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Reproductive toxicity is a concern critical to human health and chemical safety
assessment. Recently, the U.S. Food andDrug Administration announced plans to
assess toxicity with artificial intelligence-based computational models instead of
animal studies in “a win-win for public health and ethics.” In this study, we used a
reproductive toxicity dataset using Simplified Molecular Input Line Entry
Specifications (SMILES) to represent 1091 reproductively toxic and 1063 non-
toxic small-molecule compounds. A repeated nested cross-validation procedure
was applied, in which the dataset was randomly partitioned into five distinct folds
in the outer loop, each time, one fold serving as the test set. In the inner loop, a
similar procedure was also repeated five times, with 12.5% each time serving as
the validation set. We first evaluated the performance of classical machine
learning (ML) methods such as Random Forest and Extreme Gradient Boosting
on predicting reproductive toxicity, using standard model evaluation metrics
including accuracy score (ACC), the area under the curve (AUC) of the receiver
operating characteristics curve (ROC) and F1 score. Our analyses indicate that
these methods’ overall results were mediocre and insufficient for high-
throughput screening. To overcome these limitations, we adopted the
Communicative Message Passing Neural Network (CMPNN) framework, which
incorporates a communicative kernel and amessage boostermodule. Our results
show that our ReproTox-CMPNN model outperforms the current best baselines
in both embedding quality and predictive accuracy. In independent test sets,
ReproTox-CMPNN achieved a mean AUC of 0.946, ACC of 0.857 and F1 score of
0.846, surpassing traditional algorithms to establish itself as a new state-of-the-
art model in this field. These findings demonstrate that CMPNN’s deep capture of
multi-level molecular relationships offers an efficient and reliable computational
tool for rapid chemical safety screening and risk assessment.
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1 Introduction

Reproductive toxicity, referring to the ability to disturb reproductive competence
through structural and functional alterations (U.S. Food and Drug Administration,
2011), remains a concern critical to chemical safety assessment, human health and
development of novel drugs. Such toxicity can lead to a wide range of adverse effects
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(U.S. Environmental Protection Agency, 1996), including reduced
fertility due to hormonal disruptions, decreased sperm count and
motility or impaired ovarian reserves, harm to embryonic or fetal
development leading to elevated rates of failure to reach term (about
50% for conceptions and 32%–34% for early pregnancies),
congenital malformations or growth or neurobehavioral disorders
like low birth weight, hypospadias or irregular puberty onset. These
adverse outcomes arise from diverse mechanisms at multiple stages.
Endocrine disruption occurs when toxins such as phthalates mimic
or block endogenous hormones, destabilizing endocrine systems;
oxidative stress can disrupt cellular signaling and induce apoptosis,
impairing spermatogenesis and oocyte maturation. Genotoxic
effects on germline or embryonic cells, including mutations and
chromosomal abnormalities, elevate risks of developmental defects
and early pregnancy loss. During embryogenesis, toxic exposures
may interfere with implantation, organ formation, and
morphogenesis, culminating in teratogenic outcomes and
postnatal developmental deficits. Exposure-triggered epigenetic
alterations, such as DNA methylation, histone modifications, and
miRNA expression changes, may persist through embryonic
development, potentially affecting multiple generations of
offspring. During important windows of development like
gametogenesis, pregnancy or early childhood, exposure to
reproductive toxicants can cause irreversible adverse outcomes
(Archibong et al., 2018; Iavarone and Dasmahapatra, 2025; Shi
et al., 2021; Yang et al., 2018).

Through the aforementioned mechanisms, environmental and
industrial chemicals from everyday plastics to persistent pollutants
have been increasingly implicated in reproductive complications.
Phthalates, widely used as plasticizers, interfere with androgen
signaling, impairing spermatogenesis and ovary function; in
animal studies, exposure was linked to short anogenital distances
and reproductive tract malformations. Bisphenol A (BPA), a
ubiquitous xenoestrogen, disrupts the hypothalamic-pituitary-
gonadal axis, decreasing fertility in both sexes, and impairs
embryonic implantation. Pesticides, particularly those with
endocrine-modulating or genotoxic properties, are known to
delay puberty, reduce gamete quality and increase miscarriage
risk. Heavy metals like lead and cadmium induce oxidative stress
in gonadal tissues, leading to diminished sperm production,
menstrual irregularities, and fetal growth restriction. Per- and
polyfluoroalkyl substances (PFAS)—persistent “forever
chemicals”—cross the placenta, disrupt hormone pathways,
impair ovarian and testicular development, and have been
associated with reduced birth weight and infertility (Yesildemir
and Celik, 2024; Mínguez-Alarcón et al., 2023).

