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Innate immune cellular
therapeutics in transplantation
Leah C. Ott and Alex G. Cuenca*

Department of General Surgery, Boston Children’s Hospital, Boston, MA, United States

Successful organ transplantation provides an opportunity to extend the lives of
patients with end-stage organ failure. Selectively suppressing the donor-specific
alloimmune response, however, remains challenging without the continuous use
of non-specific immunosuppressive medications, which have multiple adverse
effects including elevated risks of infection, chronic kidney injury, cardiovascular
disease, and cancer. Efforts to promote allograft tolerance have focused on
manipulating the adaptive immune response, but long-term allograft survival
rates remain disappointing. In recent years, the innate immune system has
become an attractive therapeutic target for the prevention and treatment of
transplant organ rejection. Indeed, contemporary studies demonstrate that
innate immune cells participate in both the initial alloimmune response and
chronic allograft rejection and undergo non-permanent functional
reprogramming in a phenomenon termed “trained immunity.” Several types of
innate immune cells are currently under investigation as potential therapeutics in
transplantation, including myeloid-derived suppressor cells, dendritic cells,
regulatory macrophages, natural killer cells, and innate lymphoid cells. In this
review, we discuss the features and functions of these cell types, with a focus
on their role in the alloimmune response. We examine their potential application
as therapeutics to prevent or treat allograft rejection, as well as challenges in
their clinical translation and future directions for investigation.
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1. Introduction

Solid organ transplantation is the only curative treatment for end-stage organ failure.

While short-term patient and allograft survival have significantly improved over time,

long-term allograft survival rates remain stagnant (1, 2). To prevent rejection, patients are

reliant on continuous immunosuppression with medications such as calcineurin

inhibitors, corticosteroids, and anti-proliferative agents. Though these regimens are critical

for allograft survival, they are associated with significant morbidity including greater

susceptibility to infections, chronic kidney injury, cardiovascular disease, and cancer

(2, 3). New strategies to reduce or eliminate the use of these medications are needed.

Though previous efforts to promote tolerance have focused largely on the adaptive

immune response, interest in innate immune cells as therapeutic targets to promote

tolerance has grown, especially given recent findings that these cells can undergo non-

permanent epigenetic and metabolic changes that prime their future activity in a

phenomenon termed “trained immunity” (4–6). While all these cell types have been

identified in vivo, they are not present in sufficient numbers during the alloimmune

response to exert significant immunosuppressive effects, and thus must be artificially

activated in the recipient, engineered ex vivo, or adoptively transferred following ex vivo
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expansion. In this review, we first describe these innate immune

cell populations under investigation, including their endogenous

features and functions, with an emphasis on their role in

alloimmunity. We then discuss preclinical and clinical studies in

which these cell types are modified ex vivo to prevent or treat

allograft rejection, supporting their application as cellular

therapeutics. Finally, we summarize challenges to their clinical

use and future directions for investigation.
2. Tolerogenic innate immune cells
and their immunomodulatory
functions in vivo

2.1. Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are leukocytes that

develop from immature myeloid cells in response to inflammation

(7). They have been divided into two subtypes, namely

polymorphonuclear MDSCs (PMN-MDCs) and monocytic

MDSCs (M-MDSCs), based on their resemblance in morphology

and phenotype to polymorphonuclear cells and monocytes,

respectively (8). Murine PMN-MDSCs are identified as CD11b+

Gr-1+ Ly6Clow Ly6Ghigh cells, while M-MDSCs are defined as

CD11b+ Gr-1+ Ly6Chigh Ly6G− cells (9, 10). Human M-MDSCs

are designated as CD11b+ CD14+ CD15− HLA-DRlow/− cells,

while PMN-MDSCs are defined as CD11b+ CD15+ CD14− cells

(8, 9). The ratio of these two subtypes varies by inflammatory

condition and while the optimal proportions of each to

effectively suppress the alloimmune response remains unclear,

evidence suggests a more critical role for M-MDSCs in tolerance

induction (11–14). MDSCs were first described in cancer biology,

in which they play a deleterious role suppressing anti-tumor T

cell responses and creating an immunosuppressive milieu for

unopposed tumor growth (15–18). Additional research has

illustrated their involvement in other inflammatory conditions,

including autoimmunity, trauma, sepsis, and allograft rejection

(7, 11, 19–23). MDSCs interact with their primary targets,

natural killer (NK) cells and effector T cells, through cell-cell

interactions and signaling with soluble factors (22, 24, 25).

