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Agrichemicals such as herbicides, fungicides, insecticides, and biocides are
widely used in agriculture, yet some are associated with adverse effects in
humans and the environment. While many of these chemicals have been
extensively studied in vitro and are included in the EPA's ToxCast program,
comprehensive in vivo comparisons using RNA sequencing across structurally
diverse agrichemicals, in a single screening platform, are lacking. In this study, we
examined structurally diverse agrichemicals found in the U.S. Environmental
Protection Agency's (EPA) Toxcast Phase | and Il library by statically exposing
early life stage zebrafish at 6 h post fertilization (hpf) until 120 hpf at
concentrations ranging from 0.25 to 100 uM. Morphological outcomes were
assessed at 120 hpf across 10 endpoints, including yolk sac edema, craniofacial
malformations, and axis abnormalities. Chemicals that produced robust
concentration-response relationships were selected for transcriptomic
profiling. For transcriptomic analysis, zebrafish were statically exposed to each
chemical and sampled at 48 hpf, prior to the onset of morphological effects
observed at 120 hpf. Differential expression analysis identified between 0 and
4,538 differentially expressed genes (DEGs) per chemical, with no clear
correlation to morphological severity. Both DEG and co-expression network
analyses revealed chemical-specific expression patterns that converged on
shared biological pathways, including neurodevelopment and cytoskeletal
organization. Key regulatory genes such as mylpfa and krt4 were identified
within co-expression modules, suggesting their potential role in conserved
toxicity mechanisms. Semantic similarity analysis of enriched gene ontology
(GO) terms, when compared to existing datasets, highlighted gaps in the
annotation of neurodevelopmental processes, indicating that some in vivo
effects may not be fully captured by current curated resources. The results
provide new insights into the modes of action of diverse agrichemicals and
establish a framework for understanding how agrichemical structure relates to
biological function in a vertebrate model.

zebrafish, transcriptomic profiling, agrichemical, carbosulfan, chlordane, modes
of action
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1 Introduction

The agrichemical industry plays a pivotal role in supporting
global population growth (Costa, 1987). Pesticides are the most well-
known agrichemicals but also the most controversial (Aktar et al.,
2009). According to the Pesticide Action Network (PAN), there are
more than 17,000 currently on the market, with 800 registered for
use in the United States (Schwingl et al., 2021). Pesticides include
insecticides, fungicides, herbicides, and biocides. While they are
primarily associated with the agrichemical industry, they are also
utilized in public health to control disease-carrying insect
populations (Ahmad et al., 2024). Researchers study pesticides
intensively because their toxic effects often extend beyond target
organisms, posing potential hazards to humans and other animals.

Pesticides are a structurally diverse group of chemicals that
include organochlorines, organophosphates, pyrethroids, triazines,
and azoles, among many others (Hassaan and El Nemr, 2020).
Structural diversity arose from the need to target a wide range of
pests effectively and to stay ahead of the development of resistance in
target organisms. High pesticide diversity means that many different
types of pesticides are used, each affecting organisms in different
ways. As a result, a wide range of biological pathways can be
disrupted, leading to a variety of toxic effects in exposed
organisms. A common mechanism is neurological impairment in
insects, which, due to biological conservation, can cause both acute
and developmental neurotoxicity in humans and animals (Abreu-
Villaga and Levin, 2017; Yang et al., 2023). Many pesticides induce
developmental neurotoxic effects in vitro and in vivo (Abreu-Villaga
and Levin, 2017). However, comprehensive transcriptomic data are
lacking, particularly for whole-organism responses during
development. Among the 23,492 PubMed manuscripts related to
the pesticides investigated in this study, only 1,601 contained
transcriptomic datasets submitted to GEO. Of those, 895 (56%)
were in vitro studies while 706 (44%) were in vivo datasets. Notably,
only 154 of the 706 in vivo studies examined target organism
responses, representing only 19 pesticides (Supplementary Table
S1). Transcriptomic analysis offers mechanistic and system-wide
insight with a sensitivity that surpasses traditional morphological
endpoints. Morphology-anchored in vivo transcriptomics deepens
understanding of chemical effects and supports 21st-century
animal use

toxicology goals to reduce

predictive data sets.

by generating

Rodent model studies are expensive, and questions remain
regarding which organs are most relevant to human hazard
assessment and how well the results translate to human
responses. While in vitro systems offer scalable results, they
intrinsically lack the biological complexity necessary to capture
multi-organ interactions, metabolic processes, and systemic
responses that occur in whole organisms during development.

To address this gap while adhering to the 3Rs principles
(Replacement, Reduction, and Refinement), we employed a
transcriptomics approach using developmental zebrafish (Danio
rerio) as an integrated, new approach method (NAM) that avoids
the use of mammals in research while providing the biological
complexity needed to examine multiple structures and assess
biological responses that cannot be captured in vitro.

Zebrafish share substantial genetic and physiological homology
with humans, including conserved neurological pathways (Sakai
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et al, 2018; Howe et al, 2013). Their optical transparency
throughout development enables real-time observation of growth
and detection of adverse morphological abnormalities (Rericha
et al, 2024). Unlike in vitro models, zebrafish maintain intact
tissue-tissue  interactions,

organ  systems,

physiological processes that are essential for understanding

and  dynamic

agrichemical toxicity. Furthermore, development is a highly
sensitive life stage when essentially all biological pathways are
active at some point.

We screened agrichemical bioactivity in developing zebrafish to
link transcriptome-wide changes to phenotypic outcomes. From this
screen, 45 structurally diverse agrichemicals that exhibited robust
concentration-response  relationships ~ were  selected  for
transcriptomic analysis (Figure 1). Developmental exposure to
these chemicals produced unique transcriptomic profiles at
48 hpf, indicating that structural diversity translated to distinct
molecular-level responses. Gene ontology (GO) enrichment
combined with gene and chemical co-expression analyses of
transcriptomic responses revealed convergence on key biological
processes, regardless of structural similarity or subclass (intended
purpose classification). These findings underscore the importance of
system-level approaches for evaluating agrichemical toxicity and
demonstrate the value of integrating transcriptomic and phenotypic
data to better understand how chemical structure influences

biological activity during development.