Recent research has shown that many chemicals used in
workplaces have not been adequately studied on their possible
reproductive toxicity despite previous reports that exposure to
these chemicals increases risk of endocrine disruption, impaired
fertility and adverse reproductive outcomes (Rim, 2017). In
electronics factories, workers routinely handle solvents such as
trichloroethylene (TCE) and perchloroethylene (PCE), volatile
organic compounds, as well as phthalate-rich plasticizers and
flame retardants like polybrominated diphenyl ethers (PBDEs) to
which they are exposed via inhalation and skin contact with cables
and casings. In textile manufacturing, workrooms are often laden
with bleaching agents, azo dyes, formaldehyde, and heavy metals

released as airborne dust or absorbed dermally, leading to potential
miscarriages, menstrual disturbances, and hormone disruption.
Moreover, in poorly ventilated settings, microfibers and volatile
processing chemicals that increase oxidative and endocrine stress
can be inhaled (Wang and Qian, 2021). Even low levels of exposure
to toxicants during pregnancy can lead to maternal complications,
birth defects and delays or disorders in childhood development (Di
Renzo et al., 2015). A well-known example is thalidomide, which has
caused thousands of miscarriages and stillbirths in addition to
almost 10,000 severe limb malformations at birth (Miller, 1991).
Therefore, thorough evaluation of reproductive toxicity is required
both for public health policy safeguarding current and future
generations’ wellbeing as well as for the development of novel
drugs and regulatory requirements.

Besides health impairments to immediately affected individuals,
widespread exposure to reproductive toxicants brings substantial
increases in healthcare costs and long-term burdens on public health
systems. Njagi et al. (2023) reported that approximately 17.5% of
adults globally experience infertility and that a recent Global Burden
of Disease analysis estimated over 110 million cases of female
infertility in 2021—a rise of 84% since 1990. Exposure to
endocrine-disrupting chemicals, heavy metals, and persistent
organic pollutants has additionally been linked to increased
incidence of reproductive cancers, such as testicular and ovarian
cancer, and a higher prevalence of birth defects (e.g., neural tube
defects, hypospadias, congenital heart anomalies). Growing
evidence also supports that prenatal or parental exposure to
toxicants like methoxychlor and polychlorinated biphenyls has
been linked to impaired fertility and reproductive health across
multiple generations (Liu et al., 2025; Pan et al., 2023; Brehm and
Flaws, 2019). According to a comprehensive analysis (Attina et al.,
2016), by 2016, the estimated annual cost of healthcare in the
United States had amounted to over 340 billion USD, or more
than 2.3% of GDP, due to low-level daily exposure to endocrine-
disrupting chemicals potentially hazardous to reproduction.
Together, these trends underscore an urgent need for improved
reproductive health surveillance and regulatory intervention.

With a global cost of approximately 10.6 billion USD in 2022, a
figure expected to rise to $25.7 billion by 2032 (Faizullabhoy and
Kamthe, 2022), reproductive toxicity testing is essential to the
development of novel drugs. This cost indicates that traditional
in vitro and in vivo tests of toxicity remain expensive and time-
consuming; they additionally raise ethical issues regarding animal
use. On 10 April 2025, the FDA announced plans to replace animal
studies with artificial intelligence (AI)-based computational models
to assess drug toxicity (Office of the Commissioner, 2025), in “a win-
win for public health and ethics.” The European Union’s
Registration, Evaluation, Authorisation, and Restriction of
Chemicals regulation (REACH) and the U.S. Environmental
Protection Agency (EPA)’s Toxic Substances Control Act (TSCA)
now require not only extensive hazard assessments but also explicit
justification for the use of animal testing, effectively making
computational models a regulatory necessity. Under REACH’s
“last-resort” provision, animal testing can only be pursued when
alternative methods, including in silico approaches, have been
exhausted. Similarly, TSCA encourages the use of predictive
exposure and fate models to fill data gaps in chemical
assessments to reduce reliance on new animal studies (European
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Commission, 2022; United States Environmental Protection
Agency, 2025). As these regulations continue to expand their
scope, development of robust computational toxicology models is
no longer optional but essential to meet global compliance while
minimizing ethical and financial burdens.

