Adj. R* = -0.052, F(;, 14y = 0.256, p = 0.256;
D’AD = 0.565, p = 0.452).

Exposure to MC-LR did not affect the composition of the
metabolically active prokaryotic community (PERMANOVA R* =
0.042, F(y, 14y = 0.617, p = 0.954), and the two exposure groups
overlapped substantially on the PCoA plot (Figure 1b). Although the
mean distance to centroid was higher in the MC-LR exposed birds
(0.392) than in controls (0.336), the null hypothesis of the
homogeneity of multivariate dispersions between exposure groups
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FIGURE 1

PCoA 1 (23.5%)

Boxplot depicting richness (a) and principal coordinates analysis (PCoA) plot based on Bray-Curtis dissimilarities (b) of metabolically active
prokaryotic strains in ceca of mallards (Anas platyrhynchos) experimentally exposed to microcystin-LR (MC-LR) versus controls. Boxes in the panel (a)
represent interquartile ranges (from lower quartile to the upper quartile), whiskers represent minimum and maximum values, and the thick horizontal lines
represent medians. Ellipses in panel (b) represent one standard deviation around the centroid. The equality of richness coefficients of variation (a)

was rejected, whereas equality of multivariate dispersion (b) was not. The value of D'AD test statistic measures how far each sample coefficient of variation

is from estimated population coefficient of variation.

was not rejected (F(;, 14y = 1.081, p = 0.315). MaAsLin3 did not
identify any prokaryotic strains differentially active between control
and exposed birds.

3.2 Virulence factors

KEPLER-AMR/VF Profiler identified a total of 102 expressed
VFs in our dataset (Supplementary Table 3 in Drovetski et al.,
2025). Richness of expressed VFs varied from 1 to 48 with a
median of 7.5. No relationship between exposure to MC-LR and
VF richness (Adj. R = -0.049, Fy, 14) = 0.293, p = 0.597) or
difference in coefficient of richness variation (D’AD = 0.003, p =
0.953) between exposed and control birds was observed. Shannon
Index values varied from 0 to 3.779, with a median of 1.908.
Shannon Index values did not differ between exposed and control
birds (Adj. R* = -0.071, F(1, 14) = 0.006, p = 0.942) and the null
hypothesis of equality of their coefficients of variation was not
rejected (D’AD = 1.044, p = 0.307). VFs load (the sum of all VFs
total matches in the sample) varied from 0.105 to 23.907, with a
median of 1.585. Neither the VF load (Adj. R> = -0.055, F(;, 14) =
0.216, p = 0.649) nor its coefficients of variation (D’AD = 0.023,
p = 0.881) differed between exposed and control birds. Exposure
to MC-LR did not affect the composition of expressed VFs
(PERMANOVA R® = 0.053, F;, 14 = 0.776, p = 0.808), and
the two exposure groups overlapped substantially on the PCoA
plot. Although the mean distance to centroid was higher in the
MC-LR exposed birds (0.622) than in controls (0.592), the null
hypothesis of the homogeneity of multivariate dispersions
between exposure groups was not rejected (F(;, 14 = 0.443,
p = 0.477). MaAsLin3 identified no VFs whose expression
differed between exposed and control birds.

