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Macrophages, essential components of the innate immune system, are
considered to be involved in the regulation of Leydig cell steroidogenesis,
though by mechanisms that remain uncertain. Mono-(2-ethylhexyl) phthalate
(MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), has been
shown to affect testosterone production directly via its effects on Leydig cells, but
also has been implicated in immune system modulation. These observations raise
the possibility that MEHP might affect male steroidogenesis both by its direct
effects on Leydig cells and perhaps also indirectly through its effects on
macrophages. As yet, however, MEHP effects on macrophages and the
potential relationship between macrophage response and Leydig cell
steroidogenic function are poorly understood. Using in vitro methodology, we
investigated the effects of MEHP on macrophage function and of downstream
effects of changes in macrophage function on Leydig cell steroidogenesis. Mouse
macrophage RAW 264.7 cells were cultured with MEHP (0-300 pM) for 24 h.
Significant dose-dependent changes were seen in these cells in response to
MEHP exposure, including increased cell size and granularity, increased
mitochondrial content and membrane potential, decreased ATP production
and oxygen consumption, and elevated intracellular and mitochondrial-
derived oxidative stress. These changes suggested a pro-inflammatory
response of the RAW 264.7 cells to MEHP. MEHP exposure activated the
p38 MAPK pathway linking oxidative stress to inflammatory signaling and
induced a dose-dependent increase in TNF-a secretion. In vitro exposure of
MA-10 Leydig cells to TNF-a was found to inhibit steroid (progesterone)
production by these cells. The observations, taken together, that TNF-a was
secreted by MEHP-activated macrophages and that exposure to TNF-a can
inhibit LH-stimulated steroid (progesterone) production by MA-10 Leydig cells
suggest the possibility of the involvement of an immune-mediated mechanism
resulting from MEHP exposure on impaired Leydig cell steroid production.
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Introduction

Di-(2-ethylhexyl) phthalate (DEHP), a widely used industrial
plasticizer, is found in numerous consumer products, leading to
widespread human exposure (Rowdhwal and Chen, 2018). DEHP
and its bioactive metabolite, mono-(2-ethylhexyl) phthalate (MEHP),
have been detected in human amniotic fluid, placenta, urine, blood,
and saliva (Li et al., 2022a; Kessler et al., 2012; Martinez-Razo et al.,
2021), raising concerns regarding their endocrine-disrupting potential
and reproductive toxicity. Indeed, DEHP exposure has been shown to
be associated with reduced testosterone production by the rat testis
(Rowdhwal and Chen, 2018; Culty et al., 2008; Walker et al., 2021). As
yet, however, the underlying mechanisms remain unclear.

Macrophages, essential components of the innate immune system,
have been suggested to be involved in the regulation of testicular
function, including Leydig cell steroidogenesis (Gu et al,, 2022; Hales,
2002). The mechanisms underlying the functional relationship between
macrophages and Leydig cells remain unclear. However, it has been
suggested, though not proven, that macrophages might impact Leydig
cells at least in part by regulating the intratesticular cytokine
environment (Gu et al, 2022). In response to environmental
stressors, macrophages can undergo metabolic reprogramming that
influence their activation state and cytokine secretion profile (Gleeson
and Sheedy, 2016; Wissfeld et al., 2022; Ganeshan and Chawla, 2014).
Pro-inflammatory (M1) macrophages rely predominantly on glycolysis
and generate reactive oxygen species (ROS), whereas anti-inflammatory
(M2) macrophages favor oxidative phosphorylation (OXPHOS) and
fatty acid oxidation (Martinez et al., 2008). Alterations in these metabolic
pathways can shift macrophage polarization, thus stimulating
inflammatory response and potentially impacting surrounding cells,
including Leydig cells (Kelly and O’Neill, 2015; Viola et al,, 2019).

