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Introduction: Efficient preclinical prediction of cardiovascular side effects poses
a pivotal challenge for the pharmaceutical industry. Human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly
important in this field due to inaccessibility of human native cardiac tissue.
Current preclinical hiPSC-CMs models focus on functional changes such as
electrophysiological abnormalities, however other parameters, such as
structural toxicity, remain less understood.

Methods: This study utilized hiPSC-CMs from three independent donors,
cultured in serum-free conditions, and treated with a library of 17 small
molecules with stratified cardiac side effects. High-content imaging (HCI)
targeting ten subcellular organelles, combined with multi-electrode array data,
was employed to profile drug responses. Dimensionality reduction and clustering
of the data were performed using principal component analysis (PCA) and sparse
partial least squares discriminant analysis (sPLS-DA).

Results: Both supervised and unsupervised clustering revealed patterns
associated with known clinical side effects. In supervised clustering,
morphological features outperformed electrophysiological data alone, and the
combined data set achieved a 76% accuracy in recapitulating known clinical
cardiotoxicity classifications. RNA-sequencing of all drugs versus vehicle
conditions was used to support the mechanistic insights derived from
morphological profiling, validating the former as a valuable cardiotoxicity tool.

Conclusion: Results demonstrate that a combined approach of analyzing
morphology and electrophysiology enhances in-vitro prediction and
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understanding of drug cardiotoxicity. Our integrative approach introduces a
potential framework that is accessible, scalable and better aligned with clinical
outcomes.

KEYWORDS

hiPSC-derived cardiomyocytes, organelle profiling, cardiac safety, in vitro drug testing,
fluorescence microscopy, cell painting, phenotypic screening

1 Introduction

Novel drug candidate development can take over a decade and
exceed a billion dollars to reach the clinic (Hinkson et al., 2020), with
cost of failure as one of the main culprits (Duyk, 2003). It is
estimated that in recent decades, 90% of pharmaceutical
development failure occurred at the clinical phase (Sun et al.,
2022). Consequently, the urgency for pharmaceutical companies
to address financially taxing, high drug attrition rates keeps
increasing. Failure due to cardiac-safety complications is
common (Waring et al., 2015; Sun et al., 2022), accounting for
approximately one-third of adverse drug reactions leading to
attrition (Fermini et al., 2018). According to the Food and Drug
Administration’s (FDA) Adverse Event Reporting System for
cardiovascular-related events, some of the most frequently listed
categories include cardiac arrhythmia (often QT prolongation),
cardiomyopathy, myocardial ischemia, and coronary-artery and
valvular disorders (Laverty et al., 2011).

To this day, predictive models to determine the risk for these
cardiovascular events with sufficient specificity and sensitivity
are lacking. Numerous animal models have been utilized.
However, their specificity at times can be low, resulting in
ambiguous translational value (Lu et al., 2001; Bailey et al.,
2014; Clark and Steger-Hartmann, 2018). Use of adult native
cell types has also been plagued by low-efficiency and labor-
intensive methods (Louch et al., 2011; Meki et al., 2021), in
addition to their inadequate homogeneity, reproducibility, and ex
vivo viability (Apati et al., 2019). Using an improved culture
protocol of human heart slices, Miller et al. recapitulated
clinically-observed cardiotoxic profiles of doxorubicin,
trastuzumab, and sunitinib. However, the viability and
functionality of these slices lasted only up to 6 days (Miller
et al., 2020). In comparison, human induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs) can be maintained in
culture for months (Seibertz et al., 2023), making them suitable
for investigating chronic compound effects and development of
pathophysiology (Tiburcy et al., 2017).

The relevance of hiPSC-CM models as accessible,
affordable, and scalable alternatives (Burridge et al., 2014;
Fowler et al., 2020) in safety-pharmacology research has been
demonstrated (Yamamoto et al., 2016; Ando et al., 2017; Blinova
et al., 2017; Sharma et al., 2017; Blinova et al., 2018; Kopljar
et al., 2018; Blinova et al., 2019; Giovannetti and Peters, 2021;
Yang et al., 2022), especially in the context of detecting (pro)
arrhythmic events (Yamamoto et al., 2016; Ando et al., 2017;
Blinova et al., 2017; Blinova et al., 2018; Kopljar et al., 2018;
Blinova et al., 2019). Major initiatives such as the
Comprehensive In Vitro ProArrhythmia Assay (CiPA) have
established protocols to study the short-term proarrhythmic

effects of compounds using multi-electrode array (MEA) or
voltage-sensitive dyes (VSD) by recording changes in
electrophysiology, particularly focusing on the human ether-
a-go-go-related gene (hERG) potassium channel modulation
(Blinova et al., 2017; Blinova et al., 2018; Blinova et al., 2019).
Despite high predictive power, such assays are unable to detect
all types of cellular toxicities.

Most conventional screening assays focus only on a singular/
few, readily interpretable functional parameters for
analysis–such as alterations in action potential
recordings–which can be directly correlated to specific
biological functions or processes. While effective at precisely
detecting certain abnormalities, these measurements may not
fully capture the complexity of drug-induced cardiotoxicity,
which requires a more integral approach. With the FDA
phasing out animal testing for new drug candidates (Zushin
et al., 2023) and the development of the EU Roadmap for
Phasing Out Animal Experimentation (Walder et al., 2025),
establishing integral in vitro cardiotoxicity models is timelier
than ever. Through newly-emerging technologies, it is possible to
analyze combinations of complex (sub)cellular morphological
features, allowing for a more precise description of the sample
condition (Chandrasekaran et al., 2021) – the morphological
profiles generated are unique to the given condition in a similar
fashion as a fingerprint would be to an individual. Current efforts
such as the JUMP Cell Painting Consortium aim to standardize
this approach and expand databases for enhanced drug safety
assessments, however they are focused only on a few cell models
including immortalized cancer cell lines, limiting their
translational potential (Cimini et al., 2023; Chandrasekaran
et al., 2024).

Incorporating novel morphological assays with established
functional readouts could promote a cardiac safety paradigm
shift towards combinatorial characterization, thereby improving
the accuracy and resolution of hiPSC-CM models. In order to
realize this, the present study relied on morphological profiling to
accurately assess drug toxicity, facilitated by high-content
imaging (HCI), a powerful tool for identifying potential drug
targets and uncovering mechanisms of action (Bray et al., 2016;
Pahl and Sievers, 2019). Quantitative data was extracted from
acquired images of hiPSC-CMs stained by combinations of
distinct markers for an array of ten subcellular organelles.
This rich compilation of data was then utilized for clustering
of potential cardio-toxicants, showing strong alignment with
clinical classifications. The complementary nature of
traditional functional assays, such as electrophysiology
recordings to these readouts and vice versa, were investigated,
demonstrating improved toxicity detection with the integrated
approach. Moreover, RNA sequencing (RNA-seq) of compound-
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treated samples was performed to further elucidate the
underlying transcriptional mechanisms of the cardiotoxic effects.