2 Materials and methods

2.1 Zebrafish husbandry

All protocols were approved by Oregon State University’s
Institutional Animal Care and Use Committee (IACUC; ACUP
2024-0510). Tropical 5D wild-type zebrafish were bred and
maintained at 28 °C under 14:10 h light/dark cycle at Sinnhuber
Aquatic Research Laboratory (SARL), Oregon State University. Fish
were housed at densities of 500 fish per 50-gallon tank in a
recirculating system supplemented with Instance Ocean salts.
Routine health monitoring and feeding with age-appropriate
Zebrafeed (Sparos) occurred 2-3 times daily, as previously
described by Barton et al. (2016). Embryos were collected
between 8:00 and 9:00 a.m., following light onset, using custom
spawning funnels placed in tanks the night prior. Only fertilized
embryos of high quality and matched developmental stage were
selected (Kimmel et al., 1995). Embryos were kept at 28 °C in embryo
medium (EM) containing 15 mM NaCl, 0.5 mM KCL, 1 mM
MgSO,4, 0.15 mM KH,PO,, 0.05 mM Na,HPO,, and 0.7 mM
NaHCO; (Westerfield, 2000).

2.2 Chemical selection and
experiment overview

The agrichemicals chosen for the developmental toxicity
screening consisted of a subset of pesticides found within the
U.S. EPA’s ToxCast Phase I and II chemical library that had
previously demonstrated developmental toxicity in zebrafish
(Truong et al,, 2014). We re-evaluated a subset of chemicals from
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FIGURE 1

Agrichemicals: Essential Roles and Structural Diversity. UMAP (uniform manifold approximation and projection) visualization of all 45 agrichemicals
investigated in this study. Each point represents an individual chemical, with shape denoting the chemical subclass (intended purpose classification) and
color indicating the primary functional group. Chemical structures are displayed adjacent to their corresponding data points. This visualization highlights
the diversity of chemical structures across agrichemical subclasses, as well as within the same subclass.

Truong et al. (2014) using an updated screening approach (Table 1).
Concentration-response assays were conducted to estimate the
concentrations at which 80% of animals exhibited malformations
(ECg) at 120 hpf. To capture early transcriptional responses that
precede the observed morphological responses at 120 hpf, animals
were collected at 48 hpf. A small number of chemicals caused
morphological effects and mortality at 48 hpf, and several of
these showed clear, dose-dependent responses. To accommodate,
we used an EC range of 13-100, successfully attained for all
chemicals, and used ECg, where possible to capture biologically
relevant responses below overt toxicity thresholds at 48 hpf (Rericha
2024).
transcriptomic profiling at concentrations that clearly caused

et al, This approach ensured that we performed

developmental toxicity. The experimental design is illustrated in
Supplementary Figure S1.

2.3 Chemical exposure and developmental
toxicity screening of transcriptomic samples

At 4 hpf, embryos were enzymatically dechorionated using
2012).
Dechorionated embryos were singulated into 96-well U-bottom

pronase, as previously described (Mandrell et al,

plates (Falcon, Product no. 353227) containing 100 pL of embryo
medium (EM) via robotic placement (Mandrell et al., 2012). At
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6 hpf, chemicals were dispensed using an HP D300 digital dispenser
to achieve the target nominal concentrations while also maintaining
a 0.5% DMSO concentration across all exposures.

Static chemical exposures from 6 to 120 hpf were conducted in
96-well plates to estimate ECgy. Initial range-finding assays included
four concentrations (including controls) with one row per
concentration (n = 12) and two chemicals per plate, to identify
concentrations eliciting adverse morphological effects. Based on
these results, concentration-response assays were performed
using eight concentrations (including controls), with one row per
concentration (n = 12) and a single chemical per plate, to refine the
effective concentration range and enable ECg estimation via logistic
regression modeling. A definitive assay was conducted using the
selected EC concentration across columns (n = 16) to confirm
morphological responses by 120 hpf and verify the absence of
mortality and morphological abnormalities at 48 hpf.

Exposure concentrations for transcriptomic sampling ranged
from 0.25 to 100 pM. At 120 hpf, 10 morphological endpoints were
assessed and the percent incidence recorded (Supplementary Table
S$2). A cumulative measure, termed “any effect”, was the incidence of
abnormality in any morphological endpoint. Logistic regression
modeling of the “any effect” data was used to generate
ECgy for
chemical. For exposures destined for transcriptomics, embryos

concentration-response curves to estimate each

were exposed to the confirmed EC;3-ECyq concentration of each
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TABLE 1 Agrichemicals evaluated in this study are listed along with their CAS Registry Numbers (CASRN), chemical subclasses, nominal exposure
concentrations, and the final effective concentrations (EC) used for transcriptomic analysis where applicable.