Quantitative Structure–Activity Relationship (QSAR) models
use mathematical methods to model relationships between
chemical structures’ properties and biological activities in order
to predict biological activities of novel chemicals before formal
experiments. These models provide a more ethical, cost-effective,
rapid and efficient alternative to traditional in vitro and in vivo tests.
Until the 1990s, QSAR models used simple linear and partial least
squares regressions along with simple 1-D descriptors representing
chemical structures. Since the early 2000s, QSAR models have
evolved to incorporate machine learning (ML) methods such as
Random Forest (RF), Support Vector Machines (SVM), and
Extreme Gradient Boosting (XGBoost). These methods employ 2-
D and 3-D descriptors, which more accurately capture molecular
properties and non-linear relationships between properties and
bioactivities (Cortes and Vapnik, 1995; Breiman, 2001; Sheridan
et al., 2016; Li et al., 2025; Bahia et al., 2023; Xu et al., 2012; Ballester
and Mitchell, 2010; Wu and Wang, 2018). These advancements
resulted in more robust models and increased accuracy of
predictions.

However, classical ML models rely on pre-computed descriptors
that remain fixed throughout the training process, possibly limiting
their performance. In the last 15 years, Deep Learning (DL)
methods, particularly graph convolution-based Graph Neural
Network (GNN), have been introduced to QSAR modeling
(Wang et al., 2023; Duvenaud et al., 2015; Kearnes et al., 2016).
In GNN models or in general, Message Passing Neural Network
(MPNN), molecules are presented as undirected graphs with atoms
as nodes and bonds as edges. The message passing phase of MPNN
captures dynamic interactions between atoms and bonds;
aggregated messages that represent whole molecules are then
used to predict bioactivities through readout functions (Gilmer
et al., 2017). Different from the node-based message passing
phase of MPNN, Directed MPNN (DMPNN) considers
directions of edges that better differentiate the influence between
nodes, reducing redundancy in message passing (Dai et al., 2016;
Yang et al., 2019; Han et al., 2022; Xia et al., 2023). Yang et al. showed
that DMPNN outperformed most other deep neural network
methods in predicting molecular bioactivities (Yang et al., 2019).
More recently, the Communicative Message Passing Neural Network
(CMPNN) framework, employing a communicative kernel to reinforce
message exchange between nodes and edges and incorporates a
message booster module during message passing to enrich
molecular graph embeddings has demonstrated an enhanced
predictive performance compared to DMPNN (Song et al., 2021).
While all GNN methods offer a more dynamic and data-driven
approach to developing bioactivity prediction models that allows
for automatic extraction of features from molecular graphs, thus
requiring less expertise for more accurate predictions of bioactivity,
helping to enhance high-throughput screening processes and
accelerate drug development timelines, recent research has reported
significant gains of CMPNN in differentmolecular property prediction
tasks (Rao et al., 2022; Song et al., 2021; Liu et al., 2024).

Recently in the specific area of predicting reproductive toxicity,
Basant et al. (Basant et al., 2016) utilized two ensemble machine
learning models, Decision Tree Forest and Decision Tree Boost,
based on 334 chemicals of which toxicity to rats is known, to
demonstrate the effectiveness of ML-based QSAR models.
Further work based on larger datasets with more than
1,500 chemicals and methods including frequentist approaches
(Jiang et al., 2019; Feng et al., 2021), Bayesian methods (Zhang
et al., 2020) and Graph Transformer Networks (Ren et al., 2024),
achieved areas under the receiver operating characteristic curve
(AUCs) close or greater than 0.900 and accuracy scores (ACC) of
at least 0.830.

Our study is to develop better-performing in silico predictive
models on reproductive toxicity using a larger dataset of
2,154 chemicals that contains Simplified Molecular Input Line
Entry Specifications (SMILES) and a binary classification of
reproductively toxic or non-toxic. Considering the performance
of CMPNN method in other areas, we compared it with 11 ML
models using standard model evaluation metrics including accuracy
score (ACC), the area under the curve (AUC) of the receiver
operating characteristics curve (ROC), F1 score, balanced
accuracy (BA), Cohen’s Kappa and Matthews correlation
coefficient (MCC).

The rest of the manuscript is organized as follows. In Section 2,
the reproductive toxicity dataset and the overall process are
described first, followed by a brief description of different models
and metrics of model evaluation. In Section 3, information about
hyperparameters, results, and comparisons are presented. The
manuscript ends with a conclusion and description of future
work in Section 4.