MEHP has been reported to stimulate the release of tumor necrosis
factor (TNF-a) and interleukin in RAW264.7 cells, a murine
macrophage cell line derived from BALB/c mouse leukemia
(Bolling et al,, 2012; Park et al, 2019). DEHP has been shown to
enhance IL-4 production in CD4" T cells (Lee et al, 2004). The
mechanism by which MEHP enhances cytokine production is not
well characterized. However, it has been shown that mitogen-activated
protein kinases (MAPKSs) can modulate cytokine production, and that
MEHP can induce phosphorylated MAPKSs by many cell types (Qigen
et al., 2023; Bolling et al., 2012). The three major MAPK families, the
extracellular signal-regulated kinases (ERKs), the c-jun NH2 -terminal
kinases (JNK), and the p38 MAPKs are protein kinases that require
dual phosphorylation for activity (Roux and Blenis, 2004). In contrast
to the ERKSs, which are mainly activated by growth factors and other
mitogenic stimuli, JNK and p38 MAPKs are activated in response to a
number of stress stimuli (Roux and Blenis, 2004; Johnson and Lapadat,
2002). The latter, p38, is known to regulate the production of many
pro-inflammatory macrophage cytokines that are associated with
inflammation in various tissues (Schieven, 2005; Bachstetter and
Van Eldik, 2010). Recently, phthalate exposure was reported to
result in increased ROS production in many cell types including
macrophages (Shi et al,, 2023; Zhou et al,, 2013; Traore et al,, 2021;
Zhou et al,, 2019), suggesting that ROS formation may contribute to a
pro-inflammatory response after MEHP exposure. Indeed, ROS has
been shown to induce phosphorylation of p38 (Debattisti et al., 2017)
and to increase inflammatory mediators such as tumor necrosis factor
(TNF)-a (Blaser et al., 2016).
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In the current studies, we used RAW 264.7 cells to first examine
MEHP-induced changes in cytokine secretion, mitochondrial function,
and ROS generation. We then addressed the effect of macrophage-
derived inflammatory mediator tumor necrosis factor-alpha (TNF-ay),
produced by the RAW264.7 cells in response to MEHP, on
MAI10 Leydig cell steroidogenesis. Our findings indicate that MEHP
exposure of RAW264.7 cells can disrupt mitochondrial homeostasis
and promote activation, and that the stimulation of TNF-a production
by these cells can affect steroid production by MA-10 Leydig cells.
These results, together with previously published studies (Jones et al.,
1993; Traore and Zirkin, 2024), suggest an immune-metabolic
mechanism through which environmental toxicants may impair
endocrine function indirectly through effects on macrophages as
well through direct effects on the Leydig cells themselves.

Materials and methods
Reagents

MEHP was purchased from Sigma-Aldrich (St. Louis, MO). The
JC-1 dye (Mitochondrial Membrane Potential Probe) was obtained
from Molecular Probes™ Invitrogen. 2',7'-Dichlorofluorescein
diacetate (DCFH-DA) was obtained from Molecular Probes™
Invitrogen and from Sigma- Aldrich. All antibodies used for
Western blots were purchased from Cell Signaling Technology Inc.
(Danvers, MA). Cell viability was assessed using the MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide]  assay
following the manufacturer’s instructions (Trevigen, Gaithersburg,
MD). Absorbance was assessed using the EL 340-microplate reader at
550-600 nm wavelengths. The Seahorse XFp Real-Time ATP Rate

Assay kits were purchased from Agilent Technologies, Inc.

Cell culture and treatments

RAW 264.7 cells were obtained from the American Type Culture
Collection (ATCC, Rockville, MD). Cells were cultured in RPMI
medium supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Cultures were maintained in a humidified
incubator at 37 °C with 5% CO, and 95% humidity. Cells were
passaged upon reaching 85%-90% confluence, detached using
trypsin, and subcultured in T-75 flasks. For experimental treatments,
cells were exposed to MEHP (10, 100, 200, or 300 uM) or cultured with
vehicle (DMSO) at a maximal final concentration of 0.05%.

The concentration of 10 uM was chosen as it reflects human blood
levels (Li et al., 2022b), while 100 uM represents potential cumulative
exposure to multiple phthalates, as previously described (Howdeshell
etal,, 2017). The higher concentrations (200 and 300 pM) were included
to explore dose-dependent effects and to assess potential cytotoxic
thresholds, as reported in prior toxicological studies (Li et al., 2022b).

MA-10 mouse Leydig tumor cells were generously provided by
Dr. Mario Ascoli (University of Iowa). The cells were cultured at
34 °C in DMEM supplemented with 10% horse serum, 5% FBS,
4.76 mg/mL HEPES, 1.2 mg/mL sodium bicarbonate, and 25 pug/mL
gentamicin. Unlike primary Leydig cells, MA-10 cells mainly
convert cholesterol to progesterone, not testosterone, due to
limited expression of 17a-hydroxylase/17,20 lyase (CYP17A1).

frontiersin.org


https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1636395

Adla et al.

TNF-a production

RAW 264.7 cells were incubated in culture medium containing
MEHP (10-300 uM) for 24 h. Control cells, were incubated with
vehicle alone. TNF-a production in the supernatant was quantified by
enzyme-linked immunosorbent assay (ELISA) using the R&D Systems
kit (Catalog No. MTAO00B, R&D System), with each sample measured
in triplicate. TNF-a levels were normalized to total protein levels per
flask. To minimize the risk of endotoxin contamination, we used
endotoxin-free reagents and materials throughout our experiments,
including sterile techniques and endotoxin-free water and plasticware.