Firstly, MDSCs express Programmed Cell Death Ligand 1 (PD-

L1), activating regulatory T cells (Tregs) and suppressing

activated T cells by binding their cognate Programmed Cell

Death Protein 1 (PD-1), which has been shown to be necessary

for their immunosuppressive effect in a murine model of islet

transplantation (14, 26–28). Colony stimulating factor 1 receptor

(CSF1R) is also critical to MDSC functions, binding colony

stimulating factor (CSF) to regulate their expansion and

migration (29, 30). CSF/CSF1R signaling has been shown to

recruit MDSCs to the tumor microenvironment and promote

upregulation of PD-L1, reducing the efficacy of chemotherapy,

radiation, and checkpoint immunotherapy in various cancers

(31–33).

MDSCs also secrete soluble factors that modulate immune

responses. For example, they produce nitric oxide (NO) via

inducible nitric oxide synthase (iNOS), which inhibits the
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expansion, differentiation, and effector functions of NK cells, B

cells, and T cells (14, 21, 22, 34–39). The synthesis of NO

simultaneously depletes L-arginine, a critical substrate for T cell

expansion (38, 39). MDSCs also consume L-arginine through the

expression of arginase-1 (Arg-1), producing urea and ornithine

(34). Furthermore, MDSCs express heme oxigenase-1 (HO-1),

which suppresses T cells and mediates delays in skin graft

rejection (40). MDSCs produce transforming growth factor-β

(TGF-β) and interleukin (IL)-10 in response to interferon-γ

(IFN-γ) signaling, which results in downstream activation of

Tregs (18, 36). Finally, in models of kidney and heart

transplantation in rats, MDSCs were found to play a unique role

in trafficking Tregs to the allograft from secondary lymphoid

organs by creating a C-C chemokine ligand 5 (CCL5) gradient

between the graft and periphery, as summarized in Figure 1 (41).

Correlational studies have demonstrated that MDSCs develop

in patients following solid organ transplantation and support a

potential role for these cells in promoting tolerance (11, 42–44).

MDSCs were shown to expand in the peripheral blood of

patients following renal transplantation and correlated with their

level of circulating Tregs, but more contemporary studies did not

identify them in the peripheral blood or within the allograft of

such patients using single-cell cytometry by time-of-flight and

single cell RNA sequencing, respectively (11, 44–46). In acute T

cell-mediated rejection, greater numbers of circulating MDSCs

were associated with superior allograft survival and function (42).

Finally, in lung transplant patients with stable allograft function,

circulating levels of MDSCs were higher than in those with

chronic allograft dysfunction (43). Overall, correlational studies

in transplant patients suggest a promising role for MDSCs in

preventing or treating allograft rejection, further supported by

preclinical studies that will be discussed in the following section.
2.2. Regulatory dendritic cells

Dendritic cells (DCs) are a heterogeneous population of

myeloid antigen presenting cells (APCs) that regulate immunity

and maintain self-tolerance under homeostatic conditions (47,

48). Human DCs are divided into conventional DCs (defined as

CD11c+ HLA-DR+ cells) and plasmocytoid DCs (defined as

CD11c− HLA-DR+ CD123+ cells) (49). Regulatory DCs (regDCs

or tolerogenic DCs) were first described in 1996 and so named

for their tolerogenic properties in vivo, but it remains uncertain

whether they represent an alternatively activated population or

their own unique lineage (50, 51). Human regDCs are defined as

CD11clow CD11bhigh CD14+ HLA-DR+ MHCIIlow CD86low DCs

with low expression of co-stimulatory molecules (including

CD40, CD80, and OX40L), MHCI, and adhesion proteins, but

high expression of co-inhibition ligands (such as PD-L1) and

death-inducing proteins [such as Fas ligand (FasL)] (52–55).