2 Materials and methods

2.1 Toxicity data preparation

The reproductive toxicity dataset assembled in this study
includes 2,154 small-molecule compounds from the ECHA-C&L
Inventory, OECD-eChemPortal and previous literature (Ren et al.,
2024; Feng et al., 2021; Zhang et al., 2020, Jiang et cal. 2019). The lists
of chemicals are shown in Supplementary Table S1. This dataset
includes a varied mix of chemical types—industrial substances,
environmental pollutants, and pharmaceuticals. In the European
Chemicals Agency(ECHA) database, substances receive Category
1A (known human toxicant), 1B (presumed), or 2 (suspected) based
on a weight-of-evidence approach incorporating epidemiological, in
vivo, in vitro, and structural-activity data—excluding effects merely
secondary to general toxicity (European Chemicals Agency, 2017).
Likewise, The Organisation for Economic Co-operation and
Development (OECD)- eChemPortal aggregates reproductive
hazard classifications (1A/1B/2 and lactation effects) from
national and international regulatory sources (OECD, 2008;
2023). Most of the underlying data were derived from rodent
studies measuring endpoints like fertility rates, implantation
success, offspring development, and congenital malformations,
with human evidence primarily influencing Category 1A.
Therefore, this dataset provides a good basis for distinguishing
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reproductively toxic from non-reproductively-toxic compounds to
develop computational methods.

2.2 Calculation and construction of
molecular fingerprints

This study was conducted in a Python 3.12.2 environment
installed with RDKit 2025.3.2, Chemprop 2.1.0, PyTorch 2.7.1,
scikit-learn 1.6.1, Pandas 2.2.2, and NumPy 1.26.4. SMILES
strings of the 2,154 chemicals were converted with the standard
SMILES parser into RDKit molecular objects. Morgan fingerprints
(ECFP4) were generated with a radius of 2 and a total length of
2,048 bits in binary (presence/absence) mode, producing
ExplicitBitVect-type representations that provided a reliable data
foundation for subsequent classification modeling.

2.3 Classical machine learning methods

This study used eleven classical machine learningmethods to predict
chemical compounds’ reproductive toxicity. Decision Tree constructs an
interpretable tree by recursively splitting on feature thresholds, k-Nearest
Neighbors is a “lazy” learner that assigns class based on the majority vote
of nearest training samples in Euclidean space, Linear SVM finds a
maximum-margin hyperplane for linear separation, Naive Bayes applies
Bayes’ theorem under a conditional feature-independence assumption,
Logistic Regression fits a sigmoid function to estimate class probabilities,
Random Forest ensembles multiple decision trees built on random
features and sample subsets to reduce overfitting, Adaptive Boosting
(AdaBoost) trains weighted weak learners iteratively and combines them
into a strong classifier, Gradient Boosted Decision Tree (GBDT) builds
learners sequentially by fitting residual errors, Extra Trees further
randomizes split thresholds and features to increase model diversity,
Light Gradient Boosting Machine (LightGBM) employs a leaf-wise tree
growth strategy for faster training, and XGBoost uses second-order
derivative information and regularization to optimize both speed and

accuracy. To ensure fair comparison and reproducibility, all models were
tuned and evaluatedwithin a unified pipeline. Algorithm implementation
and key hyperparameters are shown in Supplementary Table S2.

2.4 Communicative message passing neural
network (CMPNN)

In this study, we selected the CMPNN framework (Figure 1),
given its architecture of enhanced message exchange and boosting,
to develop our reproductive toxicity prediction model (ReproTox-
CMPNN) and compared it with machine learning methods.

To provide a more formal and precise description, we
decomposed CMPNN into five steps, each with its
governing equations.

2.4.1 Graphical representation
Each molecule is represented as a directed graph

G � V, E( ),
whereV is the set of atoms (nodes) and E is the set of directed bonds
(edges). Each atom V has an initial feature vector h(0)v , and each
directed edge (u→v) has an initial embedding h(0)u → v , both obtained
from atom- and bond-level descriptors.

2.4.2 Message passing
Over K iterations, node states are updated by aggregating

incoming edge messages:

m t( )
v � ∑

u: u→v( )∈E
h t−1( )
u → v for t � 1, ..., K.

The new node hidden state is then

h t( )
v � MLPnode h t−1( )

v m t( )
v

���� ����b t( )
v[ ]( ),

where “‖” denotes concatenation and b(t)v is the message-booster
(Section 2.4.3).

FIGURE 1
Architecture of CMPNN model.
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2.4.3 Message booster
To amplify the most informative bond contributions, for each

node v we compute

b t( )
v � maxu: u→v( )∈E h t−1( )

u → v .

(element-wise maximum over its incoming edge embeddings).
We then scale the aggregated message by element-wise
multiplication:

m t( )′
v � m t( )

v ⊙ b t( )
v ,

and use m(t)′
v in place of m(t)

v in the node update above.

2.4.4 Node-edge communication
Edge embeddings are updated based on the newly computed

node states. For each directed bond (u →v),

h t( )
u → v � h t−1( )

u → v + ReLU We h t( )
v ‖ h t−1( )

u → v[ ]( ),
where We is a learned weight matrix and ReLU is a rectified linear
unit used at the next iteration. This residual formulation allows atom
and bond representations to co-evolve.