Chemical CASRN Subclass Concentration EC value
4,6-Dinitro-o-cresol 534-52-1 Insecticide 245 13
Thiodicarb 59669-26-0 Insecticide 4.5 25
Dipropyl 2,5-pyridinedicarboxylate 136-45-8 Insecticide 6 31
Carbofuran 1563-66-2 Insecticide 49 38
Methomyl 16752-77-5 Insecticide 20 38
Trichlorfon 52-68-6 Insecticide 68 38
Chlorpyrifos oxon 5598-15-2 Insecticide 5.95 50
Piperonyl butoxide 51-03-6 Insecticide 14.5 50
Benodanil 15310-01-7 Fungicide 8 56
Ethoxyquin 91-53-2 Herbicide 45 57
Diniconazole 83657-24-3 Fungicide 10 69
1-Amino-2,6-dichloro-4-nitrobenzene 99-30-9 Fungicide 25 75
Fenamidone 161326-34-7 Fungicide 60 75
Dazomet 533-74-4 Herbicide 20 81
Fenpropathrin 39515-41-8 Insecticide 1.5 81
Forchlorfenuron 68157-60-8 Herbicide 18.5 81
Carbosulfan 55285-14-8 Insecticide 25 88
Chlordane 57-74-9 Insecticide 64 88
Chlorpropham 101-21-3 Herbicide 58 88
Esfenvalerate 66230-04-4 Insecticide 2.5 88
Difenoconazole 119446-68-3 Fungicide 9 94
Difpas-pyrazole 151506-44-4 Fungicide 60 94
Napropamide 15299-99-7 Herbicide 72 94
Picoxystrobin 117428-22-5 Fungicide 0.75 94
Tributyltin methacrylate 2155-70-6 Biocide 0.25 94
Abamectin 71751-41-2 Insecticide 4.5 100
Aldicarb 116-06-3 Insecticide 15 100
Butafenacil 134605-64-4 Herbicide 19.5 100
Cyazofamid 120116-88-3 Fungicide 16 100
Cyfluthrin 68359-37-5 Insecticide 0.62 100
Cyproconazole 94361-06-5 Fungicide 55 100
Emamectin benzoate 155569-91-8 Insecticide 4.5 100
Endosulfan 115-29-7 Insecticide 325 100
Endrin 72-20-8 Insecticide 0.6 100
Fenarimol 60168-88-9 Fungicide 30 100
Fipronil 120068-37-3 Insecticide 10 100
Flumetralin 62924-70-3 Herbicide 30 100
Flusilazole 85509-19-9 Fungicide 15 100
(Continued on following page)
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TABLE 1 (Continued) Agrichemicals evaluated in this study are listed along with their CAS Registry Numbers (CASRN), chemical subclasses, nominal
exposure concentrations, and the final effective concentrations (EC) used for transcriptomic analysis where applicable.

Chemical CASRN Subclass Concentration EC value
Isoxaben 82558-50-7 Herbicide 60 100
Kepone 143-50-0 Insecticide 5 100
Nitrofen 1836-75-5 Herbicide 20 100
Pendimethalin 40487-42-1 Herbicide 38 100
Sodium dimethyldithiocarbamate 128-04-1 Biocide 10 100
Tefluthrin 79538-32-2 Insecticide 10 100
Triadimenol 55219-65-3 Fungicide 59 100

chemical beginning at 6 hpf, and samples were collected at 48 hpf for
subsequent RNA extraction (n = 5 pools of 8 embryos), prior to the
onset of morphological effects. Holdback plates (n = 16 per
chemical) were used to assess and confirm phenotypic outcomes.
Collections occurred over 23 different days which resulted in

23 different day match controls.

2.4 Transcriptomic sample preparation and
data processing

2.4.1 RNA collection and isolation

Pooled embryos were placed in 1.5 mL twist cap microtubes
(NextAdvance, TUBEIR5-S) and placed on ice for euthanasia.
Excess water was removed and 200 pL of 1X RNAshield (Zymo
Research, 76,020-420) was added to the tube after animals remained
on ice for 15 min. Samples remained at room temperature for up to
15 min and then stored at —20 °C until RNA isolation. Five pools of
8 embryos were collected for each exposure and respective controls.

For RNA isolation, sample tubes were removed from —20 “C and
incubated at 32 °C for 30 min to ensure complete thawing. 100 uL of
0.5 mm zirconium silicate beads (BioSpec Products, 11079105z)
were added, and samples were homogenized in the Bullet Blender
Storm Pro (NextAdvance, BT24MB-50759) at speed 10, for 5 min.
Samples were spun down for 5 min at 12,000 x g, afterwards 250 pL
of supernatant from each tube was aliquoted twice (for a total of
500 pL) into two new sample plates. These plates were then
processed using the KingFisher Apex system for automated RNA
extraction using Zymo Research’s Quick RNA Magbead Kit (R2133)
and eluted into 50 pL RNAse/DNAse free water. Sample quality was
checked on the Agilent Tapestation 4,200 and quantity was assessed
using ThermoFisher’s QuantIT assay. Only samples with RIN
values >8 proceeded to RNA sequencing.

2.4.2 RNA sequencing and data processing

mRNA sequencing was performed on four biological replicates
of the five collected for each treatment. The samples underwent
PrepX Robotic RNA PolyA enrichment combined with NEBNext
Ultrall Directional RNA Library Prep/Illumina Stranded mRNA
library preparation. Samples were split between three P3 flow cells
(1.2 billion reads per run) and a P2 (400 million reads per run), and
samples were sequenced using an Illumina NextSeq 2,000 (100 bp
single end) resulting in 20 million read counts for each sample. All
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raw and processed transcriptomic data generated in this study are
available in the NCBI Gene Expression Omnibus (GEO) under
accession number GSE303009.

Raw fastq files were examined with FastQC and trimmed using
Trimmomatic. Any read with a quality Phred score of <25 was
trimmed and any adaptor sequences were trimmed as well.
Trimmed fastq files were then aligned to the v11 Danio rerio
genome (RefSeq GCF_000002035.6). Alignment was done using
the STAR aligner with the following arguments--outFilterType
BySJout, --outFilterMultimapNmax 20, --readFilesCommand zcat,
--alignSjoverhangMin 8,
--outFilterMismatchNmax 999, --outFilterMismatchNoverLmax
0.6, --alignIntronMin 20, --alignIntronMax 1000000,
--alignMatesGapMax 1000000, --outSAMattributes NH HI NM
MD, --outSAMtype SAM (Dobin et al, 2013). Once aligned,
resulting SAM files were converted to count files using HTSeq

--alignSJDBoverhangMin 1,

using the following arguments -f sam -a 10 -t gene -i gene_id
(Anders et al.,, 2015). Raw count files were then normalized using
DESeq2 (Love et al., 2014). DESeq2 was also used for differential
gene expression analysis. To account for potential variability across
collection days, we used day matched vehicle controls for each of the
23 distinct RNA-collection days. We concatenated the gene count
data from all control samples (n = 23) to form a single global control
dataset. This global control served as the normalization reference for
all agrichemical groups, allowing consistent comparisons of gene
expression change across samples. The criteria for defining DEGs
was set to any log2fold changes with p-value <0.05, without applying
a log2fold cutoft.