Beyond their well-described role as APCs, regDCs induce

tolerance through several mechanisms, as summarized in

Figure 2. They inhibit effector T cells through direct cell-cell

interactions, triggering clonal deletion and anergy (56, 57). They

upregulate various pro-apoptotic or immunomodulatory signals,
frontiersin.org
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FIGURE 1

Immunosuppressive mechanisms of MDSCs. MDSCs express PD-L1, which activates Tregs and inhibits effector T cells by binding its cognate PD-1. In
response to CSF/CSF1R signaling, MDSCs upregulate PD-L1. They express HO-1, which similarly inhibits effector T cells. MDSCs express iNOS which
consumes L-arginine to produce NO, the latter of which then inhibits B cells, NK cells, and effector T cells. Finally, they produce TGF-β and IL-10 to
activate Tregs and CCL-5 to recruit Tregs to the allograft.

Ott and Cuenca 10.3389/frtra.2023.1067512
including FasL, PD-L1, and indoleamine 2,3-dioxygenase (IDO), to

delete or inhibit the proliferation of naïve and memory T cells (58–

60). Like MDSCs, regDCs upregulate HO-1, which suppresses

proinflammatory cytokine production and alloreactive T cell

expansion (61–63). They drive the differentiation and activation

of immunosuppressive immune cells, namely regulatory B cells

(Bregs), Tregs, and double negative T cells (64–67). They secrete

various anti-inflammatory soluble factors and cytokines such as

NO, TGFβ, and IL-10 (60, 68, 69). Finally, dendritic cells release

exosomes, or membrane nanovesicles carrying MHC molecules,

which were recently shown to induce and sustain peripheral

tolerance in various animal models of transplantation (70–73).

These donor-derived exosomes are believed to promote tolerance

through trogocytosis, creating “cross-dressed” recipient DCs that

upregulate inhibitory cell surface markers (such as PD-L1) and
Frontiers in Transplantation 03
cytokines (such as IL-10), suppressing the alloimmune response

and prolonging allograft survival (74, 75). Based on these

immunoregulatory properties of regDCs, as well as the

observation that deletion of DCs induces spontaneous

autoimmunity, they have been investigated in the setting of

transplantation in both preclinical models and clinical trials,

which will be discussed in detail in the next section (48).
2.3. Regulatory macrophages

Macrophages are a heterogenous, highly plastic population of

myeloid cells that play diverse roles in health and disease states,

including phagocytosis, antigen presentation, tissue repair, and

angiogenesis (76, 77). They can be classified into one of three
frontiersin.org
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FIGURE 2

Immunosuppressive mechanisms of regDCs. RegDCs express PD-L1 and FasL to inhibit or delete effector and memory T cells through direct cell-cell
contact. They also inhibit effector T cell activation through HO-1 and IDO signaling. They activate and promote the differentiation of Bregs, Tregs,
and double negative T cells, and secrete anti-inflammatory cytokines including TGFβ, NO, and IL-10. Finally, donor regDCs release exosomes carrying
donor MHC, creating “cross-dressed” recipient DCs via trogocytosis. These recipient DCs then upregulate inhibitory cell surface receptors (such as
PD-L1) and secrete anti-inflammatory cytokines (such as IL-10) to further inhibit alloreactive T cells.

Ott and Cuenca 10.3389/frtra.2023.1067512
subtypes: classically activated (M1) macrophages, alternatively

activated (M2) macrophages, and regulatory macrophages

(Mregs) (78). While M1 macrophages exhibit marked

proinflammatory and bactericidal properties and M2

macrophages participate in wound healing and angiogenesis,

Mregs have garnered particular attention in the field of

transplantation for their robust inhibition of T cells (55, 77, 79–

82). Human Mregs are defined as CD14−/low CD16− HLA-DR+

CD40−/low CD80−/low CD83− CD163−/low TLR2− TLR4− cells

(83–86). Murine Mregs are identified as CD11b+ CD11c+ CD14+

MHCIIint CD40− CD80int CD86− CD169+ CD204+ CD206−

TLR2− TLR4− cells (55).