2.4.5 Readout and prediction head
After the final iteration t = K, we obtain node embeddings

h(K)v{ }. We then apply a gated recurrent unit (GRU) readout to each
node (to capture ordering effects), and sum over all nodes to
produce a fixed-length molecular vector:

hmol � ∑
v∈V

GRU h K( )
v( ).

Finally, a two-layer perceptron with dropout maps hmol to the
toxicity probability:

ŷ � σ W2ReLU W1 hmol + b1( ) + b2( ),
where σ is the sigmoid activation.

2.5 Model training, hyperparameter
optimization and evaluation

Using Python and RDKit, we generated classical molecular
fingerprints and physicochemical descriptors as input features for
various machine learning models like Random Forest (RF) and
Support Vector Machines (SVM). To overcome the limitations of
fingerprints, such as difficulty with activity cliffs and neglecting 3D
conformational details, we constructed molecular graphs G and
applied ReproTox-CMPNN to learn end-to-end embeddings based
on automatic extraction of rich topological and chemical context
from the molecular structure (Figure 2).

Model training and evaluation consisted of a rigorous repeated
nested cross-validation scheme. In the outer loop, the full dataset
was randomly partitioned into five distinct folds, with one fold each
time serving as the test set for performance evaluation. In the inner
loop, a similar procedure was also repeated five times, with 12.5%
each time (10% of the total data) serving for validation/
hyperparameter tuning. Nested cross-validation is more robust
than 1-layer five-fold cross-validation as it uses inner loop for
tuning and a separate set in outer loop for unbiased testing. The
80/20 split in the outer loop is a widely adopted guideline that

FIGURE 2
Machine learning and deep learning process to predict reproductive toxicity.
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balances the need for ample training data to learn patterns while
retaining a sufficiently large test set to assess generalization;
Gholamy et al. (2018) concluded that “p ≈ 80% is empirically the
best division into the training and the testing sets.” This system
ensured our results’ robustness and reproducibility, laying a solid
foundation for future virtual screening and toxicological risk
assessment.

Binary cross-entropy loss was minimized using the Adam
optimizer, batch size = 50, maximum epochs = 60, with early
stopping patience = 10 on validation AUC. Hyperparameters
(hidden dimension = 256) were tuned via grid search within each
training fold. All experiments were implemented in PyTorch and run
on a Linux server equipped with 6 NVIDIA 4090 GPUs.

2.6 Model evaluation metrics

The comparison of machine learning and ReproTox-CMPNN
models was based on accuracy score (ACC), balanced accuracy
(BA), Cohen’s Kappa, Matthews correlation coefficient (MCC),
F1 score, and the area under the curve (AUC) of the receiver
operating characteristic curve (ROC). The designations TP, TN, FP,
and FN in calculations refer to the number of true positives, true
negatives, false positives, and false negatives, respectively. Compared to
accuracy, Cohen’s kappa accounts for the possibility of agreements due
to randomness, with po defined as the observed agreement between two
classifiers and pe as the expected agreement by chance.

Sensitivity � True positive rate TPR( ) � TP

TP + FN

Specificity � 1 − False positive rate FPR( ) � 1 − FP

TN + FP

� TN

TN + FP

Accuracy � TP + TN

TP + TN + FP + FN

BalancedAccuracy � 0.5p sensitivity + specificity( )
F1 score � 2p

TP
TP+FPp

TP
TP+FN

TP
TP+FP + TP

TP+FN
( )

Cohen′s Kappa � po − pe

1 − pe
where

po � TP + TN

TP + TN + FP + FN

and pe � TP + FP( ) TP + FN( ) + FN + TN( ) FP + TN( )
TP + TN + FP + FN( )2

MCC � TPpTN( ) − FPpFN( )�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

AUC is calculated as the following with FPR as X-axis and TPR
as Y-axis. A higher AUC value indicates a greater ability of the model
to distinguish between positive and negative cases, i.e., better
performance:

AUC � ∫
1

0

TPR t( )pdFPR t( )

or using trapezoidal rule,

AUC ≈ ∑n−1
i�1

FPRi+1 − FPRi( )pTPRi+1 + TPRi

2

Similarly, for other metrics, a value closer to 1 indicates superior
model performance.

3 Results

3.1 Key molecular descriptors

The dataset used in this study contains Simplified Molecular
Input Line Entry Specifications (SMILES) and a binary classification
of reproductive toxicity (1 = Yes, 0 = No). Of the 2,154 chemicals,
mainly organic compounds, 1,091 (51%) and 1,063 (49%) are
classified as reproductively toxic and non-toxic, respectively. This
balanced distribution provides a solid foundation for subsequent
QSAR model training and validation.