2.4.3 Gene coexpression network analysis

To infer a gene co-expression network all normalized gene
expression data was used in conjunction with GENIE3, a random
forest approach that produces a matrix of co-expression values for
any gene pair in the dataset (Huynh-Thu et al., 2010). For each gene
it builds a regression model using expression values of all genes to
predict how genes are co-expressed. Once a co-expression matrix
was inferred we selected several potential co-expression value cutoffs
to infer a network with sufficient genes included but also with clear
structure, allowing us to better analyze how genes are related by
expression. A cutoff value of 0.00923 was selected which led to a
network of 735 genes and 1716 edges between the genes. This
network was viewed using Cytoscape and this same program was
used to calculate centrality values of each node in the network
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(Shannon et al., 2003). We performed centrality analysis on all genes
in the coexpression network using both betweenness and degree
metrics. Betweenness measures how often a node serves as a bridge
on the shortest paths between other nodes, highlighting those that
have a strong influence on information flow within the network. A
node with high betweenness connects different parts of the network.
Degree, on the other hand, counts the number of direct connections
a node has, helping identify genes that are highly connected and
influential within the network. Together this offers a more
comprehensive understanding of node (gene) influence and
identified key regulatory genes (McDermott, et al., 2009). Module
detection was done using the fastgreedy. community function in the
igraph package in R (Csardi and Nepusz, 2006).

Functional enrichment analysis was performed on each gene
coexpression module using g:Profiler, querying all available
annotation sources to maximize biological coverage and identify
overarching functional themes.

2.4.4 Chemical coexpression network analysis

To infer a network linking chemicals rather than genes we used
the same normalized gene expression data as above. Data were
essentially transposed so that rows were now chemicals and columns
were genes. We again used GENIE3 (with a co-expression cutoff
value of 0.0787 to define an edge resulting in 46 nodes, 45 chemicals
and 1 DMSO control, and 144 edges). We also used Cytoscape to
view the network and determine centrality values.

2.4.5 CTD enrichment comparisons

Chemical CAS registry numbers (CASRNs) were submitted to the
Comparative Toxicogenomics Database (CTD; https://ctdbase.org/
tools/batchQuery.go) to retrieve enriched GO associations from
existing data. Custom R script was written to cluster GO terms by
semantic similarity using rrvgo R package, calculateSimMatrix () and
reduceSimMatrix () for each ontology. We then joined the clustered GO
terms back into original data and summarized the number of parent
terms per chemical, per ontology, per semantic cluster.

3 Results

3.1 Structural diversity of agrichemicals that
induced developmental toxicity in zebrafish

To characterize the structural diversity of the agrichemicals
analyzed through transcriptomic profiling in this study, we
performed UMAP (Uniform Manifold Approximation and
Projection)  dimensionality = reduction  using  molecular
fingerprints. The resulting plot, seen in Figure 1, reveals
substantial chemical heterogeneity across and within agrichemical
subclasses (intended purpose classification).

Subclasses such as pyrethroids exhibited tight clustering,
consistent with their structural similarity, whereas others-
particularly fungicides-were more broadly dispersed, reflecting
greater structural diversity. Within the fungicide subclass,
flusilazole and picoxystrobin were the most divergent, clustering
more closely with carbamates from different subclasses. Notably,
chemicals sharing the same functional group classification did not
consistently cluster together, highlighting the chemical diversity
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beyond functional group classification. Although insecticides were
the most represented subclass, many formed distinct clusters, and
some - such as piperonyl butoxide and trichlorfon - were highly
divergent from both their subclass and functional group.

3.2 Morphological profiles across
agrichemicals

The 45 agrichemicals selected for transcriptomic analysis exhibited
robust and reproducible concentration-responses at 120 hpf, and their
corresponding morphological profiles are shown in Figure 2. No
consistent pattern of malformation type was associated with the
different chemicals or their subclasses. The concentrations at which
phenotypic effects were observed ranged from 0.25 to 75 M, indicating
substantial variability in nominal concentration responses among the
tested chemicals (Supplementary Table S2). For example, napropamide
had an ECy, at 72 pM, while tributyltin methacrylate induced the same
percent incidence (ECy,) at 0.25 pM. Craniofacial abnormalities and
edema were the most frequently observed morphological outcomes.
Cyazofamid induced 100% mortality and was the only one that did so.

Thiodicarb,
pyridinedicarboxylate, piperonyl butoxide, methomyl, 4,6-dinitro-

chlorpyrifos oxon, dipropyl 2,5-
o-cresol, and carbofuran induced <50% effect at the selected

concentrations, as higher nominal concentrations caused
excessive toxicity at 48 hpf, the designated collection time point
for transcriptomics (Supplementary Table S2). No clear relationship
was observed between the percent incidence and the corresponding

exposure concentration across chemical subclasses.