3.3 Antimicrobial resistance genes

KEPLER-AMR/VF Profiler identified a total of 67 expressed
AMRSs from nine classes in our dataset (Supplementary Table 4 in
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Drovetski et al., 2025). Richness of expressed AMRs varied from 6 to
25 with a median of 15.0. There was no relationship between
exposure to MC-LR and richness of AMRs (Adj. R* = —0.022,
F(1, 14y = 1.334, p = 0.267). There was no difference in coefficient
of richness variation between exposed birds and controls (D’AD =
1.956, p = 0.162). Shannon Index values varied from 1.592 to 3.077,
with a median of 2.491. Shannon Index values did not differ between
exposed and control birds (Adj. R* = 0.073, F(;, 14) = 2.186, p =
0.161), whereas the null hypothesis of equality of their coefficients of
variation was rejected (control cv = 0.093, exposed cv = 0.209;
D’AD = 3.908, p = 0.048; Figure 2a). The load of expressed AMRs
varied from 2.634 to 14.009, with a median of 6.452. Neither the load
(Adj. R* = -0.025, F(;, 14y = 0. 0.641, p = 0.437) nor its coefficients of
variation (D’AD = 0.813, p = 0.367) differed between exposed and
control birds. Exposure to MC-LR did not affect the composition of
expressed AMRs (PERMANOVA R* = 0.082, Fy, 14) = 1.246, p =
0.216), and the two exposure groups overlapped completely on the
PCoA plot (Figure 2b). The mean distance to centroid was higher in
the MC-LR exposed birds (0.362) than in controls (0.266; F;, 14) =
5.053, p = 0.035) rejecting the null hypothesis of the homogeneity of
multivariate dispersions between exposure groups.
MaAsLin3 identified no AMRs differentially expressed between
exposed and control birds.

3.4 Metabolic pathways

Cloud identified a total of
242 expressed MetaCyc pathways in our dataset (Supplementary
Table 5 in Drovetski et al., 2025). Their richness varied from 32 to
167 with a median of 124.5. The richness of expressed MetaCyc
pathways was greater in controls (median = 130.5) than exposed
(118.5) birds but this differences was not statistically supported (Adj.
R*>=0.072, F(y, 14) = 2.157, p = 0.164), likely due to three fold greater
coefficient of richness variation in exposed (cv = 0.409) than in
control birds (cv = 0.138; D’AD = 5.957, p = 0.015; Figure 3a).
Shannon index values varied from 2.474 to 4.764. Similar to

CosmosID  Metagenomics

differences in richness, Shannon Index values were greater in
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Boxplot depicting the Shannon Index (a) and principal coordinates analysis (PCoA) plot based on Bray-Curtis dissimilarities (b) of expressed
antimicrobial resistance genes (AMRs) in ceca of mallards (Anas platyrhynchos) experimentally exposed to microcystin-LR (MC-LR) versus controls. Boxes
in the panel (a) represent interquartile ranges (from lower quartile to the upper quartile), whiskers represent minimum and maximum values, and the thick
horizontal lines represent medians. Ellipses in panel (b) represent one standard deviation around the centroid. Both the equality of richness
coefficients of variation (a) and equality of multivariate dispersion (b) were rejected. The value of D'AD test statistic measures how far each sample
coefficient of variation is from estimated population coefficient of variation.

controls (median = 4.213) than in exposed birds (median = 4.127)
but this difference was marginally supported (Adj. R* = 0.120, F(;,
14) = 3.049, p = 0.103) also likely due to over three fold greater
coefficients of variation in exposed birds (cv = 0.172) than in
controls (cv = 0.051; D’AD = 8.073, p = 0.004; Figure 3b).
Exposure to MC-LR did not alter composition of expressed
MetaCyc pathways (PERMANOVA R*> = 0.087, B, 14) = 1.339,
p = 0.203), and the exposure groups overlapped completely on the
PCoA plot (Figure 3¢c). The mean distance to centroid was greater in
the MC-LR exposed birds (0.265) than in controls (0.171), but the
null hypothesis of the homogeneity of multivariate dispersions
between exposure groups was marginally rejected (F, 14 =
2.707, p = 0.059). MaAsLin3 identified no MetaCyc pathways
that exposed
control birds.

were differentially expressed between and

3.5 Gene ontology terms (GO terms), protein
families (Pfam), Enzyme Commission
enzymes, and carbohydrate active
enzymes (CAZy)