To better understand the physicochemical features that distinguish
reproductive toxicants from non-toxic compounds, we first assessed six
common molecular descriptors across our dataset. These six descriptors
reflect basic physicochemical characteristics of molecules as well as
widely used in QSAR models and drug discovery. As shown in
Figure 3, we compared them between toxic and non-toxic
compounds. Overall, toxicants exhibit higher median values of and
larger dispersion in molecular weight (Weight) and topological polar
surface area (TPSA) compared to non-toxic molecules, suggesting that
larger and more polar structures are more likely reproductive toxicants.
Specifically, the median molecular weight in the non-toxic group is
200 Da compared to 314 Da in the toxic group; similarly, the median
non-toxic TPSA is 37 Å2 compared to 58 Å2 for toxicants with a more
right-skewed distribution with more extreme outliers exceeding 200 Å2.
In terms of lipophilicity, the median of logarithm of the partition
coefficient (Log P) is 2.43 in the non-toxic class, compared to 2.76 in
the toxic class, although the non-toxic class displays more outliers
beyond a very high value (>10), reflecting that enhanced lipophilicity
may facilitate membrane permeation and toxic bioaccumulation.

For hydrogen bond donors and acceptors, a slightly more right-
skewed distribution in the toxic class indicates potential
involvement of hydrogen-bonding interactions in mediating
reproductive toxicity. However, comparable distributions between
the two classes suggest that these descriptors alone are insufficient
for clear-cut classification. Similarly, distributions of rotatable bonds
imply limited impact of molecular flexibility on toxicity risk. Taken
together, while several molecular descriptors show discernible
trends between toxic and non-toxic compounds, these
distributions’ overall comparability indicates a need for
multivariate modeling. Integrating these descriptors within a
comprehensive machine learning framework would be key to
robust and generalizable reproductive toxicity predictions.

3.2 Hyperparameter search and
model training

ReproTox-CMPNN uses a hyperparameter configuration carefully
designed to improve predictive performance by balancing convergence
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and efficiency (Table 1).We used 60 training epochs with a batch size of
50, random enough to avoid local optima while effectively taking
advantage of GPU memory to handle molecules of different sizes.
We additionally employed an adaptive learning rate through a two-
epoch warm-up phase followed by a decay phase.

Learning rate increases linearly from 1e-4 to 1e-3 in the
warm-up stage and then decreases exponentially to 1e-4. This

method reduces instability during early training, accelerates
convergence in the middle stage, and allows for fine-tuning in
later stages.

In ReproTox-CMPNN’s architecture, we set the hidden layer
dimension to 300 to sufficiently capture complex structural
information in molecular graphs while avoiding over-
parameterization; in molecular graph neural networks, this

FIGURE 3
Distribution of key molecular descriptors by reproductive toxicity classification.
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hidden layer dimension determines the richness of node (atom)
and edge (bond) representations, an important part of the model.
ReproTox-CMPNN’s linear layers default to not using bias terms,
reducing the number of model parameters and lowering
overfitting risk. For molecular graph representations, relative
relationships are typically more important than absolute
offsets, and this bias-free design enables the model to focus
more on learning the relative feature importance in molecular

structures. The message passing depth is set to 3, allowing each
atom to perceive neighboring atoms up to three hops away. For
most drug molecules, this depth adequately captures key
structural information and chemical environments while
avoiding over-smoothing and overfitting problems that deeper
networks might introduce.

We obtained results presented in Figure 4A which show the
ROC curves of the ReproTox-CMPNN model under five-fold
cross-validation. The AUC values for folds 0–4 are 0.929, 0.942,
0.962, 0.956, and 0.939, respectively, resulting in a mean AUC of
0.946 with a standard deviation of 0.013. These results
demonstrate excellent discriminative power and low variability
across different folds, indicating robust stability and
generalization performance. Figure 4B, showing the evolution
of AUC during training epochs, illustrates the model’s rapid
improvement within the first 10 epochs, with AUC rising from
approximately 0.85 to over 0.92, after which the curve gradually
flattens and stabilizes around 0.93. This behavior suggests fast
convergence and no significant overfitting during later stages of
training coupled with a consistent predictive accuracy
throughout.

Overall, the CMPNN-based model achieves high and consistent
AUC scores in cross-validation and demonstrates quick
convergence and resilience during the training process, thus
providing a solid foundation for reliable reproductive toxicity
prediction of new compounds.

4 Discussion

4.1 Comparison of model performance

To provide a comprehensive benchmark of predictive
methods on our reproductive toxicity dataset, we first
evaluated eleven classical machine learning algorithms
alongside the ReproTox-CMPNN model. As summarized in
Table 2, ReproTox-CMPNN achieved an AUC of 0.946,

TABLE 1 Hyperparameters of ReproTox-CMPNN.