3.3 Unique gene expression profiles showed
functional convergence

To begin to understand the molecular mechanisms underlying these
phenotypic responses, we conducted transcriptomic analysis at 48 hpf,
prior to the manifestation of observable malformations. After identifying
effective concentrations that induced phenotypic effects at 120 hpf for all
the agrichemicals, we performed 48 hpf whole embryo transcriptomics.
Differential expression analysis identified 8,546 DEGs in at least one
agrichemical (Figure 3; Supplementary Table S3). Abamectin exposure
produced no DEGs at 48hpf. Carbosulfan induced the highest number
of DEGs (4,538). To identify patterns in transcriptomic responses, we
used hierarchical clustering, which revealed eight distinct groups of
chemicals. Most chemicals (34) grouped into Cluster 1, showing similar,
but distinct expression profiles (Supplementary Figure S2). Six clusters
consisted of single chemicals with highly divergent and unique
expression signatures. Cluster 3 contained four chemicals
(butafenacil, 4,6-dinitro-o-cresol, chlordane, and cyfluthrin) that
shared 479 overlapping DEGs. Functional enrichment analysis of
these 479 shared DEGs highlighted pathways such as erbB signaling
and anatomical structure development (Supplementary Figure S3).

We performed functional enrichment analysis across all eight
clusters from Figure 3 to identify broader patterns. For Cluster 1,
which had no genes shared across all chemicals within the cluster, we
analyzed all DEGs (n = 3,208) from the cluster. The analysis showed
that seven out of eight clusters were enriched for terms related to
membrane structure, anatomical structure development, and NTPase
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Unique Transcriptomic Signatures Across Agrichemicals. Heatmap of all differentially expressed genes (DEGs) identified across 44 agrichemicals
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Diverse Transcripts Yield Overlapping Biological Themes. Enrichment map to visualize the GO terms and pathways across the 8 different DEG
clusters identified in Figure 3 into a network to identify biological themes across the diverse gene sets. The network shows how genes in these clusters
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activity (Figure 4). This analysis identified recurring enrichment of
terms related to neurodevelopment (7/8 DEG clusters), nervous system
function (6/8 DEG clusters), cellular structure (7/8 DEG clusters), and
general developmental processes like NTPase activity and cell signaling
(7/8 DEG
neurodevelopmental and neurobehavioral disorder terms in Cluster

clusters).  Cluster-specific ~ enrichment included
8 (forchlorfenuron) and nervous system electrophysiology in Cluster 2
(aldicarb). Overall, both shared and unique pathways were enriched
across the clusters. Several disconnected terms in the enrichment
network were driven by non-overlapping gene sets. These results
highlighted convergence on core biological processes such as cellular
stress, compensatory signaling, translation, and neurodevelopment,

despite considerable transcriptomic heterogeneity.

3.4 Functional enrichment analysis revealed
agrichemical effects and validated
existing data

Enrichment analysis of agrichemicals with significant DEGs
identified 726 GO terms
chemicals (carbosulfan, isoxaben, benodanil, endosulfan, nitrofen,

(Supplementary Table S4). Ten

pendimethalin, flumetralin, dazomet, piperonyl butoxide,

napropamide) did not lead to significant GO enrichment. To
identify higher-order patterns, semantic similarity analysis
grouped enriched terms into 45 parent terms (Supplementary
Table S5).

development were the most frequent parent terms,

GTPase activator activity and nervous system
each
appearing 42 times across nine chemicals, with additional parent

terms related to cytoskeletal organization and cellular processes. For
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example, 4,6-dinitro-o-cresol was consistently linked to nervous
system development, while chlorpropham was uniquely enriched for
myc transcription factor and cytoskeletal terms.

To validate these findings, we compared our GO terms to those
in the Comparative Toxicogenomics Database (CTD). We identified
88 overlapping GO terms across nine chemicals, spanning cellular
component (CC), biological process (BP), and molecular function
(MF) categories (Supplementary Table S6). CTD contained
21,916 chemical-specific GO 30 chemicals,
15 chemicals either lacked GO term annotations in CTD or
CAS
(Supplementary Table S7). Among the overlapping terms,

terms across

could not be found using their registry numbers
anatomical structure development and developmental process
were the most frequently represented. Abamectin was associated
with 757 GO terms in CTD, but no terms were identified in our
study due to the absence of differentially expressed genes (DEGs) at
the 48 hpf timepoint. Cyfluthrin had the highest number of
overlapping GO terms, 59 in total, primarily associated with
nervous system development, function and general developmental
A of the
88 overlapping GO terms produced 21 parent terms with cell

processes. second semantic similarity analysis
differentiation identified as a shared parent term across aldicarb,
cyfluthrin, difenoconazole, and endrin, though nervous system-
related parent terms were not recovered (Supplementary Table S8).

A comparative analysis revealed a distinct emphasis between the
datasets. CTD data were most enriched for BMP signaling
(720 occurrences across 25 chemicals) and DNA binding
(121 occurrences across 23 chemicals), whereas our data uniquely
emphasized GTPase activity and nervous system development

(Supplementary Table S9). Notably, CTD highlighted immune-
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Centrality Analysis Revealed Biologically Relevant Regulatory Genes. (A) Gene coexpression network of all 45 chemicals, highly coexpressed genes
were grouped into 8 modules. The size of the dot correlates with the degree, number of connections a single gene has to other genes. The black,
unhighlighted text refers to the GO terms that resulted from functional enrichment analysis for the genes contained within each module. The yellow
highlighted texts are the gene names of most central genes according to centrality metrics and the yellow circles are the associated genes. (B) Top

20 highest betweenness and degree genes found in the gene coexpression network. The red boxes indicate the same genes found between both metrics,

which also appear highlighted in the coexpression network.

related pathways more prominently, while our dataset revealed
stronger for cell cytoskeletal
organization. Of the 726 chemical-specific terms identified in our

enrichment structure and
study, 229 originated from non-GO sources (e.g., Human Phenotype
Ontology (HP) and KEGG), while the remaining 409 terms were
derived from GO categories (BP, MF, CC), indicating associations

relative to the CTD.