2 Materials and methods

2.1 hiPSC-CM plating and
compound treatment

Cryopreserved hiPSC-CMs were thawed and precultured in
fibronectin-coated (1:100) T75 flasks for 3 days, in Ncardia’s
proprietary Cardiomyocyte Culture Medium, prior to being
reseeded onto appropriate plate formats for compound assays.
hiPSC-CM cultures were dissociated using 1X TrypLE™ Select
Enzyme (Gibco™) and kept in serum-containing culture
medium. On day 1, culture medium was switched to serum-free
medium composition. hiPSC-CMs were maintained at 37°C and 5%
CO2 with regular medium changes every 48 h. Only for the
experiments relating to the assessment of the culture medium
compositions, hiPSC-CMs were kept in culture for up to 14 days
post seeding. After ascertaining the most suitable timepoint for all
subsequent assays (day 8), all compound treatments began on day
7 post seeding, during which 3–6 replicates were exposed to one
concentration of a single compound or to vehicle control (0.1%
DMSO) for 24 h. Compound solutions were administered at final
concentration of 0.1% DMSO (Table 1).

2.2 Immunofluorescence staining and
HCI protocol

Compound treated hiPSC-CMs seeded onto 384 well µClear
black plates (Greiner) at a density of 2,000 cells per well, were
stained for selected target structures. Live cell staining–MitoTracker
CMXRos Red (25 nM) for 1 h; LysoTracker Red (75 nM) for 30 min
at 37°C - was performed preceding fixation of samples using 4%
methanol-free paraformaldehyde for 15 min at room temperature
(RT). Next, cells were permeabilized with 0.01% Triton-X diluted in
DPBS (−/−) for 15 min at RT. Primary antibody (Ab) mixes
(Supplementary Table S1) were prepared in blocking solution
containing 10% fetal bovine serum using 1:1,000 dilution scheme
with the exception of the anti-PMP70 which was diluted to 1:500.
Samples were incubated overnight at 4°C then washed thrice with
0.01% Triton-X. Appropriate secondary Ab mixes (1:500 dilution)
were added for 2 h at room temperature. Concanavalin (200 μg/mL)
staining for 1 h and Wheat Germ Agglutinin (5 μg/mL) for 10 min
preceded nuclear staining with DAPI (1:1,000, 15 min at RT). Lastly,
cells were washed thrice with 0.01% Triton-X as well as with
DPBS (−/−).

High-magnification images (40×) were acquired using an
ImageXpress Micro Confocal platform (Molecular Devices) in
confocal mode. Images were analyzed in MetaXpress software
version 6.6, using the Custom Module Editor, in which unique
masks were designed to detect each subcellular component on a

TABLE 1 Compound library and experimental concentration ranges used across assays.

Compound Cmax (total) Cexp

HCI and MEA RNA-seq

Doxorubicin 1.3–6.8 µM (Twelves et al., 1991) 0.01–10 µM 0.1 µM

Cisplatin 6–18 µM (de Jong et al., 2023) 0.01–10 µM 10 µM

Ponatinib 0.05–0.18 µM (Cortes et al., 2012) 0.001–1 µM 1 µM

Dasatinib 0.15–0.37 µM (Takahashi et al., 2012) 0.001–1 µM 0.3 µM

Lapatinib 1.3–7.4 µM (Burris et al., 2005; Chu et al., 2007) 0.01–10 µM 10 µM

5-Fluoro-uracil 19.3–23 µM (Capitain et al., 2008) 0.01–10 µM 10 µM

Methotrexate 0.01–0.1 µM (Inoue and Yuasa, 2014) 0.001–1 µM 1 µM

Omecamtiv Mecarbil 22.4 nM–2.5 µM (Teerlink et al., 2011) 0.001–1 µM 1 µM

Propofol 21.9–56 µM (Fan et al., 1995; Bleeker et al., 2008) 0.1–100 µM 100 µM

Bupivacaine 1.6–5 µM (Hu et al., 2013) 0.01–10 µM 10 µM

Amiodarone 0.7–3.6 µM (Vassallo and Trohman, 2007) 0.01–10 µM 1 µM

Dofetilide 3.8 nM–23 nM (Allen et al., 2000) 0.0001–0.1 µM 0.01 µM

Digoxin 1–2.56 nM (Gona et al., 2023) 0.00001–0.01 µM 0.01 µM

Chlorpromazine 16 nM–560 nM (Rivera-Calimlim, 1982) 0.001–1 µM 1 µM

Erlotinib 1.2 nM - 5.9 µM (Gruber et al., 2018) 0.01–10 µM 0.3 µM

ASA 27–77 µM (Kanani et al., 2015) 0.01–10 µM 10 µM

Empagliflozin ~665 nM (Scheen, 2014) 0.001–1 µM 1 µM

Summary of 17 reference compounds used in this study, including reported clinical maximum total plasma concentrations (Cmax) from literature, and experimental concentration ranges

applied in high content imaging (HCI), multi-electrode array recordings (MEA) and RNA sequencing (RNA-seq). HCI and MEA assays were performed across a 7-point semi-logarithmic

concentration range, while RNA-seq was conducted at a single selected concentration per compound.
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single-cell level (Supplementary Figure S1). Signals corresponding to
nucleoli (anti-fibrillarin Ab) and DNA damage (anti-γH2AX Ab)
were detected within the area corresponding to nuclei (DAPI), and
remaining organelles within the segmented cytoplasmic area.
During image analysis, the fluorescence threshold was not set as
an absolute value for signal quantification but as an intensity
difference to local background ensuring comparable noise to
signal ratio for each dataset of an immunofluorescence staining
experiment.

2.3 RNA-sequencing
experimental procedure

On day 8, post 24-h compound treatment cell samples were
collected from hiPSC-CMs for RNA extraction. For each compound,
the treatment concentration was selected as the dose that elicited the

largest functional effect on MEA recordings without causing
significant loss of viability (Table 1), so as to not bias
mechanistic analysis towards cell death pathways and allow
elucidation of causative toxicity mechanisms. RNA was isolated
using the NucleoSpin RNA kit (Bioke) according to the
manufacturer’s protocol.

After RNA extraction, the concentration and quality of the total
extracted RNA were evaluated by using the “Quant-it ribogreen
RNA assay” (Life Technologies) and the RNA 6000 Nano chip
(Agilent Technologies), respectively. Subsequently, 10 ng of RNA
was used to perform an Illumina sequencing library preparation
using the QuantSeq 3′mRNA-Seq Library Prep FWD Kit (Lexogen)
per manufacturer’s instructions. During library preparation, 17 PCR
cycles were used. Libraries were quantified by qPCR, according to
Illumina’s protocol ‘Sequencing Library qPCR Quantification
protocol guide’, version February 2011. A High Sensitivity DNA
chip (Agilent Technologies) was used to control the library’s size

FIGURE 1
Stepwise workflow of imaging-derived feature processing used for unsupervised and supervised toxicity classification.
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distribution and quality. Sequencing was performed on a high
throughput Illumina NextSeq 500 flow cell generating 75 bp
single reads.