Hyperparameter Value Description

epochs 60 Number of epochs to run

batch_size 50 Batch size

warmup_epochs 2 Epochs for linear LR warmup

init_lr 1.00E-04 Initial learning rate

max_lr 1.00E-03 Maximum learning rate

final_lr 1.00E-04 Final learning rate

hidden_size 300 Dimensionality of hidden layers in MPN

bias FALSE Whether to add bias to linear layers

depth 3 Number of message passing steps

activation ReLU Activation function

undirected FALSE Use undirected edges

ffn_hidden_size None Hidden dim for FFN

ffn_num_layers 2 Number of layers in FFN

atom_messages FALSE Use atom-to-atom messages

ensemble_size 1 Number of models in the ensemble

num_folds 5 Number of folds in cross-validation

split_sizes 0.7:
0.1:0.2

Dataset split ratio

FIGURE 4
(A) ROC Curve, (B) AUC change during model training.
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substantially outperforming the next-best methods Random
Forest (0.825) and Linear SVM (0.823). This clear margin
underscores ReproTox-CMPNN’s superior ability to capture
intricate molecular topology and chemical context, leading to
markedly improved discrimination between toxic and non-
toxic compounds.

In terms of overall classification metrics, ReproTox-CMPNN
attained a mean accuracy of 0.857 with a standard deviation of
0.019 and a balanced accuracy (BA) of 0.856 with a standard
deviation of 0.018, significantly higher than those of other
models (e.g., Random Forest 0.825).

These results indicate that ReproTox-CMPNN delivers not only
excellent overall predictive power but also maintains high balance
between positive (toxic) and negative (non-toxic) classes, effectively
mitigating the biases arising from class imbalance. Furthermore, its
sensitivity (mean 0.823 and standard deviation 0.076) and specificity
(mean 0.890 and standard deviation 0.085) both exceed 0.80,
demonstrating reliable recall of toxicants and exclusion of
non-toxicants.

Examining more stringent agreement measures, ReproTox-
CMPNN’s Cohen’s Kappa (mean 0.713 and standard deviation
0.037) and Matthews Correlation Coefficient (mean 0.721 and
standard deviation 0.033) are well above those of traditional
models (most of which fall between 0.50 and 0.65), highlighting
strong consistency and correlation with true labels. The F1 score of
mean of 0.846 and standard deviation of 0.018, further reflects a
balanced trade-off between precision and recall, particularly
excelling in identifying toxic compounds. In contrast, simpler
approaches such as K-Nearest Neighbors (AUC = 0.717) or
Naive Bayes (AUC = 0.783) exhibit inferior discrimination
and stability.

In summary, the ReproTox-CMPNN model, through its
advanced representation of molecular structures, significantly
surpasses various conventional machine learning algorithms,
offering a powerful and robust framework for reproductive
toxicity prediction with promising applicability in risk
assessment pipelines.

4.2 Comparison with recent prediction
models on reproductive toxicity

As shown in Table 3, in recent work regarding reproductive
toxicity prediction, Jiang et al. (2019) used a much more
extensive dataset (1,823 chemicals) compared to previous
publications, multiple endpoints such as sperm reduction and
infertility, and six machine learning methods to develop more
reliable models. Their study recommended the SVM model using
Molecular Access System Keys Fingerprints (MACCSFP), which
generated an AUC of 0.900 and an accuracy score of 0.836. As
previous work mainly focused on frequentist methods, Zhang
et al. (2020) investigated Naive Bayes (NB) model together with
six molecular descriptors and ten types of fingerprints. Their best
model resulted in an AUC of 0.888 and an accuracy score of
0.830. Feng et al. (2021) used three machine learning methods
with nine molecular fingerprints to build more ensemble models.
The model they recommended had an AUC of 0.920 and an
accuracy score of 0.844. Ren et al. (2024) developed a deep
learning fragment-based graph transformer network (FGTN)
model to predict reproductive toxicity, taking pre-generated
fragments as nodes and bonds between fragments as edges
with a super-molecule-level node to connect all fragment

TABLE 2 Model performance based on machine learning and the ReproTox-CMPNN algorithm.