Effect of TNF-a on progesterone production

The effect of TNF-a on LH-stimulated progesterone production
was assessed by seeding 1 x 10° MA-10 cells into 10 mL culture flasks
overnight. To assess the acute inhibitory effects of TNF-a on MA-10
Leydig cell steroidogenic function, as previously described (Budnik
et al., 1999), cells were pre-incubated with or without TNF-a (1 or
10 ng/mL) for 6 h and then incubated in fresh culture medium
containing LH (100 ng/mL) for 2 h. Progesterone production in the
supernatant was quantified by enzyme-linked immunosorbent assay
(ELISA) using the Enzo Life Sciences kit (Catalog No. ADI-901-
011), with each sample measured in triplicate. Progesterone levels
were normalized to total protein levels per flask (Hauet et al., 2005).

Cell viability

The effect of TNF-a (1 and 10 ng/mL) and MEHP (10-300 pM)
exposures on cell viability was assessed with the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
cell viability/cytotoxicity assay (Benov, 2021).

Immunoblot analysis

For immunoblotting to assess STAR levels in MA-10 cells,
phospho-p38 in RAW 264.7 cells, and tubulin in both cell types,
three million cells were seeded per condition and allowed to adhere
overnight. Cells were then incubated with MEHP (10-300 uM) or
TNF-a (1 or 10 ng/mL) for the indicated times. After incubation, cells
were rinsed twice with cold phosphate-buffered saline (PBS) and lysed
in lysis buffer (Tris-HCL pH 7.4, 50 mM, NaCl 150 mM, Triton x
100 1%, and EDTA 5 mM). Lysates were centrifuged at 13,000 g for
10 min. Samples, each containing 30 ug of protein in loading buffer,
were separated by 10% SDS-polyacrylamide gel electrophoresis. The
separated proteins were transferred to a polyvinylidene fluoride
membrane (Novex, Life Technologies, MA). The membrane was
blocked by incubating in PBS containing 0.01% Tween-20 (PBST)
and 2.5% BSA overnight at 4 “C. Immunoblotting was performed
using rabbit antibodies against mouse STAR protein (Catalog No.
8449S, Cell Signaling Technology, MA) in MAI10 cells or against
phospho-p38 in RAW 264.7 cells (Catalog No. 9211s, Cell Signaling
Technology, MA) at 1:1,000 dilution for 1 h. After washing the blots,
alkaline phosphatase-conjugated goat anti-rabbit IgG, diluted 1:2,000,
was added, and the blots were incubated for 30 min. The membrane
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was washed with PBST, and bound antibodies were visualized by
adding chromogen 5-bromo-4-chloro-3-indolyl phosphate/nitroblue
tetrazolium (BCIP/NBT) substrate (Life Sciences, MA).

Hydrogen peroxide (H,O,) generation

The cellular redox status was assessed by measuring hydrogen
peroxide (H,O,) generation using the fluorogenic, cell-permeant dye
2',7'-dichlorofluorescin diacetate (DCFH-DA), as previously described
(Rothe and Valet, 1990). RAW 264.7 cells were treated with vehicle alone
(as described above) or MEHP (10-300 uM) for 24 h, followed by
incubation with 10 uM DCFH-DA for 30 min. After harvesting, cells
were washed twice with PBS, and the fluorescence intensity of 10,000 cells
was quantified using fluorescence-activated cell sorting on a Guava”
easyCyte HT flow cytometer. Fluorescence data were analyzed using
GuavaSoft” software (InCyte module, Guava” easyCyte HT Systems).

Superoxide generation

Mitochondrial superoxide was detected using MitoSOX™ Red
reagent. RAW 264.7 cells were treated with vehicle alone (as described
above) or MEHP (10-300 uM) for 24 h, followed by incubation with
2 pM MitoSOX™ in PBS for 10 min. The fluorescence intensity of
10,000 cells was quantified using a Guava® easyCyte HT flow
cytometer, and data were analyzed with GuavaSoft™ software
(InCyte module, Guava® easyCyte HT Systems).