2.4 Bioinformatic analysis

2.4.1 Imaging dataset
Imaging-derived features exported from MetaXpress software

as. txt files were analyzed using R studio (R v.4.2.3) following the
steps detailed below (Figure 1). Quality control involved exclusion of
conditions with undetectable signals, as well as outlier filtering based
on cytoplasmic area as correct detection of cytoplasmic area served
as the basis of further cell segmentation steps. Outlier filtering was
performed using a median absolute deviation (MAD) thresholding
approach. For each dataset (i.e., cell line/batch and staining
protocol), cells were flagged as outliers if their cytoplasmic area
deviated from the median by more than three MADs. A threshold of
three MADs was applied in alignment with statistical practices and
to ensure conservative exclusion of extreme values in biologically
variable datasets (Leys et al., 2013). Specifically, for each value (x) the
outlier condition was defined as:

x −median X( )
MAD X( )

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

> 3

where X is the vector of all values in that dataset. In cases where all
values were identical (i.e., MAD = 0), no outliers were removed, as
cells were assumed to exhibit similar morphology. Additionally, to
avoid errors by dividing zero by zero, any mathematically undefined
results were treated as non-outliers as well. This approach ensured
robust and reproducible outlier handling across all
experimental batches.

Post-filtering, data were aggregated at the replicate-level by
calculating median values across all cells per replicate. Each
replicate-level profile was then normalized to the median of the
corresponding vehicle control. Non-informative features with near
zero variance were identified and excluded from further analysis.
Near zero variance was classified as meeting both of the following
criteria: a high frequency ratio (default threshold: >19, i.e., the most
common value occurred 19 times more often than the second most
common value), and a low proportion of unique values (<10%).
These thresholds were applied across the whole dataset to identify
predictors with limited discriminatory value.

For unsupervised analysis (principal, component analysis;
PCA), cell line-level aggregated data was used to identify broad
phenotypic trends across donors. In addition, to capture phenotypic
signals emerging at any level of exposure and to derive global
conclusions, all seven concentrations tested per compound were
pooled and treated as a single input group. This strategy allowed for
the detection of emergent morphological patterns across all
treatment levels without bias from donor-specific variability in
dose-response thresholds. Absolute loading scores from principal
component 1 (PC1) were averaged across lines to identify key
features and generate compound-level toxicity clusters via
k-means clustering.

In contrast, supervised classification was conducted using sparse
partial least squares discriminant analysis (sPLS-DA) on replicate-

level data from a single, well-characterized hiPSC-CM batch (Ncyte
CM1). Similarly, as for RNA-seq, one concentration per compound
was selected based on the strongest functional (MEA) effect without
loss of viability (Table 1). This design minimized technical
variability and enabled high-resolution compound discrimination
and classification aligned with known clinical toxicity groupings.

All statistical analyses and visualizations were performed using
established R packages: tidyverse (v.2.0.0), dplyr (v.1.1.4), caret
(v.6.0.94), mixOmics (v.6.25.1), ggplot2 (v.3.5.1) and
pheatmap (v.1.0.12).

2.4.2 Differential gene expression
Per sample, on average 5.7 × 106 ± 1.3 × 106 reads were

generated. First, raw reads were quality and adapter trimmed
with Trim Galore v.0.6.7. The trimmed reads were mapped
against the human genome (GRCh38.104) with STAR v.2.7.9a.
(Dobin et al., 2013). Unique Molecular Identifiers were used
during the sequencing and were processed with UMI-tools
v.1.1.2. (Smith et al., 2017). The RSEM software v.1.3.1 (Li and
Dewey, 2011) was used to generate the count tables.

Differential gene expression–in which the vehicle group was
compared to a single compound group–was performed using edgeR
v.3.36.0. (Lun et al., 2016). For each separate analysis, included the
following: (1) Normalization using edgeR’s standard normalization
method. (2) Removing low expressed genes with the filterByExpr
function. (3) A general linear model was built with an empirical
Bayes quasi-likelihood F-test to identify genes as significantly
different if FDR ≤0.05 and FC ≥ 1.

Genes were annotated for ontologies using DAVID (Huang da
et al., 2009) in conjunction with the GOplot v.1.0.2 R package.

2.5 Electrophysiology analysis

hiPSC-CMs were seeded in a droplet (10,000 cells/droplet),
covering all electrodes of fibronectin (1:20) coated Axion
CytoView 96 well plates. Cultures were maintained at 37°C, 5%
CO2, with all plates equilibrated for 30 min prior to recordings.
Electrophysiological parameters were obtained from field potential
recordings of contracting hiPSC-CMs using an Axion Maestro Pro
device and the corresponding Axis Navigator and Cardiac Analysis
tool. Plates were recorded for 5 min. Parameters analyzed included;
active electrodes (number of electrodes detecting beats in percentage
with beat detection set at 300 µV), beat rate (beats per minute; BPM),
beat rate irregularity (coefficient of variation within each well
between the eight electrodes, BRI), beat rate variability
(coefficient of variation in between wells of the same plate; BRV
CV), field potential duration (ms; FPD), corrected field potential
duration (FPDc), FPD detection success rate (percentage of active
electrodes which could also detect FPD successfully), FPD variability
(coefficient of variation in between wells of the same plate; FPD CV).
Calculations were performed following the equations listed:

BPM � 60 s( )
Beat period s( )

BRI � Standard deviation SD( ) beat period per electrode
Mean beat period perwell

x 100
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FIGURE 2
Evaluation of two serum-free media formulations supplemented with 0.5% BSA +1% KOSR. (A–D) Electrophysiological parameters of hiPSC-CMs
measured in media that passed the initial screening; (A) beats per minute (BMP; threshold 20–45), (B) beat rate variation (BRV, inter-well variability
coefficient of variation, threshold ≤20%), (C) field potential duration (FPD) detection success rate (threshold ≥50%) and (D) FPD variation (inter-well
variability coefficient of variation, threshold ≤20%). (E,F) Metabolic activity assessed at days 8 and 14 post-seeding via (E) oxygen consumption rate
(OCR) and (F) extracellular acidification rate (ECAR), both normalized to DAPI stained nuclei (µs/h/cell). One-Way ANOVA between control versus serum-
free media per time point, p < 0.05 shown. (G,H) Assessment of mitochondrial network using MitoTracker staining on day 8. (G) Fluorescence signal
intensity (absolute values), (H) area of the total cell cytoplasm covered bymitochondrial signal. (I–K)Cardiac troponin T positive cells (%) (I) on day 8 (J) on
day 14. (K) Representative fluorescence images of high-purity (right panel) and low-purity (left panel) cultures stained for nuclei (blue) and cTNT (green).
Segmentation mask showing cTNT-positive cytoplasm (green) and cTNT-negative nuclei (white). Scale bar = 100 µm. Data represented as mean ± SEM,
N ≥ 3 (biological repeats from Ncyte CM1), with n ≥ 10 (technical replicates) for all timepoints, except for mitochondrial immunofluorescence
measurements N = 1, n = 8.
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BRVCV � Standard deviation SD( )BPMperwell

MeanBPMper plate
x 100

FPDc � FPD ms( )
Beat period s( )̂ 0.192

FPDCV � Standard deviation SD( )FPDperwell

Mean FPDper plate
x 100

2.6 Data processing and visualization

Prism GraphPad software was used for additional data
processing. Error bars on graphs represent the SEM indicating
the precision of the estimated population mean, or SD indicating
the data variability around the mean.