There were no differences in a-diversity measurements, their
coefficients of variation, or in composition of GO terms, CAZy and
Enzyme Commission enzymes, and Pfam (Supplementary Tables
6-9, respectively in Drovetski et al., 2025) between control and MC-
LR exposed birds. MaAsLin 3 did not identify any features that were
differentially expressed between the experimental groups. However,
B-diversity multivariate dispersion was greater in the MC-LR
exposed birds than in controls for Pfam (Fg,4 = 44, N
permutations = 999, p = 0.033; Figure 4a) and Enzyme
Commission enzymes (F; 14 = 2.8, N permutations = 999,
0.049; Figure 4b), and the null hypothesis of the equality of
multivariate dispersion was marginally rejected for GO terms
(F, 14 = 3.3, N permutations = 999, p = 0.064; Figure 4c). Only
for carbohydrate active enzymes, the equality of multivariate
dispersion was not rejected (F(;, 14) = 2.3, n permutations = 999,
p = 0.132).

Frontiers in Toxicology

4 Discussion

The goal of our study was to investigate changes in mallard cecal
microbiota activity and function following a week-long, orally
administered exposure to a relatively low, sublethal dose of
purified MC-LR. We chose mallard for this experimental study
because this species is widely used in toxicity experiments and is one
of the most frequently affected during wildlife mortality events
coinciding with cyanobacterial blooms (Rattner, 2022). Mallard’s
abundance, ecology, and foraging habits routinely put them in
contact with algal blooms and facilitate ingestion of cyanotoxins.
To the authors’ knowledge, this is the first study of MC-LR exposure
effects on avian microbiome and the first to use shotgun RNA
sequencing in terrestrial wildlife.

Neither richness, Shannon index values, nor composition of
metabolically active prokaryotes, expressed VFs, AMRs, MetaCyc
pathways, GO terms, Pfam, Enzyme Commission nor CAZy
enzymes differed between exposed and control birds suggesting a
lack of deterministic shifts in composition and function of mallard
cecal microbiota in response to short-term, low-dose MC-LR
exposure. Likewise, there were no metabolically active strains,
VFs, AMRs, metabolic pathways, GO terms, enzymes or proteins
that were differentially active between exposed and control birds.
This appears to contradict findings of both earlier murine studies of
MC-LR effects on cecal prokaryotic microbiota based on denaturing
gradient gel electrophoresis (Chen et al., 2015) or short amplicon
sequencing (Zhuang et al.,, 2021) of 16S rRNA gene. Both studies
reported increases in prokaryotic microbiota richness, Shannon
index values, and changes in abundance of sentential cecal
bacteria. However, during library preparation in our study, the
16S rRNA gene fragments were depleted. It is plausible that an
increase in operational taxonomic units (OTU) richness identified
using substitutions and indels in hypervariable segments of 16S
rRNA gene does not necessarily translate into proportional increases
in strain richness calculated using variation in expressed non-
ribosomal mRNA.

The lack of deterministic response, however, does not mean
there was no effect of MC-LR exposure on the mallard cecal
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FIGURE 3

Boxplots depicting richness (a) Shannon Index (b) and principal
coordinates analysis (PCoA) plot based on Bray-Curtis dissimilarities of
expressed metabolic (MetaCyc) pathways (c) in ceca of mallards (Anas
platyrhynchos) experimentally exposed to microcystin-LR (MC-

LR) versus controls. Boxes in the panel (a, b) represent interquartile
ranges (from lower quartile to the upper quartile), whiskers represent
minimum and maximum values, and the thick horizontal lines
represent medians. Ellipses in panel (c) represent one standard
deviation around the centroid. The equality of coefficients of variation
of richness and Shannon Index (a,b) and equality of multivariate
dispersion (c) were rejected, although marginally for the latter. The
value of D'AD test statistic measures how far each sample coefficient
of variation is from estimated population coefficient of variation.