Basal oxygen consumption rate (OCR) and
real-time ATP rate measurement

Basal oxygen consumption rate (OCR) and real-time ATP
production were assessed using the Agilent Seahorse XFp Real-Time
ATP Rate Assay (Catalog No. 103591-100, Agilent Technologies), which
quantifies total ATP production in live cells and distinguishes ATP
derived from mitochondrial oxidative phosphorylation versus glycolysis.
Basal OCR and extracellular acidification rate (ECAR) were measured.
Metabolic modulators oligomycin, and a combination of rotenone and
antimycin A were sequentially injected to calculate mitochondrial and
glycolytic ATP production rates. Oligomycin inhibits mitochondrial
ATP synthase, causing a decrease in OCR that enables quantification of
mitochondrial ATP production. ECAR data were used to calculate the
total proton efflux rate (PER). Complete inhibition of mitochondrial
respiration by rotenone plus antimycin A causes mitochondria-
associated acidification, which, combined with PER data, allows
calculation of glycolytic ATP production rates.

Mitochondrial membrane potential (A¥Ym)

Mitochondrial membrane potential (A¥m) was assessed using the
cationic, potentiometric dye JC-1 (Thermo Fisher Scientific). RAW
264.7 cells were cultured in RPMI medium to ~75% confluency
(~2 x 10° cells) in T25 flasks (Fisher Scientific). Cells were treated
with MEHP (10-300 pM) for 24 h at 37 °C and 5% CO, in triplicate.
After treatment, cells were harvested and resuspended in 1 mL PBS
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FIGURE 1

(A) Morphological changes in RAW 264.7 cells after their incubation with MEHP (300 yM) compared to control. (B,C) Flow cytometry analysis was
performed to evaluate changes in cell morphology. Forward scatter (FSC) was used to assess cell size (B), while side scatter (SSC) measured intracellular

granularity and complexity (C).

containing 2.5 uM JC-1, followed by incubation for 20 min at 37 °C. Cells
were washed with PBS to remove excess dye and resuspended in 500 uL
of 0.1% PBS/BSA for flow cytometric analysis. JC-1 fluorescence was
measured using a Guava~ easyCyte HT flow cytometer (Guava®
easyCyte HT Systems), and data were analyzed using GuavaSoft~
software (MitoPotential module, Luminex Corporation). JC-1
monomer (green) fluorescence was detected at 529 nm following
excitation at 514 nm. Mitochondrial membrane potential (A¥Ym) was
assessed by calculating the ratio of cells with high membrane potential
(purple-labeled) to those with low membrane potential (blue-labeled). A
higher ratio indicates increased mitochondrial polarization.

Statistical analysis

Data presented are expressed as mean * standard error of three
replicate samples from three different experiments. Group means
were evaluated by one-way ANOVA. The Tukey-Kramer HSD test
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was performed using JMP software (SAS, Statistical Discovery, and
NC) to determine significant differences. Results were considered
significant at P < 0.05.

Results

The following studies were designed to determine the molecular
mechanisms by which MEHP affects macrophage function, and how
changes in macrophage function might affect MA10 Leydig cell
steroidogenesis.

Effects of MEHP on RAW 264.7 macrophage
cell morphology

Mouse macrophage RAW 264.7 cells were treated with vehicle
alone or with MEHP (10-300 pM) for 24 h. As seen in Figure 1A, light
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microscopy revealed morphological differences between control and
MEHP-treated cells. Flow cytometry analysis data showed a dose-
dependent increase in forward scatter (FSC), indicating cell
enlargement (Figure 1B). Side scatter (SSC) was also increased with
MEHP treatment, reflecting greater intracellular granularity and
complexity (Figure 1C).

MEHP induces ROS generation in
RAW 264.7 cells

Reactive oxygen species (ROS) generation by macrophages has been
linked to the inflammatory response of these cells (Rendra et al., 2019;
Canton et al, 2021). To determine whether the response of
macrophages to MEHP might involve the generation of intracellular
ROS, RAW 264.7 cells were treated with increasing doses of MEHP and
ROS production was measured using 2!,7'- dichlorofluorescein (DCEF),
a dye that fluoresces upon oxidation by hydrogen peroxide (H,O,).
Cells were incubated for 24 h with 0-300 pM MEHP and then DCFH-
DA (2',7'-dichlorofluorescein diacetate) for 30 min, and analyzed by
flow cytometry. MEHP treatment caused dose-dependent increases in

10.3389/ftox.2025.1636395

DCF fluorescence, indicated by a rightward shift in the curve
(Figure 2A). Mean cellular fluorescence also increased in response to
MEHP exposure (Figure 2B).