3.5 Gene coexpression network reveals key
regulators and distinct functional modules

To identify regulatory relationships beyond individual DEGs,
gene co-expression network analysis was performed across all
samples. This analysis identified eight distinct modules, each
representing genes with
patterns (Figure 5A). Functional enrichment analysis of the genes
within each module revealed distinct GO terms (Table 2). NTPase

significantly ~correlated expression
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activity was the most significantly enriched GO term from module 2,
while modules 3, 4, and 7 resulted in nervous system-related terms.
Module 3 was specifically enriched for neurexin/neuroligin terms
driven by two genes-nlgn3a and nlgnl. These genes also drove
synapse and abnormal communication behavior terms in cluster
4 (carbosulfan) from the previous DEG analysis from Figure 3.
Network centrality analysis identified seven central genes in the
coexpression network based on centrality metrics (betweenness and
degree) (Figure 5B). Functional enrichment analysis of these seven
genes yielded only a single pathway - cardiac muscle contraction -
driven by tpma and actclb, suggesting limited functional overlap
when considered as a group. However, module-specific analysis
revealed more distinct functional roles. Five of the seven central
genes were in module 7, which was enriched for cytoskeletal and
host-response pathways (e.g., salmonella infection, motor protein
activity). All five central genes (mylpfa, krt4, tmpa, eeflalll, actclb)
located in module 7 were associated with cytoskeletal organization,
calcium signaling, or GTP-dependent protein synthesis-key
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TABLE 2 Gene coexpression network module information which includes module ID, the number of nodes within each module, the module color, the
enriched functions, and the adjusted p-value and functional enrichment score.

Module ID  # of nodes Module color

Enriched function(s)

Functional enrichment

Adjusted p-value

1 209 FoxO signaling pathway 0.02 5.61
Insulin signaling pathway 0.02 5.61
Constrictive pericarditis 0.05 170.48
Osteoarthritis of the elbow 0.05 170.48
Generalized morning stiffness 0.05 170.48
Flattened metacarpal heads 0.05 170.48
2 63 GTPase regulator activity 0.02 20.22
nucleoside-triphosphatase regulator activity 0.02 20.22
small GTPase-mediated signal transduction 0.03 26.96
3 137 Carbon metabolism 0.02 9.70
Neurexins and neuroligins 0.04 81.89
4 Monoamine GPCRs 0.05 81.59
5 25 Effect of L carnitine on metabolism 0.05 81.59
6 48 - - R
7 81 Motor proteins 0.00 10.08
Salmonella infection 0.00 475
8 18 - - -

pathways regulating cytoskeletal structure and function. The
remaining two genes were in module 1, which was enriched for
inflammatory and metabolic signaling pathways, including foxO
signaling, insulin signaling, and pericarditis. The most central genes
found in module 1, klf4 and ulk4, were associated with LEF-1
transcription factor processes (lymphoid enhancer-binding factor
1). LEF-1 is a key regulator of wnt and beta-catenin signaling-
pathways critical for cell and

development, proliferation,

differentiation.

3.6 Chemical coexpression network
clustering highlighted transcriptomic
groupings beyond subclass distinctions

To complement gene coexpression analysis and to examine
global transcriptomic similarities among agrichemicals, we
constructed a chemical coexpression network from the same
normalized gene expression data as was used for the gene co-
expression network (Figure 6). Here, instead of genes linked
based on their similar expression profiles across chemicals,
chemicals were linked in a network based on similar expression
patterns of the gene responses to the chemicals. This approach
aimed to identify shared transcriptomic responses that might
indicate common mechanisms of action across the tested
agrichemicals.

The network analysis revealed four distinct chemical clusters
with varying degrees of transcriptomic perturbation. Cluster 1 was

closely associated with the DMSO controls, indicating minimal
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transcriptomic  effects from these chemicals at this single
developmental timepoint. Cluster 2 comprised 15 chemicals, with
fungicides representing the most abundant subclass (seven
chemicals). Cluster 3 included eight chemicals, with six of them
being insecticides. Notably,
3—butafenacil, 4,6-dinitro-o-cresol, chlordane, and
cyfluthrin—also exhibited a shared set of 479 DEGs in the

hierarchical clustering analysis (Section 3.3; Figure 3), confirming

four chemicals within Cluster

their transcriptomic similarity across different analytical methods.
Cluster 4 consisted of eight chemicals, half of which were herbicides.

Two chemicals - chlorpyrifos oxon and carbofuran - did not
cluster with any group, due to their highly divergent expression
profiles. These chemicals also demonstrated unique transcriptomic
patterns in the DEG analysis and showed abnormal phenotypes
in <50% of animals (50 and 37.5, respectively).

Chemical clustering patterns did not align strictly with chemical
subclass designations. Each cluster resulted from chemicals in at
least three of the four subclasses tested, indicating that
transcriptomic similarity was not solely driven by chemical
subclass but likely reflected shared biological responses or
molecular targets.

4 Discussion

Our transcriptomic analysis revealed distinct and shared
transcriptional responses to a diverse panel of developmentally
toxic agrichemicals, offering insights into potential mechanisms
of toxicity. The identification of 8,546 DEGs highlighted the
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sensitivity of early development to chemical exposure, though
linking molecular changes to phenotypic outcomes proved more
complex than expected.