3 Results

3.1 Serum-free medium enhances hiPSC-
CM metabolic function and
electrophysiological stability

To ensure predictable compound action, high reproducibility,
and more physiologically relevant function for hiPSC-CMs, such as
a more mature metabolic phenotype (Feyen et al., 2020), several
chemically defined, serum-free hiPSC-CM culture medium
compositions were tested as alternatives to standard serum-
containing medium (Supplementary Table S2).

The effects of media formulations on cellular electrophysiology
were one of the parameters used to assess their suitability.
Synchronized electrical activity of cardiomyocytes is essential for
producing effective contractions and physiological function in the
heart. Thus, propagation patterns of electrical impulses in
spontaneously contracting monolayers of Ncardia’s proprietary
bioreactor-derived ventricular-like hiPSC-CMs (Ncyte®

vCardiomyocytes, Ncyte CM1) were monitored from the first day
of consistent spontaneous activity, i.e., day 4 until day 14, in all
media using MEA (Supplementary Figure S2A).

Conditions in which higher rate of decreased electrical activity of
hiPSC-CMs (i.e., active electrodes <50%) and arrhythmic
contractions–asynchronous contractions between the eight
electrodes within each well (i.e., beat-rate irregularity (BRI) >5%)
were excluded (Supplementary Figure S2B). The combination of
bovine serum albumin (BSA) and Knock-out Serum Replacement
(KOSR) enabled stability (Figure 2A–D; Supplementary Figure S2B;
time period from day 4 to 14) and metabolic function (Figures
2E–H) comparable to the serum-containing control medium. As
expected, several electrophysiological parameters changed over time
across the tested media conditions. In the serum-containing control
medium, the percentage of active electrodes began to decline after
day 8 (Supplementary Figure S2B), accompanied by increased
variability in beat rate (BRV CV) in-between individual wells
cultured in the same medium and a downward trend in beats per
minute (BPM) (Figures 2A,B). The BSA + KOSR-supplemented
maturation medium showed similar patterns, nevertheless the
timing of decline was delayed. Furthermore, the BSA + KOSR-

supplemented maintenance medium maintained stable values for
active electrodes, BPM, and BRV CV up to day 12, indicating the
most prolonged electrophysiological stability and enabling a stable
assay window until day 14 (Figures 2A–D). This data supported the
selection of day 8 as the most stable timepoint for further assays
(Supplementary Figure S2A).

Cardiomyocytes sustain their electrical activity and
physiological functions through an abundant network of
mitochondria, which require a continuous supply of respiratory
substrates to meet their high energy demands (Li et al., 2020; Yang
et al., 2023). Disruption in the ATP-generating pathways or
alterations in the mitochondrial network significantly impacts
cardiac functionality (Brown et al., 2017). These characteristics
can also serve as critical markers for the maturity of hiPSC-CMs.
To select which candidate culture condition could facilitate an adult-
like metabolic state, metabolic shift from glycolysis to fatty acid
oxidation–a hallmark of adult cardiomyocytes (Ahmed et al.,
2020) – was monitored. Extracellular acidification rate (ECAR),
i.e., cellular glycolysis, decreased over time in all media (Figure 2F),
suggesting that prolonged cell culture promotes maturation towards
an adult like state. Supplemented serum-free maturation medium
showed comparable oxygen consumption rate, as measured by
oxidative phosphorylation rate (OCR), to serum-containing
medium on day 8 (Figure 2E). However, by day 14, the OCR
decreased significantly (p < 0.001). hiPSC-CMs cultured in
supplemented serum-free maintenance medium displayed the
lowest OCR at all time points (3.5 × 10−5 ± 3.9–6 and 3.4 ×
10−5 ± 8.1–6). As the OCR remained at similar levels with the
serum containing media up to day 8, this was chosen as
endpoint. Quantitative morphological assessment of
mitochondria was consistent with OCR results, showing higher
mitochondrial signal intensity (1,674 ± 28.87 vs. 1,134 ±
125.6 RFU) and area coverage (17.93% ± 0.34% vs. 10.07% ±
2.06) in maturation medium (Figures 2G,H).

Cardiac-specific marker troponin T (cTNT) immunostaining at
all time points reached cTNT positivity ≥95% (Figures 2I–K),
indicating that serum-free media did not prompt preferential
growth of non-cardiomyocyte cells.

Maturation promoting medium supplemented with 0.5% total
BSA plus 1% total KOSRwas selected for further experiments, due to
its beneficial effects on metabolism.

3.2 Morphological profiling detects
cardiotoxicity and provides mechanistic
insight to side effects

Subsequently, to enable scalable morphological profiling of
compound-induced cardiotoxicity, high-content imaging (HCI)
protocols were optimized for detecting structural changes in
subcellular organelles. In comparison with the traditional cell
painting assay (Bray et al., 2016; Pahl and Sievers, 2019; Cimini
et al., 2023) the panel of fluorescent dyes and antibodies was
expanded (Supplementary Table S1). Staining protocols targeting
DNA damage (γH2AX), sarcomere (cTNT), gap junctions
(connexin 43, CX43), nucleoli, mitochondria, lysosomes,
peroxisomes, the Golgi apparatus and endoplasmic reticulum
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FIGURE 3
Assessment of compound-induced effects on cell viability in hiPSC-CMs. (A) Schematic outline of the experimental design. (B–D) Percentage
change in cell viability following 24-h compound treatment, relative to DMSO vehicle control. Cell viability was estimated based on the number of DAPI-
stained nuclei per well (nine fields per well). Data are presented as mean ± SEM; N = 4 (biological replicates from different hiPSC-CM lines), with n = 6
(technical replicates per condition). Statistical significance was assessed using Kruskal–Wallis test comparing each compound to vehicle; only
significant p-values are displayed (*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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(ER) were validated in a multiplexed 384-well format, forming the
basis of our custom organelle-profiling assay.

Protocol optimization involved comparing single versus
multiplexed staining strategies using well-characterized positive
control compounds for each organelle (Supplementary Figure
S3). For instance, since doxorubicin is associated with DNA
damage, as well as gap junction and nucleoli defects,
corresponding staining protocols were tested. Initial nucleolar
visualization employed SYTO14, a nucleic acid dye with a broad
excitation/emission spectrum. However, due to significant channel
bleed-through in multiplexed conditions, doxorubicin-induced
nucleolar alterations were only detectable in single-stain formats.
Consequently, SYTO14 was excluded from the final protocol and
replaced by a fibrillarin antibody as a more specific nucleolar marker
to ensure reliable detection in multiplexed imaging. Further
organelle-specific responses were confirmed by known
mitochondrial toxicants e.g., rotenone (Won et al., 2015) and
chloroquine (Javaid et al., 2022). Rotenone reduced
mitochondrial area and number, similarly to chloroquine, which
also increased fluorescence intensity of the mitochondrial signal.
Further chloroquine is also a lysosomotropic agent that increases
pH by accumulating within these organelles as a deprotonated weak
base and blocking the binding of autophagosomes to lysosomes
(Homewood et al., 1972; Jia et al., 2018), which in this study led to
increased lysosomal area and decreased lysosomal fluorescence
intensity. Thapsigargin and brefeldin A, elevated ER and Golgi
marker signals respectively, while H2O2, at all tested
concentrations (10, 100 µM), induced a mild reduction in
peroxisomal signal. Overall, except for SYTO14, compound-
induced changes were comparable across single and multiplexed
protocols, validating the robustness of the latter for scalable,
phenotypic profiling in hiPSC-CMs. This multiplexed protocol
was used in all subsequent compound screening assays studying
the effects of a curated library of compounds (Figure 3A).