microbiota and its function. We observed increase in variance of a-
diversity indicators and/or B-diversity multivariate dispersion of
metabolically active prokaryotes and their expressed AMRs,
MetaCyc pathways, GO terms, enzymes and proteins in exposed
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Principal coordinates analysis (PCoA) plots based on Bray-Curtis
dissimilarities of expressed protein families Pfam; (a) Enzyme
Commission enzymes (b) and gene ontology (GO) terms (c). Ellipses
represent one standard deviation around centroid. In all cases the
equality of multivariate dispersion was rejected, although marginally
for the latter.

birds. Only VFs and carbohydrate active enzymes did not display
elevated stochasticity in the birds exposed to MC-LR. The elevated
stochasticity in the cecal microbiota and its function of exposed
birds relative to controls, observed in our data, is consistent with the
Anna Karenina Principle (Zaneveld et al, 2017) that has been
documented in a variety of animal and plant study systems
(Zaneveld et al., 2017; Ahmed et al., 2019; Ma, 2020; Arnault
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etal,, 2023; Liand Yang, 2025). This principle, when applied to host-
associated microbiota, suggests that in response to stressors,
symbiotic microbial community composition may not shift to a
new stable state but rather become unstable leading to its greater
variation among stressor-exposed than unexposed hosts. Stressor-
related loss of the ability to regulate microbial community
composition by the host and/or its microbiota and resulting
dysbiosis, the disruption of microbiota homeostasis, have been
linked to many host diseases, adverse outcomes, and reduced
fitness across multicellular eukaryotes from plants and corals to
humans (Zaneveld et al., 2017; Ahmed et al., 2019; Ma, 2020;
Arnault et al, 2023; Li and Yang, 2025). Unfortunately, we
whether  the
microbiome homeostasis is a direct effect of microbiota contact

cannot  determine observed  disruption  of
with the toxin or might be combined with indirect effect(s) through
modulation of some host organ(s) function because our
understanding of MC-LR toxicity in birds is still in its infancy
(Rattner, 2022). Even in much better studied mammals, we have
little information on MC-LR toxicokinetics and toxicodynamics
besides liver and male reproductive system (Ma et al., 2021).
Disruption of cecal microbiota homeostasis is likely to be
host.
herbivorous waterfowl, including mallard and gamebirds, paired

particularly consequential to the In predominantly
ceca function as microbial fermentation chambers that break up
indigestible complex carbohydrates (i.e., dietary fiber) into short
chain fatty acids that serve as the primary source of energy to the
host and convert uric acid to ammonia (Clench and Mathias, 1995;
Svihus et al,, 2013; Svihus, 2014). Strong functional selection and
long digesta retention time in the cecum greatly reduce
interindividual a- and B-diversity variance in cecal microbiota
relative to microbiotas of all other gut regions (Drovetski et al,
2018; Drovetski et al., 2019). Anna Karenina effects, i.e., stochastic
responses to sublethal MC-LR exposure, which we observed in the
mallard cecal microbiota, have the lowest tolerance limits but
greatest effects on host energy balance and, ultimately, fitness
than similar responses in other digestive tract regions.

In conclusion, our study revealed that short-term sublethal oral
exposure to purified MC-LR affects cecal microbiome in the semi-
domestic mallard. These effects are consistent with the Anna Karenina
Principle postulating that microbiota of the host exposed to a stressor,
may have a stochastic rather than deterministic response. Indeed, the
coefficient of variation of the metabolically active microbiota richness
was greater in the birds exposed to MC-LR than in controls. At the
same time there were neither shifts in cecal microbiota richness,
Shannon Index, composition nor differentially active strains between
exposure groups. However, manifestation of the Anna Karenina
Principle was even more pronounced in microbiota function.
Increased stochasticity among exposed birds was detected in
richness, Shannon Index, and composition of expressed metabolic
pathways, resulting in increased multidimensional dispersion of
expressed AMRs, GO terms, proteins and enzymes. To the
authors’ knowledge, this is the first documented extension of the
Anna Karenina Principle beyond community composition to its
function, which has been implied previously (Zaneveld et al.,2017;
Arnault et al., 2023) but not tested.
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