We further investigated the impact of MEHP on intra-mitochondrial
superoxide production using flow cytometry analysis of MitoSox Red-
derived fluorescence. MitoSox red is a dye that selectively detects
superoxide anions in the mitochondria. As shown in Figure 2C,
MEHP exposure led to a dose-dependent shift in cell distribution
from low fluorescence (upper-left quadrant) to high fluorescence
(upper-right quadrant), indicating an increase in superoxide-producing
cells. Higher MEHP concentrations resulted in a greater number of
MitoSox Red-positive cells, with a significant increase in MitoSox-derived
fluorescence per cell at 100, 200, and 300 uM MEHP (Figure 2D).

MEHP-induced ROS signals MAPK-p38
activation

Mitogen-activated protein kinases (MAPKs) play crucial roles
in modulating inflammatory responses (Chen et al., 2023; Arthur
and Ley, 2013). MAPK- p38 activation plays a key role in
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FIGURE 2
(Continued).
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(Continued). MEHP effects on RAW 264.7 cell reactive oxygen species (ROS) generation. Cells were incubated for 24 h in medium containing either

vehicle alone or increasing concentrations of MEHP (10-300
dichlorodihydrofluorescein diacetate). Unstained are cells with

pM). After incubation, cells were analyzed for ROS generation using DCFH-DA (2',7'-
out DCFH-DA, used to determine background fluorescence. (A) Histogram showing flow

cytometry analysis of DCFH-DA fluorescence in cells across treatment groups. (B) Bar graph showing the mean DCF-derived fluorescence intensity
(MFI) for each treatment group. Superoxide generation by mitochondria of MEHP-incubated RAW 264.7 cells was evaluated using flow cytometry analysis

of MitoSOX Red-derived fluorescence. (C) Dot plot showing

flow cytometry analysis of MitoSOX Red fluorescence in cells across treatment groups.

Unstained are cells without MitoSOX Red, used to determine background fluorescence. (D) Bar graph showing the mean fluorescence intensity (MFI) for

each treatment group. Mean + SEM from three independent
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experiments. *P < 0.05, **P < 0.01.
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(A) Time-dependent effects of MEHP (300 pM) on MAPK p38 phosphorylation, as assessed by Western blot using a rabbit anti-mouse phospho-p38
antibody. (B) Effects of 30-min incubation with increasing 10 and 100 uM concentrations of hydrogen peroxide (H,O,) on phospho-p38 levels.

M1 macrophage polarization, drives pro-inflammatory responses,
and promotes production of IL-1f, TNF-a, and IL-6 (Arthur
and Ley, 2013). Previous studies have shown that MEHP can
activate the p38 MAPK signaling pathway in mouse macrophage
RAW 264.7 cells, leading to increased production of pro-
inflammatory cytokines (Bolling et al., 2012) ROS generation has
been linked to p38 activation in response to hypoxia in
cardiomyocytes (Kulisz et al, 2002). We sought to determine
whether there might be a direct link between MEHP exposure-
induced ROS and MAPK-p38 activation in RAW 264.7 cells. As
shown in Figure 3A, basal phospho-p38 levels were low in control
cells but increased significantly in time-dependent fashion, with the
highest levels recorded at 30 min of exposure to MEHP (300 uM). This
accumulation of phospho-p38 correlated with increasing accumulation
of ROS (Figures 2A,B). Treatment with H,O, (10 and 100 pM)
mimicked the effects of MEHP, inducing phospho-p38 accumulation
and further confirming the direct relationship between ROS production
and p38 phosphorylation in RAW 264.7 cells (Figure 3B).

MEHP disrupts mitochondrial function and
reduces oxidative metabolism in
macrophages

Mitochondrial metabolism is essential for macrophage activation
and the regulation of inflammatory responses (Wang et al., 2021; Qing
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et al, 2020). Recent studies emphasize metabolic reprogramming,
particularly changes in oxidative phosphorylation (OXPHOS), as a
key driver of macrophage polarization (Wang et al., 2021). To assess
how MEHP affects macrophage metabolism, we used the Agilent
Seahorse XFp Real-Time ATP Rate Assay to profile RAW 264.7 cells.
This assay quantifies total ATP production in live cells, distinguishing
between mitochondrial (OXPHOS-derived) and glycolytic ATP
contributions. Basal oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) were measured, followed
by sequential addition of metabolic inhibitors. Oligomycin, an
ATP synthase inhibitor, reduces OCR, enabling calculation of
mitochondrial ATP production. Subsequent treatment with
rotenone inhibits mitochondrial
respiration, allowing assessment of glycolytic ATP production

and antimycin A fully

based on mitochondrial-associated acidification and proton
efflux rate (PER). MEHP exposure significantly reduced OCR
4A,B),
markedly decreased (Figure 4C), indicating mitochondrial
dysfunction.