Seventeen reference compounds were selected from three
categories: i) seven highly toxic chemotherapeutic agents from
different drug classes ii) seven intermediate/unknown-;
antiarrhythmics, anesthetics, antipsychotics, and a cardiac myosin
activator iii) three non-toxic compounds; one tyrosine kinase
inhibitor (TKI), one platelet aggregation inhibitor and one anti-
diabetic agent. This selection was made to capture a broad spectrum
of mechanisms, from well-known cardiotoxic effects to less
understood or non-toxic profiles. Each compound was tested
across a 7-point semi-logarithmic concentration range designed
to span the reported clinical maximum total plasma
concentration (Cmax) values, when feasible, and to balance
clinical relevance with detection of perturbations across a range
of exposure levels (Table 1). To counter line-to-line variability,
studies were performed in three different hiPSC-CM lines
generated using 2D monolayer (NC196) or 3D bioreactor
(2 batches of Ncyte CM, NCRM5) differentiation protocols
(Supplementary Table S3). All hiPSC-CMs showed high
expression of standard cardiomyocyte markers prior to being
treated with the compounds listed above (Supplementary Figure S4).

Experiments confirmed that compounds listed as non-toxic,
showed no changes in viability between treated samples and
concentration-matched DMSO controls. In contrast, across all
hiPSC-CMs, significant reduction in nuclear count was observed

for doxorubicin and amiodarone. Specifically, doxorubicin
reduced the nuclei count by 67% ± 13 at 10 µM (Figure 3B),
whereas the same concentration of amiodarone led to a maximal
reduction of 31% ± 5 (Figure 3C). Nuclei count served to assess
cardiomyocyte numbers. A secondary assay to verify changes to
viability was conducted via measuring DNA content
(Supplementary Figure S5). It should be noted that actual
number of hiPSC-CMs and DNA content could slightly differ
by the ratio of multi-nucleated cells which is typically in the range
of 8%–20% (da Rocha et al., 2017; Woo et al., 2019).

In the morphological profiling analysis, doxorubicin induced the
most pronounced and widespread changes across organelle-specific
readouts. γH2AX, a well-established marker of early cellular
response to DNA damage and genotoxic stress (Li et al., 2008)
showed a clear dose-dependent increase in both fluorescence
intensity and area–detected within the nuclear area of the
cells–across hiPSC-CM lines. Statistically significant increases in
γH2AX intensity were observed at 1 μM and 3 µM (Ncyte CM1:
1.6 ± 0.05, Ncyte CM2: 1.5 ± 0.5, NCRM5: 1.4 ± 0.04, NC196: 1.3 ±
0.14) while nuclear area was significantly elevated from 0.1 µM to
1 µM (Ncyte CM1: 13.4 ± 1.7, Ncyte CM2: 12.1.6 ± 5.2, NCRM5:
8.5 ± 2.1, NC196: 7.9 ± 1.1) (Figures 4A,B). Interestingly, at the
highest concentrations, γH2AX signal intensity decreased, likely
reflecting progressive cell death rather than diminished DNA
damage. This biphasic response is consistent with γH2AX’s role
as an early stress marker, preceding overt cytotoxicity.

To further investigate the transcriptional effects underlying the
observed DNA damage response, RNA sequencing (RNA-seq) was
performed using cells treated with doxorubicin at 0.1 µM (Table 1).
At this concentration, selected as having shown phenotypic changes
but no cell death that would cloud gene ontology (GO) analysis, a
total of 125 genes were differentially expressed compared to vehicle
controls, with the majority being downregulated. GO term analysis
revealed significant enrichment for pathways related to cell division
and nuclear organization, including downregulation of genes
involved in mitotic regulation, such as cyclin-dependent kinases
(e.g., CDK1) and associated regulators. Notably, FAM111B, a
protease implicated in DNA repair and cell survival (Arowolo
et al., 2022) showed the largest effect size among all differentially
expressed genes. Importantly, TOP2A, the molecular target of
doxorubicin and key component of DNA replication and repair
was significantly downregulated (logFC: −5.29) (Figure 4F).

Further known toxicities of doxorubicin were detected by
imaging, namely; significant increase in lysosomal intensity (p <
0.05 at 3 μM, 10 µM) and nucleolar number (p < 0.05 at
1 μM–10 µM), changes in CX43 area could also be observed,
however this effect showed high variability (Figures 4C–E).
Differences observed in sensitivity across cell lines highlight the
importance of including multiple cell lines with individual genetic
backgrounds in compound screening.

MEA experiments using Ncyte CM1 cells, showed doxorubicin
compromised electrical activity by increasing BPM and BRI, even at
sub-clinical concentrations ≥100 nM (Figure 5A; Supplementary
Table S4). Findings from electrophysiology confirmed the highly
cardiotoxic potential of doxorubicin, while imaging analysis
additionally highlighted the cellular mechanisms involved.

An interesting compound from the intermediate toxicity
group, amiodarone, also displayed a distinct morphological
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FIGURE 4
High-content imaging and transcriptomic profiling of doxorubicin-treated hiPSC-CMs. (A) γH2AX staining was used to detect DNA damage
following doxorubicin treatment. Fluorescence intensity and area are shown per hiPSC-CM line across a 7-point semi-logarithmic concentration range.
(B) Representative 40X images of γH2AX (within the nuclei), troponin (cytoplasm), mitochondria and nuclei staining. Scale bar = 100 µm. (C–E)
Representative morphological changes in (C) lysosomal intensity, (D) nucleoli count, and (E) gap junction area following compound treatment. (F)
Gene Ontology (GO) enrichment analysis of RNA-seq data from hiPSC-CMs treated with 0.1 µM doxorubicin. Displayed are non-redundant GO terms
(biological process, cellular component, molecular function) with at least three differentially expressed genes and genes involved in two or more
categories, along with corresponding logFC2 (effect size) values for included genes are shown. Data are presented as mean fold change (Δ) relative to
vehicle ±SEM. High-content imaging: N = 4 (biological replicates from different hiPSC-CM lines), n ≥ 6 (technical replicates per condition). RNA-seq: N =
3 (Ncyte CM1). Statistical significance assessed by Kruskal–Wallis test; p < 0.05 displayed (*p < 0.05,** p < 0.01, *** p < 0.001, **** p < 0.0001).
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phenotype. At the highest concentration tested, the detachment
of hiPSC-CMs in culture rendered the collection of adequate
imaging data impossible. Similarly, cellular loss has been shown
in multiple cell types (Bargout et al., 2000; Balasubramanian
et al., 2019). Even in the absence of major hiPSC-CM loss at 1 μM,

deregulation in genes involved in cellular adhesion and cell-cell
adhesion (e.g., COL14A1↑; KITLG↑, SOX9↓, ACTC1↓, NDRG1↓,
KCNJ4 ↓, Figure 6E) was detected.