As robust APCs with high expression of costimulatory

molecules and anti-inflammatory cytokines, Mregs exert their

immunosuppressive effects in various inflammatory conditions

(87, 88). Parasites have been shown to promote Mreg induction,
Frontiers in Transplantation 04
leading to impaired anti-parasitic immunity and chronic

infection (89, 90). In various tumor models, conventional DCs

are converted to Mregs which subsequently suppress

inflammation (91). Mregs attenuate inflammation through

suppression of activated T cells, stimulation of Tregs, and

production of anti-inflammatory soluble factors, such as IL-10

and TGF-β, as illustrated in Figure 3 (92). Following IFN-γ

signaling, Mregs produce IDO in humans and NO in mice to

block T cell proliferation (84, 86). Secondly, Mregs suppress

inflammation by promoting Treg expansion through TGF-β

signaling and converting allogenic CD4+ T cells to inhibitory

TIGIT+ FoxP3+ Tregs, the latter enhancing IL-10 production

(93–95). Furthermore, TIGIT+ Tregs arrest DC maturation,

resulting in allogenic T cell anergy or deletion via the indirect

allorecognition pathway (55, 93). These findings have been

correlated in vivo, with humanized mice demonstrating elevated
frontiersin.org
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FIGURE 3

Immunosuppressive mechanisms of Mregs. Mregs express IDO in response to IFN-γ signaling, which then inhibits effector T cell proliferation. They
secrete TGF-β and IL-10 to activate and promote the expansion of Tregs. Additionally, Mregs promote the conversion of allogenic CD4+ T cells to
inhibitory TIGIT+ Tregs through the TGF-β and IDO signaling pathways, among others. The TIGIT+ Tregs secrete IL-10 and arrest dendritic cell
maturation, the latter of which promotes allogenic T cell anergy or deletion through the indirect allorecognition pathway.

Ott and Cuenca 10.3389/frtra.2023.1067512
levels of circulating TIGIT+ Tregs following Mreg administration

(93, 94). Overall, this suggests a feed-forward mechanism

between Mregs and Tregs to maintain an immunosuppressive

environment lasting beyond the lifespan of adoptively transferred

Mregs, which is promising for their application in solid organ

transplantation (96). They seem to exert lasting effects on

allogenic T cells, as any remaining after co-culture have

significantly attenuated IFN-γ and IL-2 production on repeat

stimulation (83).

Beyond their immunosuppressive effects, Mregs limit fibrosis

by suppressing M2 macrophage arginase production and

fibroblast proliferation (97). Finally, they stimulate angiogenesis

following hypoxia through upregulation of angiogenic proteins,

suggesting they may limit allograft fibrosis and ischemia-

reperfusion injury (IRI) (97, 98). The robust capacity of Mregs to

suppress inflammation and promote tissue repair highlights why

they, along with regDCs, have been the most extensively studied

and developed as innate immune cellular therapeutics to date.

Data regarding their application in preclinical and clinical studies

will be discussed in detail in the next section.
2.4. Natural killer cells

NK cells are cytotoxic lymphoid cells known for their roles in

anti-tumor and anti-viral immunity (99). Their cytotoxic activity

does not require prior sensitization against a target and can be

activated by cells lacking self MHC, while their inhibitory

receptors recognize self MHC to prevent autologous cell death

(100). Murine NK cells are identified as CD3− TCR− cells that
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express either DX5 or NK1.1 (101, 102). Human NK cells are

defined as CD3− CD56+ NKp46+ cells, then can be further

divided into subtypes of high density CD56bright cells and low

density CD56dim cells (103). CD56dim cells express CD16, exhibit

cytotoxic activity, and are found in the circulation, while

CD56bright cells lack CD16 expression, localize to secondary

lymphoid organs and peripheral tissues, and modulate the

immune response through the production of cytokines, including

IFN-γ and TNF-α (104, 105).