(Figures and mitochondrial ATP production was

MEHP exposure increases in the intracellular
granularity and the mitochondrial count

An increase in mitochondrial mass is essential to meet
the elevated energy demands and reactive oxygen species
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FIGURE 4

Effects of MEHP on basal oxygen consumption rate (OCR) in RAW 264.7 cells were assessed using the Agilent Seahorse XFp Real-Time ATP Rate
Assay to evaluate its impact on macrophage ATP production. (A) Real-time OCR measurements are shown in blue for untreated control cells and in red
for cells treated with MEHP (100 pM). Oligomycin, an ATP synthase inhibitor, was used to reduce OCR, enabling calculation of mitochondrial ATP
production. Subsequent addition of rotenone and antimycin A (Rot/AA) inhibited mitochondrial respiration, allowing assessment of glycolytic ATP
production. (B) Dose-dependent effects of MEHP on OCR. (C) Dose-dependent effects of MEHP on ATP production rates. Mean + SEM from three

independent experiments. *P < 0.05, **P < 0.01.

(ROS) production associated with macrophage activation and
inflammatory signaling (Jones 2020;
Wang et al, 2021). To assess mitochondrial mass, we

and Divakaruni,

performed flow cytometry analysis using MitoTracker
Green fluorescence, which reflects total mitochondrial mass,
alongside measurements of side scatter to evaluate intracellular
granularity and complexity within the same cell population.
MEHP exposure led to a dose-dependent increase in
MitoTracker Green fluorescence (Figure 5A), indicating
elevated mitochondrial mass. This increase was accompanied
by a corresponding rise in side scatter values, suggesting
enhanced intracellular granularity and complexity (Figure 5B).
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MEHP disrupts mitochondrial ATP
production and promotes increased
mitochondrial membrane potential (A¥m)

Cells that rely primarily on glycolysis for ATP production,
such as those activated by MEHP, are expected to exhibit elevated
mitochondrial membrane potential (A¥m) (Zorova et al., 2018).
This increase occurs because the proton gradient generated by
complexes I, III, and IV is not consumed by oxidative
phosphorylation, resulting in its accumulation. We used JC-1
dye in conjunction with flow cytometry to assess the impact of
MEHP on mitochondrial membrane potential (A¥m). JC-1
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FIGURE 5

MitoTracker Green

Effects of MEHP (10-300 pM, 24 h) on mitochondrial mass in RAW 264.7 cells, assessed by flow cytometry using MitoTracker Green-derived

fluorescence. Unstained are cells without MitoTracker Green, used to determine background fluorescence. (A) Representative histogram showing a
dose-dependent rightward shift in MitoTracker Green fluorescence, indicating an increased population of cells with elevated mitochondrial mass. (B)
Intracellular granularity and complexity in response to increasing MEHP concentrations, measured by side scatter (SSC). The red square highlights a

cell population with relatively high side scatter (SSC), indicating increased granularity. The green-circled population represents cells exhibiting both
elevated MitoTracker Green fluorescence and increased SSC, suggesting enhanced mitochondrial content and greater cellular complexity
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FIGURE 6

Effects of MEHP on mitochondrial membrane potential in RAW 264.7 cells. RAW 264.7 cells (1 X 10°) were treated with MEHP (10-300 uM) for 24 h,
and mitochondrial membrane potential was measured using JC-1 dye and flow cytometry. JC-1 accumulates in mitochondria based on membrane
potential, emitting green fluorescence (~529 nm) at low potential (monomer form) and red fluorescence (~590 nm) at high potential (J-aggregates). (A)
Shift of MEHP-treated cells into the upper left quadrant (dark purple) represents cells with high mitochondrial membrane potential (polarized cells),
indicating an increase in mitochondrial polarization in response to MEHP exposure. (B) Ratio of polarized to depolarized cells in response to MEHP *P <

0.05, **P < 0.01.

(5,5',6,6'-tetrachloro-1,1',3,3 -tetraethylbenzimidazolylcarbocyanine
iodide) is a cationic, lipophilic dye widely utilized to evaluate A¥m in
live cells, as it accumulates within mitochondria in a potential-
dependent manner. In cells with low mitochondrial membrane
potential (A¥m), JC-1 remains in its monomeric form and emits
green fluorescence (~529 nm). In cells with high A¥m, JC-1
accumulates in the mitochondria and forms J-aggregates, emitting
red fluorescence (~590 nm). The ratio of red to green fluorescence
serves as an indicator of mitochondrial polarization status. We detected
a dose-dependent rise in A¥Ym following MEHP exposure. This was
indicated by a shift in cell populations from the lower right quadrant
(low A¥m) to the upper left quadrant (high A¥m) in flow cytometry
plots (Figure 6A). Correspondingly, the ratio of polarized to depolarized
cells increased with MEHP treatment (Figure 6B).
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MEHP induces mitochondrial biogenesis in
RAW 264.7 cells