As a cationic amphiphilic drug, amiodarone promotes the buildup
of phospholipids within the endosomal-lysosomal system i.e.

FIGURE 5
Compound-induced changes in beat rate irregularity (BRI) across toxicity classes in hiPSC-CMs. (A–C) Beat rate irregularity (BRI) assessed by multi-
electrode array (MEA) field potential recordings after 24-h compound treatment. BRI >5% (dotted line) was used as a threshold to indicate arrhythmic
activity. (A) Compounds classified as highly cardiotoxic. (B) Compounds with intermediate or unclear cardiotoxicity profiles. (C) Compounds considered
non-cardiotoxic. The red dashed line indicates vehicle control values. Compounds highlighted with a red background indicate elevated BRI or
electrical quiescence.
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FIGURE 6
High-content imaging and transcriptomic profiling of amiodarone-treated hiPSC-CMs. (A,B) Morphological alterations induced by amiodarone
across hiPSC-CM lines, shown as fold change (Δ) relative to vehicle control across a 7-point semi-logarithmic concentration range. (A) Mitochondrial
signal. (B) Lysosomal signal. (C,D) Representative 40× fluorescence images of (C) staining for DNA damage (within the nuclei), troponin (cytoplasm),
mitochondria and nuclei and (D) lysosomes, gap junctions, nucleoli and nuclei after 24-h incubation with 3 µM amiodarone or DMSO vehicle. Scale
bar = 100 µm. (E) Gene Ontology (GO) enrichment analysis of RNA-seq data from hiPSC-CMs treated with 1 µM amiodarone. Displayed are non-
redundant GO terms (biological process, cellular component, molecular function) with at least four differentially expressed genes and genes involved in
two or more categories, along with corresponding logFC2 (effect size) values for included genes. Data are presented as mean ± SEM. High-content
imaging: N = 4 (biological replicates from different hiPSC-CM lines), n ≥ 6 (technical replicates per condition). RNA-seq: N = 3 (Ncyte CM1). Statistical
significance assessed by Kruskal–Wallis test; p < 0.05 values are shown (*p < 0.05,** p < 0.01, *** p < 0.001, **** p < 0.0001).
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phospholipidosis (Buratta et al., 2015; Niimi et al., 2016; Sagini et al.,
2021). In accordance with effects observed in primary human
cardiomyocytes (Krajcova et al., 2023), increased mitochondrial
fluorescence intensity and detected signal area (up to 1.8 ± 0.1 times
and 1.7 ± 0.6 times), and lysotoxic effects with decreased fluorescence
intensity (up to 0.69 ± 0.1 times) were observed in our study (Figures
6A–D). Additionally, downregulation of genes linked to lysosomal and
mitochondrial function, such as P4HA1, were detected. Notably, this
gene is also associated with the endoplasmic reticulum lumen cellular
component, genes of which (P4HA1, SPON1, P3H2, COL21A1, GPX7,
P4HA2, MELTF, ERO1A) were also downregulated (Figure 6E).

InMEA analysis, amiodarone slowed downBR at≥0.3 µM, without
causing FPD prolongation (Supplementary Table S4). Cessation of
beating was detected at concentrations ≥3 µM. This aligns with the
findings of the CiPA studies (Blinova et al., 2017; Blinova et al., 2018;
Blinova et al., 2019). Moreover, treatment also affected processes
regulating ion channels (e.g., KCNJ4↓, HCN1↑, CASQ2↓), muscle
contraction, and actin filament organization (Figure 6E).

Out of the seventeen compounds tested, ten exhibited effects on any
electrophysiology parameters at varying concentrations (Figure 5;
Supplementary Table S4). Specifically, seven
compounds—doxorubicin, amiodarone, lapatinib, bupivacaine,
erlotinib, ponatinib, and dofetilide—were associated with either
arrhythmia and/or quiescence (Figure 5). Digoxin shortened the
FPD whereas dofetilide and cisplatin caused prolongation.
Interestingly, erlotinib displayed a bell-shaped dose-response curve
demonstrating complex interactions between dose and target
engagement. Chlorpromazine had a mild effect on FPD; however,
this effect size was not dependent on concentration. Six compounds
had no effect on electrophysiology, including two non-toxic compounds
(empagliflozin, aspirin), methotrexate, 5-fluorouracil, propofol, and
omecamtiv mecarbil (Supplementary Table S4).

When examining individual morphological parameters,
lysosomes were affected by doxorubicin, amiodarone, ponatinib,
erlotinib, and lapatinib. Lapatinib also decreased peroxisomal area
(Supplementary Figure S6). DNA damage was observed with
doxorubicin only, a compound that also impacted nucleoli and
CX43 (Figure 4). Mitochondria were most disturbed by amiodarone
(Figure 6). Sarcomere alterations (i.e., sarcomere width) were seen
with doxorubicin, amiodarone, bupivacaine and dofetilide
(Supplementary Figure S6).

Results confirm that morphological analysis detects diverse
mechanisms of potential cardiotoxicity and highlight its
advantages as a complementary method for providing a more
comprehensive cardiotoxicity assessment.

3.3 Clustering analysis delineates
cardiotoxic drug profiles by effect size and
mechanism of action

Morphological profiling generates extensive datasets, in this
study comprising of 205 parameters (Supplementary Tables S5,
S6), enabling the application of bioinformatic clustering techniques.

To explore broad phenotypic effects of the compounds a PCA-
based approach was used. All seven concentrations tested per
compound were included and treated as a single group, enabling
detection of patterns emerging at any exposure level and

circumventing the dose-dependent variability in compound
response across hiPSC-CM lines. For each compound, a
morphological ‘fingerprint’ – reflecting the pattern of
morphological perturbation induced by a compound—was
generated by analyzing the loading scores of the first principal
component (PC1) averaged across cell lines/batches. These scores
represent the relative contribution of each morphological feature to
the primary axis of variance in the dataset and served as input for
clustering analysis, allowing for a normalized data
comparison across.

Using this approach, drugs could be divided into 4 clusters
(Figure 7). Doxorubicin, as expected, formed its own cluster (cluster
1) characterized by prominent changes to the nuclei and cytoplasm.
Interestingly, known non-cardiotoxic compounds (erlotinib,
aspirin, and empagliflozin) clustered together with
chlorpromazine, an antipsychotic agent and digoxin, a Na/K
ATPase inhibitor (cluster 2). A smaller cluster (cluster 3)
included ion-channel blockers, amiodarone, dofetilide and
bupivacaine. This cluster represents compounds that affect
cardiac electrophysiology (Falk and Decara, 2000; Lim et al.,
2006; Stoetzer et al., 2016; Vaiciuleviciute et al., 2021; Tagle-
Cornell et al., 2024). Evidently, bupivacaine, as observed in the
clinic (Cotileas et al., 2000; Osama et al., 2024), led to decreased beat
rate (3, 10 µM) (Supplementary Table S4) and increased irregularity
(10 µM) (Figure 5). The fourth cluster (cluster 4) was characterized
by mixed toxicity on multiple organelles, such as changes in gap
junctions. The increase in cytosolic connexin CX43 observed in our
study for both ponatinib and doxorubicin is in line with literature
reports (Pecoraro et al., 2015; Pecoraro et al., 2017; Madonna et al.,
2021) and may relate to heterogeneous post-treatment
redistribution (Fontes et al., 2012). Notably, lapatinib was the
only compound that changed peroxisomal parameters (Figure 7;
Supplementary Figure S6). Correspondingly, GO term analysis
showed deregulation of fatty-acid metabolic processes as well as
peroxisomal β-oxidation including genes such as ACSL1, ACSL3,
and ACOX1 (Supplementary Table S7).