Model AUC
mean
(std*)

ACC
mean
(std)

BA
mean
(std)

Sensitivity
mean (std)

Specificity
mean (std)

Kappa
mean
(std)

MCC
mean
(std)

F1 score
mean (std)

Decision Tree 0.730 (0.018) 0.725 (0.020) 0.730 (0.018) 0.683 (0.036) 0.778 (0.016) 0.454 (0.039) 0.459 (0.037) 0.7632 (0.019)

Nearest
Neighbors

0.703 (0.008) 0.684 (0.015) 0.703 (0.008) 0.516 (0.018) 0.889 (0.003) 0.388 (0.022) 0.428 (0.016) 0.642 (0.012)

Linear SVM 0.825 (0.001) 0.813 (0.003) 0.825 (0.001) 0.710 (0.005) 0.939 (0.07) 0.633 (0.004) 0.655 (0.001) 0.807 (0.001)

Naive Bayes 0.775 (0.005) 0.767 (0.007) 0.775 (0.005) 0.692 (<0.001) 0.858 (0.009) 0.538 (0.013) 0.550 (0.013) 0.765 (<0.001)

Logistic
Regression

0.797 (0.021) 0.792 (0.019) 0.797 (0.021) 0.751 (0.008) 0.843 (0.034) 0.586 (0.038) 0.591 (0.040) 0.799 (0.021)

RandomForest 0.813 (0.007) 0.808 (0.009) 0.813 (0.007) 0.765 (0.015) 0.861 (0.005) 0.617 (0.018) 0.623 (0.016) 0.814 (0.006)

AdaBoost 0.773 (0.007) 0.766 (0.004) 0.773 (0.007) 0.706 (0.012) 0.841 (0.027) 0.536 (0.010) 0.546 (0.014) 0.768 (0.006)

GradientBoosting 0.811 (0.004) 0.804 (0.003) 0.811 (0.004) 0.748 (0.002) 0.874 (0.009) 0.611 (0.006) 0.619 (0.008) 0.807 (0.006)

Extra Trees 0.809 (0.006) 0.804 (0.005) 0.809 (0.006) 0.763 (0.019) 0.855 (0.022) 0.610 (0.010) 0.616 (0.011) 0.811 (0.005)

Lightboost 0.828 (0.014) 0.821 (0.010) 0.828 (0.014) 0.768 (0.012) 0.888 (0.040) 0.645 (0.022) 0.654 (0.027) 0.825 (0.011)

XGBoost 0.825 (0.009) 0.820 (0.007) 0.825 (0.009) 0.778 (0.003) 0.873 (0.015) 0.642 (0.015) 0.647 (0.016) 0.826 (0.011)

ReproTox-
CMPNN

0.946 (0.013) 0.857 (0.019) 0.856 (0.018) 0.823 (0.076) 0.890 (0.085) 0.713 (0.037) 0.721 (0.033) 0.846 (0.018)

*standard deviation.
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nodes. The FGTN model showed an AUC of 0.914 and an
accuracy score of 0.861.

Due to differences in datasets and data splitting, a direct
comparison between the aforementioned models and the
ReproTox-CMPNN model is not possible. However, a simple
comparison can still provide some valuable information.
ReproTox-CMPNN remarkably outperformed other models in
AUC and was very close to the FGTN model in ACC and MCC,
exceeding the remaining models. These results suggest that the
ReproTox-CMPNN model is both reliable and robust (Table 3).

CMPNN’s strong performance across multiple molecular
property benchmarks is attributed to its enhanced messaging
framework: unlike traditional MPNNs that focus solely on node-
to-node communication, CMPNN utilizes a communicative
kernel to reinforce interactions between both node and edge
features, complemented by a message booster, generating richer
molecular representations. As it is inherently based on 2D
molecular graphs, CMPNN may miss stereochemistry and
spatial relationships crucial for predicting properties like
enantiomer-specific activity. Furthermore, because our training
set mainly comprises organic environmental pollutants, our
model’s generalizability to other chemical domains such as
metal complexes or inorganic salts remains to be
demonstrated. Finally, since our current evaluation focuses on
specific endpoints, validating CMPNN across a broader spectrum
of toxicity readouts such as DNA damage, endocrine disruption
will be needed to further illuminate its applicability.

4.3 Conclusion and future work

In this study, we built prediction models on a comprehensive
reproductive toxicity dataset with 2,154 chemicals and compared the
performance of the deep learning ReproTox-CMPNN model with
other methods. Our results show that ReproTox-CMPNN learning
results exceed the current best ML models in both embedding
quality and predictive accuracy, making it a new state-of-the-art
method in this field. ReproTox-CMPNN’s deep capture of multi-
level molecular relationships offers an efficient and reliable
computational tool for rapid chemical safety screening and risk
assessment.

Future work includes training ReproTox-CMPNN to predict
multiple toxicity endpoints or reproductive toxicity of chemical
mixtures as well as combining ReproTox-CMPNN with mask
language model (MLM) for protein embedding to further
improve predictions.
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