MEHP-induced
mitochondrial mass is attributable to enhanced mitochondrial

To determine whether the increase in
biogenesis, we performed an In-Cell ELISA MitoBiogenesis assay
(Cat. NC0292957). Cells were permeabilized and sequentially
stained with antibodies against cytochrome c oxidase subunit I
(COX-1),
dehydrogenase

a mitochondrial-encoded protein, and succinate
A (SDH-A),
mitochondrial protein. Quantitative analysis revealed an
increased COX-1/SDH-A ratio following MEHP treatment,

suggesting a potential upregulation of mitochondrial biogenesis

subunit a nuclear-encoded

(Figure 7A). This finding was further supported by light
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The arrows show dividing mitochondria in MEHP-treated cells.

MEHP

Mitochondrial biogenesis following MEHP exposure assessed by In-Cell ELISA and immunocytochemistry. (A) Quantitative analysis revealed a higher
COX-1/SDH-A ratio in MEHP-treated cells. (B) Light microscopy images of stained cells, revealing increased mitochondrial content in response to MEHP.

microscopy images of COX-1 and SDH-stained cells, which showed
increased mitochondrial content in MEHP-treated cells (Figure 7B).

MEHP effect on macrophage RAW 264.7 cell
TNF-a cytokine production and of TNF-a
effect on steroid biosynthesis

In vitro and in vivo phthalate exposures have been shown to result in
reduced testosterone production by Leydig cells (Jones et al,, 1993; Traore
and Zirkin, 2024). We hypothesized that phthalate effects on
steroidogenesis might involve not only direct effects on the steroid-
producing Leydig cells but also indirect effects resulting from effects on
the Leydig cell-associated macrophages. To begin to address this, we first
incubated RAW 264.7 cells in medium containing MEHP (0-300 pM)
for 24 h. Using an enzyme-linked immunosorbent assay (ELISA), we
found that TNF- «, a cytokine known to play an important role in
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inflammation, was produced by the RAW 264.7 cells in response to
MEHP and to increase significantly in response to increasing MEHP
doses from 100 to 300 uM (Figure 8A). To evaluate the possible impact
on steroid biosynthesis of the TNF-a induced by MEHP, we determined
the effect of TNF-a on LH-induced steroidogenesis by MA-10 Leydig
cells. MA-10 cells were pretreated with TNF-a (1 or 10 ng/mL) or PBS
alone for 6 h, after which the cells were stimulated with LH for 2 h. The
pretreatment of MA-10 cells with TNF-a for 6 h was based on prior
reports demonstrating that this time frame is sufficient to induce a stable
inflammatory response without causing excessive cytotoxicity (Budnik
etal, 1999). The cells then were exposed to hCG for 2 h to mimic acute
gonadotropin stimulation of androgen production, as previously
described in many in vitro steroidogenesis assays. TNF-a exposure
resulted in concentration-dependent reductions in LH-stimulated
progesterone production at 1 and 10 ng/mL (Figure 8B). Consistent
with reductions in steroid production, the expression levels of
steroidogenic acute regulatory protein (STAR), a key transport protein
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FIGURE 8

(A) Pro-inflammatory effect of MEHP on RAW 264.7 mouse macrophages. Cells were incubated with vehicle alone or with increasing concentrations

of MEHP (10-300 pM) for 24 h. TNF-a was quantified using an enzyme-linked immunosorbent assay (ELISA). Data shown are mean + SEM of three
separate experiments. (B) Effect of TNF-a on the steroidogenic function of LH-stimulated MA10 Leydig cells. Significantly different from control (basal):
*P < 0.05, **P < 0.01. (C) TNF-a effect on 30 kDa STAR protein, assessed by immunoblot analysis of RAW 264.7 cell total proteins using rabbit anti-
mouse STAR antibodies
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in the steroidogenic process, were significantly reduced in response to
TNF-a exposure (Figure 8C). None of the TNF concentrations affected
cell viability, as determined by the MTT assay (data not shown).

Discussion

Previous studies have shown that in vivo exposure to mono-(2-
ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-
ethylhexyl) phthalate (DEHP), can affect the immune system
(Li et al,, 2025; Linghu et al.,, 2024), and have suggested that under
inflammatory conditions macrophages might produce factors able to
affect Leydig cell steroidogenesis (Hales, 2002). Such studies, taken
together, raise the possibility that MEHP exposure might affect male
steroidogenesis not only by direct effects on Leydig cells, which has
been shown (Traore and Zirkin, 2024; Zhao et al,, 2012), but also
indirectly at least in part via effects on the macrophages with which
the Leydig cells are associated in the testis.