In addition to unsupervised clustering, supervised classification
was used to further investigate whether compound-induced
phenotypes could be aligned with known clinical cardiotoxicity
profiles. To this end, sPLSDA (Perez-Enciso and Tenenhaus,
2003) was applied to replicate-level data to assess the relationship
between morphological and electrophysiological alterations and
FDA label-based toxicity classifications (Supplementary Table
S8). One concentration per compound was selected for this
analysis, following the same rationale as for RNA-seq
experiments: the dose that elicited the most pronounced
functional effect in MEA recordings without significant loss of
viability (Table 1).

Lapatinib and doxorubicin, known for their potential effect on
left ventricular ejection fraction at least in some patients (Chatterjee
et al., 2010; Hsu et al., 2018; Waliany et al., 2023), visibly clustered
together when morphological and electrophysiological parameters
were combined (Figure 8). However, this similarity was not evident
from electrophysiology parameters alone. As a separate example, in
the electrophysiology dataset TKIs; erlotinib and ponatinib showed
similarity to dofetilide and to amiodarone, respectively. Both are
known clinically to be associated with ischemia (Gover-Proaktor
et al., 2017; Haguet et al., 2020) yet clustered with arrhythmogenic-
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and non-toxic compounds, respectively, in the imaging dataset.
Unlike other compounds in the ischemia group, ponatinib carries
an FDA black box warning for arrhythmia risk, (Vassallo and
Trohman, 2007), which could explain its localization alongside
the arrhythmia group. From the arrhythmia group, chlorpromazine
showed no separation from the non-cardiotoxic compounds in either
imaging alone, electrophysiology assays alone, or combined clustering.
Similarly, other studies also indicate little effects of chlorpromazine in
electrophysiology (Blinova et al., 2017; Blinova et al., 2018; Blinova et al.,
2019; Yu et al., 2019). In summary, the addition of functional data to
morphology, increased the separation of the clusters formed based on
clinical information resulting in 76% of compounds clustered according
to their known clinical toxicity (Figure 8C). Misclassified compounds
were primarily from the ischemia group. Clustering based on imaging-
derived morphological features alone (Figure 8B) produced compound
groupings that closely matched those observed in the combined dataset.
This convergence suggests that high-content imaging captures
phenotypic signatures that are strongly aligned with clinical toxicity
classifications, and in some cases may be sufficient for compound-level
discrimination without additional functional data. The similarity
between these panels underscores the value of imaging as a robust
and scalable standalone modality for cardiotoxicity screening,
particularly in settings lacking access to electrophysiological
platforms. However, for certain compounds with specific functional
effects (e.g., ion-channel blockers), electrophysiology provides unique
complementary insight (Figure 8A).

4 Discussion

Utilizing hiPSC-CMs treated with a panel of reference compounds,
our approach integrates traditional electrophysiology with
morphological profiling to establish a more comprehensive and
innovative in vitro assessment of cardiac safety. Our findings
demonstrate that while drug classification is possible using
functional readouts alone, combining it with morphological assays in
a multiplexed approach provides a more robust framework for cardiac-
safety assessment. Imaging not only complements electrophysiology but
may have the potential to replace it in certain contexts, as it offers
mechanistic insights unattainable via electrophysiology alone and is a
technology suitable for labs lacking dedicated expertise and equipment
for electrophysiology assays.

Assessing cardiac safety in vitro remains a challenge. Early
approaches focused on the electrophysiological characteristics of
hiPSC-CMs; linking corrected FPD and presence of arrhythmia
in vitro to native ECG endpoints (Yamamoto et al., 2016) or
calculating relative TdP scores, (Ando et al., 2017), suggesting
that hiPSC-CMs are reliable models for assessing clinical
proarrhythmic risk. As the field advances, in parallel to animal
testing being phased out (Zushin et al., 2023), hiPSC-CMs are
expected to play an increasingly important role in the evolving
regulatory frameworks such as the new ICH guideline on QT/QTc
evaluation (E14/S7B Q&A, adopted 2022), which explicitly
acknowledge hiPSC-CM assays as a new nonclinical tool.

FIGURE 7
Morphological feature-based clustering of compound responses in hiPSC-CMs. Principal component analysis (PCA) was performed for each
compound compared to vehicle control to identify key morphological descriptors. The heatmap shows averaged absolute loading scores of the first
component (PC1) per parameter across treatments. K-means clustering was applied to the loading profiles to group compounds based onmorphological
similarity. N = 4 (biological replicates from different hiPSC-CM lines), n ≥ 6 (technical replicates per condition).
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Beyond electrophysiology, tolerance interval calculations via
weighted scoring matrices derived from multiple readouts (e.g.,
impedance, MEA, and calcium transients) enabled the
consolidation of different drug effects into one hazard label

(Kopljar et al., 2018). Genetic variability between individuals has
been accounted for by comparing healthy and diseased hiPSC-CMs,
which in combination with multiple parameters, led to the
development of a “cardiac safety index” (Sharma et al., 2017).

FIGURE 8
Supervised clustering based on clinical side effects. (A–C) Partial least squares discriminant analysis (sPLS-DA) was used to visualize compound
clustering based on different datasets: (A) electrophysiological features, (B) imaging-derived morphological features, (C) combined dataset weighted by
data type. (D) Compound toxicity groups were defined according to FDA label warnings. Each data point represents the vehicle-normalized median
feature value for a compound at one selected concentration per assay. Data is shown for Ncyte CM1 only.
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In the present study, to circumvent bias introduced by
polymorphisms or line-to-line variability, we included multiple
hiPSC-CM lines from different genetic backgrounds. Moreover,
hiPSC-CMs were generated via both 2D and 3D differentiation
methods. Traditional electrophysiology readouts were combined
with morphological analysis to integrate diverse aspects of
cardiotoxicity into the analysis.

A novel approach to assessing compound-induced toxicity
involves image-based morphological analysis that captures rich
subcellular information as a set of features describing drug
responses (Hughes et al., 2020; Nyffeler et al., 2020; Way et al.,
2021). The JUMP- (Cimini et al., 2023) and Oasis Cell Painting
Consortium are recent initiatives for enhancing morphological
screening by standardizing the traditional Cell Painting assay
(Bray et al., 2016; Pahl and Sievers, 2019). However, at the
moment, they are limited in terms of concentration range and
cellular models utilized (Chandrasekaran et al., 2024).