4.1 Temporal dynamics of phenotypic
anchoring and transcriptomic responses

For some chemicals there was no correlation between the
percent incidence of malformation at 120 hpf and the number of
DEGs identified at 48 hpf. For instance, endosulfan and
forchlorfenuron induced morphological effects in 81.25% of
exposed animals by 120 hpf but resulted in 7 and 1,872 DEGs at
48 hpf, respectively. This disconnect suggested that the molecular
mechanisms driving developmental toxicity involved distinct
temporal patterns and dose-response dynamics, aspects that were
not adequately captured by measuring DEGs at a single timepoint
(White et al., 2017). Several factors might have contributed to this
phenomenon: differential chemical bioavailability and accumulation
kinetics, metabolism, and the possibility that the molecular targets
were not expressed until after the 48 hpf timepoint (Rericha et al.,
2024). The selection of the 48 hpf timepoint was intended to target a
developmental stage prior to the appearance of overt phenotypic
abnormalities observed at 5 dpf, with the goal of identifying
molecular events underlying the subsequent morphologies.
Nonetheless, this time point may, in certain instances, precede
critical developmental processes and thus limit detection of
relevant molecular profiles. For instance, while most chemicals
induced robust gene expression changes by 48 hpf, the absence
of DEGs for abamectin at this timepoint suggested a later
developmental window for its mechanism of action (MoA). This
interpretation was supported by previous studies demonstrating
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abamectin-induced expression of apoptotic and inflammation-
related genes in zebrafish at 96 hpf, and ossification-related genes
at 14 days post fertilization (dpf) (Zhang et al., 2025; Wang et al.,
2025). The delayed transcriptomic response pattern observed for
several chemicals, particularly those grouped around the DMSO
node in the chemical coexpression network in Figure 6, indicated
that comprehensive toxicological assessments may require sampling
across multiple developmental timepoints (Rericha et al., 2024).
In addition, gene expression data were generated using a single
EC for each agrichemical. Although this approach facilitates
comparative analysis, limiting sampling to one concentration
the full space,
particularly at lower or higher exposure concentrations where

could underrepresent molecular response
important molecular changes may emerge.

Finally, it is possible that some chemicals exert their effects
through post-transcriptional mechanisms or by disrupting protein
function directly rather than through gene expression changes.
These findings highlight the benefits of integrating multiple
endpoints and timepoints when characterizing chemical modes
of action.

4.2 Transcriptomic clustering revealed
functional overlap among structurally
unrelated compounds

DEG clustering analysis revealed that most agrichemicals

displayed highly divergent expression profiles, supporting

chemical-specific modes of action. However, a subset of
chemicals: butafenacil, 4,6-dinitro-o-cresol, chlordane, cyfluthrin,
produced a coherent transcriptomic cluster, sharing a core set of

DEGs enriched for processes like erbB signaling and anatomical
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structure development (Supplementary Figure S3). This shared
profile was also reflected in our chemical coexpression network,
which grouped these four compounds based on overall gene
expression similarity despite their structural and mechanistic
diversity. Among the three insecticides and one herbicide, they
differed substantially in both chemical structure and their intended
biological targets. Butafenacil targets protoporphyrinogen oxidase
(PPO), essential for chlorophyll synthesis in plants and heme
synthesis in animals; 4,6-dinitro-o-cresol uncouples oxidative
phosphorylation; chlordane antagonizes GABA receptors; and
cyfluthrin inhibits sodium channels (Leet et al, 2015; Atsdr,
2018; Dodmane and Koshlukova, 2024; Elyazar et al, 2011).
While chlordane and cyfluthrin act directly on the nervous
system - affecting both target and non-target organisms -
butafenacil, through PPO inhibition, can disrupt heme synthesis
and induce anemia in developing zebrafish. Similarly, 4,6-dinitro-
o-cresol impairs mitochondrial ATP production, impacting energy
metabolism across taxa (Leet et al., 2014). In our study, butafenacil’s
impact on heme synthesis was captured by enrichment of metal ion
binding terms, consistent with previous findings (Supplementary
Table S3) (Leet et al,, 2015). The intended target, alone, did not
predict toxicological outcome, particularly during the sensitive
period of embryonic development and highlighted the need for
comprehensive mechanistic characterization across structurally
diverse compounds.

4.3 Cytoskeletal disruption as a common
downstream pathway

The convergence of multiple pesticides on motor protein-
through GO
enrichment and gene coexpression network analysis. A key

related biological processes was revealed
coexpression module (module 1) enriched for motor protein
function and contained highly central genes involved in
cytoskeletal organization and muscle morphogenesis (e.g., krt4,
tpma, actclb, mylpfa), suggesting that disruption of cytoskeletal
dynamics represents a common biological disruption that is
critical in neurodevelopment (Tang and Jin, 2018). This
convergence was exemplified by two structurally related
carbamates, carbofuran and chlorpropham, which produced
remarkably signatures despite targeting
different While carbofuran inhibits
acetylcholinesterase (AChE), chlorpropham acts primarily as a
microtubule inhibitor (Veras et al., 2024; Lee et al., 2020; Campbell
et al,, 2010). Yet both chemicals led to enrichment of GO terms

associated with motor proteins and cytoskeletal function, with

similar  biological

molecular pathways.

carbofuran showing enrichment for pathways linked to concentric
hypertrophic cardiomyopathy, a phenotype previously linked to
motor protein disruption (Herron et al., 2008; Hein et al., 2000).
did not
mechanistic equivalence at the molecular target level but did

Structural similarity (two carbamates) result in
converge on disruption of the cytoskeleton. This bodes well for
predictive toxicology whereby a structurally rich and diverse
database of vertebrate bioactivity should identify the hazard
liability of new structures, ideally without animal testing.
Notably, chlorpropham was unique in enriching for

functional terms related to myc (also known as mych in
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zebrafish), a transcription factor critical for regulating cell
growth, which was not observed with any other compound in
this study (Hong et al., 2008). The cytoskeletal convergence
extended beyond carbamates to include chemicals from
distinct chemical subclasses and intended targets: chlordane,
tefluthrin, fenamidone, and picoxystrobin, all disrupted motor
protein and cytoskeletal pathways. Comparisons with CTD data
revealed that while fenamidone and picoxystrobin were
associated with some cytoskeletal-related terms, none of the
four showed enrichment for motor protein-related terms, a
novel insight of our developmental transcriptomic approach
(Supplementary Table S9). The convergence suggested that
structurally diverse chemicals can induce similar downstream
phenotypes through varied mechanisms, possibly involving
calcium signaling, oxidative stress, or energy disruption
(Hepler, 2016; Myers and Casanova, 2008). Agrichemical
developmental toxicity is complex. Structurally similar
compounds (like carbofuran and chlorpropham) can act
through divergent molecular targets to ultimately perturb the
same cellular processes, while structurally unrelated compounds

can converge on similar developmental outcomes.