The in vitro studies presented herein were designed to begin to
address the possibility that MEHP exposure of RAW 264.7 cells in fact
can result in their production of factors able to suppress Leydig cell
steroidogenesis. Depending upon its dose, MEHP exposure of the RAW
264.7 cells resulted in increased side-scatter suggesting increased
intracellular granularity, a hallmark of macrophage activation. This
morphological change is consistent with the increased mitochondrial
mass and membrane potential detected in MEHP-treated RAW
264.7 cells, suggesting mitochondrial reprogramming during the
activation process. Macrophage activation is known to be driven by
metabolic shifts through which pro-inflammatory (M1) macrophages
exhibit increased glycolytic activity and ROS generation, while the anti-
inflammatory (M2) macrophages rely mainly on the oxidative
phosphorylation in the mitochondria (Viola et al, 2019; Kolliniati
et al,, 2022; Gupta and Sarangi, 2023; Mills et al., 2016). Our results
suggest that MEHP exposure directs macrophages towards a pro-
inflammatory state, as indicated by increased ROS generation and
TNF-a production.

MEHP-induced ROS generation is a key finding in this study,
as oxidative stress is a major driver of inflammatory responses
(Mittal et al., 2014). The dose-dependent increase in DCF

fluorescence and MitoSox Red-derived fluorescent cells
confirms elevated intracellular and mitochondrial ROS
production. This increased generation of ROS likely

contributes to the activation of the p38 MAPK pathway, as
demonstrated by increased phospho-p38 levels in MEHP
treated cells (Tiwary and Richburg, 2023). The ROS-mediated
activation of p38 MAPK has been well-documented in
inflammatory responses (Averill-Bates, 2024), suggesting that
MEHP exposure triggers a cascade of events leading to
macrophage activation and cytokine secretion.

Our mitochondrial analysis data highlight potential mechanisms by
which MEHP might induce macrophage activation. The increased
MitoTracker Green-derived fluorescence and JC-1 staining suggest
mitochondrial remodeling in response to MEHP, possibly as a
compensatory response to oxidative stress. While mitochondrial
biogenesis is generally associated with increased cellular function, the
simultaneous mitochondrial dysfunction observed through reduced ATP
production and OCR measurements indicates metabolic stress. These
mitochondrial alterations most likely contribute to the inflammatory
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phenotype observed in MEHP-treated macrophages. The activation of
macrophages, characterized by increased mitochondrial ROS generation,
P38 MAPK activation, and TNF-a production, apparently establishes an
inflammatory microenvironment able to result in suppression of Leydig
cell steroidogenesis. Together, current and preceding findings
highlight the potential endocrine-disrupting effects of phthalates
beyond direct cytotoxicity, and emphasize the need for further cause-
effect
reproductive toxicity.

investigations  into immune-metabolic  interactions in

Having demonstrated these effects of MEHP on macrophages,
and previous observations that MEHP exposure in vivo and in vitro
can affect Leydig cell steroidogenesis (Svechnikov et al., 2008; Zhao
et al,, 2012; Traore et al., 2021; Yang et al., 2025; Sekaran and
Jagadeesan, 2015), a major objective of the current study was to
assess whether MEHP-induced macrophage activation can affect
MA10 Leydig cell function. Our results show that TNF-a, a pro-
inflammatory cytokine, was produced by macrophages in response
to MEHP, and that exposure of MA10 Leydig cells to TNF-a can
inhibit LH-stimulated progesterone biosynthesis by MA10 Leydig
cells. These findings suggest the possibility that MEHP’s
detrimental effects on steroidogenesis may result not only from
direct toxicity to Leydig cells, as shown previously (Leisegang and
Henkel, 2018), but also indirectly through an immune-mediated
mechanism. It should be noted, however, that other testicular cell
types besides macrophages, particularly Sertoli cells, might also be
direct targets of MEHP. Sertoli cells have been reported to produce
TNF-a, and there are MEHP-induced adverse effects on Sertoli cell
function (Yao et al., 2007; Chen et al., 2013; Yao et al., 2009). Thus,
while our findings suggest MEHP-mediated induction of TNF-a in
macrophages as a potential mechanism for impaired Leydig cell
steroidogenesis, it is possible that Sertoli cells or other testicular
cell populations also may contribute to MEHP effects.
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