In contrast, our study extends these efforts by applying
morphological profiling to hiPSC-CMs across a broader, clinically
relevant concentration range. The panel of subcellular markers was
also expanded compared to traditional Cell Painting to capture a
more extensive set of organelle-specific responses. Morphological
profiling not only identified potential cardiotoxicity, but also
enabled a mechanistic grouping of compounds. Together with
MEA, these two modalities provide both a global, dose-inclusive
view of morphological response (PCA) and a more detailed
classification of compound effects (sPLS-DA) linked to clinically
observed toxicities, revealing distinct aspects of drug-induced
cardiotoxic effects and highlighting the need for more holistic
approaches in pharmaceutical screening.

Assessing doxorubicin’s toxicity profile served as proof of concept
for further analysis. Clinical cardiotoxic side-effects of doxorubicin
range from mild paroxysmal non-sustained arrhythmias to complex,
irreversible and fatal structural alterations of the myocardium, the risk
of which tends to increase in a dose-dependent manner (Chatterjee
et al., 2010). Preclinical studies have confirmed that doxorubicin enacts
its cytotoxic role through reactive oxygen species formation, damage to
the DNA, and alterations of calcium and mitochondrial homeostasis
(Parra et al., 2008; Carvalho et al., 2014; Adamcova et al., 2019;
Osataphan et al., 2020; Wu et al., 2022). Doxorubicin acts primarily
via inhibition of topoisomerase IIα causing DSBs (Tewey et al., 1984).
As adult cardiomyocytes tend to lack the IIα isoform, (Turley et al.,
1997), whereas it is relatively prevalent in hiPSC-CMs (Cui et al., 2019),
hiPSC-CMs might be more suitable for detecting doxorubicin toxicity.
Morphological analysis repeatedly confirmed doxorubicin’s effect on
inducing DSBs, however, contrary to literature, mitochondrial damage
(Osataphan et al., 2020;Wu et al., 2022) and fragmentation (Parra et al.,
2008) could not be observed in this study. Sensitivity to doxorubicin
varies per hiPSC line and heavily depends on incubation time (Louisse
et al., 2017; Adamcova et al., 2019). Longer incubation times, repeated
dosing, or use of alternative mitochondrial dyes could enable the
detection of these changes. Yet, RNA-seq data pointed towards an
effect on mitochondria as genes such as NDUFB3 (part of complex I),
CYCS (key player in the electron transport chain and apoptosis), and
SLC25A5 were upregulated, similar to differential expression patterns
found in literature (Holmgren et al., 2018). Interestingly, doxorubicin
significantly increased the LysoTracker signal. We hypothesize that this
effect could be explained by the presence of non-degraded

autolysosomes. Doxorubicin’s role in autophagy has been debated;
nonetheless, there is evidence pointing towards blocking autophagic
flux in animal- and cell-models in a process which is associated with a
significant buildup of non-degraded autolysosomes (Li et al., 2016).

Another compound that exemplifies the advantages of a
multiparametric approach is amiodarone, a potent antiarrhythmic,
considered to be one of the most effective for treatment of
ventricular arrhythmia and atrial fibrillation (Vassallo and Trohman,
2007). Amiodarone reduced BPM at concentrations below 0.3 µM
without FPD prolongation during acute treatment, despite the QT
warning present on its FDA label (Lim et al., 2006). Lack of
sensitivity to the compound–which was also evident in other studies
(Blinova et al., 2017) – could potentially be attributed to alterations in
relative expression of individual ion channels compared to adult
cardiomyocytes (Schmid et al., 2021).

A contrasting example is erlotinib, a TKI rarely associated with
cardiac side-effects (Sayegh et al., 2023). In this study erlotinib induced
detectable electrophysiological changes in MEA assays; however,
morphological profiling alone and in combination with
electrophysiology it clustered with non-toxic compounds. Since
MEA measurements were conducted only in the Ncyte CM line,
one possible explanation is individual donor-specific genetic
variation influencing drug response. Notably, although rare, clinical
reports do document cases of QT prolongation associated with erlotinib
treatment (Kloth et al., 2015). These findings suggest that in some
instances, electrophysiological assays may detect functional liabilities
that are not yet evident on the morphological level.

A broader comparison across tyrosine kinase inhibitors (TKIs)
further illustrates the assay-specific nature of detection. Other TKIs
in this study—lapatinib, dasatinib, and ponatinib—showed
divergent profiles. Lapatinib and ponatinib both affected
morphological and electrophysiological parameters and clustered
separately from low-risk compounds. This is consistent with their
known clinical cardiotoxicity, including reports of QT prolongation
and, in the case of ponatinib, an FDA black box warning for severe
cardiovascular events (Vassallo and Trohman, 2007; Coppola et al.,
2018; Ando et al., 2020). In contrast, dasatinib did not significantly
affect MEA parameters, despite clinical reports of cardiotoxicity.
This divergence highlights how compound-specific mechanisms and
assay limitations can influence the detectability of adverse effects.

Extending the scope to the complete compound library, we were
able to show that the in-vitro imaging data derived from 205 cellular
parameters correlate well with clinically-observed side effects
(Figure 8). FDA labels were systematically reviewed and
categorized into major cardiovascular risk groups: arrhythmia,
ischemia, structural abnormalities (e.g., reduced ejection fraction
or cardiomyopathy), and none. Clustering based on imaging alone
captured these groupings to a large extent, and inclusion of
electrophysiology data further improved separation. One
exception was the ischemia group, which did not resolve into a
distinct cluster. This may reflect the fact that ischemic cardiotoxicity
often involves endothelial dysfunction in addition to direct
cardiomyocyte effects (Soultati et al., 2012; Polk et al., 2014;
Gover-Proaktor et al., 2017; Haguet et al., 2020) a mechanism
not captured by our hiPSC-CM model.

Despite the promising outcomes, several limitations must be
acknowledged. One primary constraint is the relative immaturity of
hiPSC-CMs, which may not fully recapitulate physiological responses of
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native cardiomyocytes. Lack of co-culture systems tomimic the complex
interactions between different cell types and accounting for systemic
effects of compounds is another significant limitation. Translatability
across larger populations may be hindered by the relatively small
number of hiPSC lines included. The range of concentrations per
compound tested limited the size of the compound library which
may have constrained the power of clustering drug mechanisms.
Finally, specificity issues related to dyes and the high costs of
antibodies used in the study also present challenges.

Nonetheless, our combinatorial protocol is valuable for
developing more predictive in vitro cardiotoxicity assessment
models. Therefore, we propose integrating morphological
readouts into future cardiac safety-indices as we have shown that
certain types of compound induced changes may be overlooked by
traditional safety assays.

High-content imaging, in combination with morphological
profiling is a powerful tool to assess compound effects in vitro.
Staining protocols were optimized for morphological profiling of
organelles and used to screen a diverse library of compounds.
Organelle profiling revealed concentration- and compound-
dependent effects that traditional readouts only, such as
electrophysiology, might not detect. This highlights the added
value of combined multi-assay analytics. In addition, many of the
parameters specific to each compound were corroborated by
alterations in gene-expression levels, supporting that multi-
assay analysis can elucidate mechanistic insights into
compound effects.

Ultimately, a parallel can be drawn between clinical profiles of
toxicity and in-vitro findings in hiPSC-CMs, making the platform
appropriate for pre-clinical cardiac safety screening of new
compounds, and enabling safer medicines to reach the clinic.
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