4.4 Integrated analysis reveals convergent
neurodevelopment disruptions

The integration of differential gene expression analysis with
coexpression network modeling revealed that agrichemical exposure
predominantly perturbed neurodevelopment processes, cellular
metabolism and signaling homeostasis. GO enrichment analysis
identified significant disruption of neuronal development and
synaptic function, including neurogenesis, neuron projection
development, synaptic signaling, and dendritic organization
(Supplementary Table S4; Figure 4). These findings were
reinforced by coexpression modules enriched for neuroligin/
neurexin interactions and monoaminergic G protein-coupled
receptors, suggesting potential disruption of neurotransmission
and synaptic connectivity (Liu et al, 2022; Meriney and
Fanselow, 2019).

The analysis also revealed perturbation of intracellular
regulatory pathways, including small GTPase activity, NTP
regulation, and signaling cascades involving foxO, erbB, and
insulin = signaling. Structural and morphogenetic processes
including cytoskeletal dynamics, motor protein function, and cell
adhesion were also implicated across multiple chemicals, indicating
possible effects on cell shape, polarity, and migration during
critical developmental windows. Beyond neurodevelopmental
pathways, module-specific ~ enrichment for  L-carnitine
metabolism, carbon metabolism, and pericarditis suggested
broader systemic impacts, including potential metabolic and
cardiovascular effects (Virmani and Cirulli, 2022). Enrichment
of the GO term salmonella infection in module 7 likely reflected
disruption of immune and inflammatory pathways, rather than an
actual infection, and may indicate broader immune signaling
perturbations alongside other key biological processes. Many of
the effects,  with

neurodevelopmental disruption as the primary consequence and

agrichemicals  exerted  pleiotropic

metabolism signaling homeostasis as secondary targets.
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4.5 Novel insights beyond developmental
transcriptomics

Our developmental zebrafish transcriptomic approach revealed
insights that extended beyond existing toxicogenomic knowledge.
Comparison with the CTD identified 88 overlapping GO terms
confirming that our approach effectively recapitulated known biology.
We also discovered 409 additional GO terms not previously linked to
these chemicals in CTD. This suggested that over 56% of our identified
terms were novel associations. The most significant terms related to
GTPase activator activity and nervous system development emerged as
prominent parent categories in our data but were underrepresented in
CTD, suggesting that our approach offered complementary insights,
particularly regarding neurodevelopmental pathways.

The divergence between our findings and CTD was pronounced in
biological emphasis: while CTD was enriched for terms related to
immune signaling and BMP pathways, our dataset was dominated by
effects on cytoskeletal organization and nervous system development.
This divergence reflects the unique sensitivity of the developing
zebrafish model to capture early transcriptional events that precede
morphological changes, as well as the temporal specificity of our 48 hpf
sampling timepoint. The absence of nervous system terms in the
overlap with CTD suggested that many neurodevelopmental effects
captured in our dataset represent previously uncharacterized
mechanisms of agrichemical toxicity. The developmental zebrafish
would seem to have adequate capacity to reveal both mechanistic
diversity and biological convergence. We believe there is added value
to a standardized developmental transcriptomic platform for
identifying mechanistic pathways that would likely be missed with
traditional toxicological approaches.

4.6 Implications for chemical classifications
and risk assessment

Our findings challenge conventional approaches to agrichemical
classification and risk assessment that rely primarily on intended target
mechanisms. The observation that structurally similar compounds
produced divergent transcriptional responses, while structurally
dissimilar compounds could perturb shared developmental and
transcriptional responses, demonstrates the limitations of current
classification schemes. For example, while carbamate insecticides are
traditionally grouped by their cholinesterase inhibition mechanism, this
fails to capture the broader spectrum of developmental effects observed
across different carbamates (Ahmad et al., 2024). Similarly, potency
variation within a class can be substantial, as observed previously with
different cholinesterase inhibitors (Risher et al., 1987).

A reductionist approach of broad intended target classifications
hinders research like ours that can inform the development of more
based
transcriptional changes and biological outcomes.

sophisticated  classification  systems on nuanced

5 Conclusion

We demonstrated the value of phenotypically anchored

transcriptomic  analysis in developing zebrafish to more
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comprehensively identify the mechanisms

toxicity. We observed complex patterns where structurally similar

of agrichemical

compounds exhibited divergent transcriptional responses, while
unrelated chemicals modulated shared biological pathways,
particularly those involved in neurodevelopment and cytoskeletal

organization.

Our findings highlight the utility of comparative
transcriptomics to both validate known toxicological
mechanisms and to wuncover previously uncharacterized

biological responses. Comparison with existing toxicogenomic
databases revealed that our developmental transcriptomic
approach identified 409 novel chemical-GO term associations,
representing a 56% expansion beyond current knowledge. The
predominant of neurodevelopmental
cytoskeletal terms in our dataset, compared to immune and

enrichment and
BMP signaling pathways in existing databases, underscored
the wunique sensitivity of early developmental stages to
chemical perturbation.

These findings have significant implications for chemical risk
assessment. The convergence of diverse agrichemicals on shared
developmental pathways suggested that current approaches
underestimate developmental hazard. Our results support
pathway-based chemical classification to identify chemicals with
similar biological effects regardless of structural similarity. Our
study provides a foundation for more mechanistically informed
approaches to chemical safety assessment and being in a fish model,
is a significant step toward elimination of mammalian testing while

improving hazard detection.
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