NK cells were initially shown to play immunoregulatory roles

in other disease states such as bacterial infections and tumor

immunization, in which they delete immature dendritic cells to

prevent excessive inflammation (106, 107). Over the years,

various immunoregulatory mechanisms of NK cells have been

elucidated, including cytotoxic killing of APCs and effector T

cells, activation of Tregs, cell surface receptor signaling, and

cytokine production (108, 109). NK cells can inhibit the

alloimmune response by killing donor DCs using perforin and

granzyme, suppressing downstream activation of host

alloimmune CD8+ T cells (110, 111). They have also been shown

to delete recipient DCs to prevent presentation of allograft

antigens (112). Alternatively, they can target activated allogenic

CD4+ and CD8+ effector T cells for cytotoxic killing (113, 114).

Beyond their cytotoxic activity, NK cells may shape the immune

response via cytokine production in response to damaged or

infected cells (115, 116). NK cells can produce IL-10, which

promotes Th2 polarization of inflammation and Treg expansion

(117). They may also activate Tregs in response to TGF-β

signaling in the inflammatory milieu (118, 119). Furthermore,

Deniz et al. found that a subset of NK cells in peripheral blood
frontiersin.org
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monocytes (PBMCs) isolated from healthy human subjects could

suppress CD4+ T cell responses in an antigen-specific manner

via IL-10 secretion (120).

Their immunosuppressive capacity can also be mediated by cell

surface receptor signaling (121–124). Transplant tolerance induced

by costimulatory blockade requires the presence of NK cells and

their expression of the NKG2D receptor, which attenuates IFN-γ

secretion and degranulation (121, 122). NK1.1+ cells in the liver

were found to upregulate NKG2D expression to trigger IL-22

secretion, which then promoted allograft tolerance by limiting

inflammation (123). Similar to NKG2D, lower expression of

CD16 on CD56dim NK cells was associated with decreased

expression of IFN-γ and perforin (124). Finally, NK cells express

killer-like immunoglobulin receptors (KIRs) that bind MHCI

molecules, and a subset of KIRs trigger downstream inhibitory

signaling that suppresses NK cell activity (125). These cell surface

receptors are notably expressed by uterine NK cells during

pregnancy, which are known to regulate inflammation at the

maternal-fetal interface and induce a tolerogenic environment

(126, 127). In the presence of fetal HLA-C2+ cells, KIR2DS1+

uterine NK cells have been shown to promote the expansion of

inhibitory monocytes expressing IDO, activate Tregs, and target

effector T cells for apoptosis (118, 128–130). Furthermore, HLA-

E expression on fetal cells has been shown to suppress NK cells

via signaling through NKG2A (126).

While there are no clinical trials of NK cells in transplantation

to date, correlational data suggests they play a role in allograft

tolerance (124, 131–134). Compared to those with rejection,

tolerized liver transplant patients have elevated numbers of

circulating NK cells (131). In a study of kidney transplant

patients with stable allograft function, CD56dim NK cells

downregulated NKp46 and perforin compared to healthy

controls (124). Patients with operational tolerance no longer

requiring immunosuppression also demonstrated lower CD16

expression on these cells, which was associated with reduced

IFN-γ secretion and cytotoxic activity (124). Downregulation of

CD16 appears to promote tolerance, while upregulation has been

associated with antibody-mediated rejection (124, 132). NK

expression of KIR2DL1 and KIR3DL1, two subtypes of inhibitory

KIRs, was ubiquitous in tolerized deceased donor kidney

transplant patients, and the absence of both plus their cognate

HLA ligands was associated with a heightened risk of chronic

rejection, suggesting they may play an important role in

tolerance induction (124, 133). Finally, a subset of these cells

termed regulatory NK cells are though to suppress the

alloimmune response through similar mechanisms as the uterine

NK cells described above (135, 136). These regulatory NK cells

express CD16 and/or CD56 and secrete perforin, granzyme, IFN-

γ, and IL-10 (134). Indeed, such cells have been detected in the

blood of renal transplant patients after achieving stable, durable

allograft function (134). Based on the immunosuppressive

properties of NK cells and available correlational data in

transplant populations, the capacity of NK cells to inhibit

alloimmunity has been investigated in preclinical models, which

we summarize in the next section.
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2.5. Innate lymphoid cells

Innate lymphoid cells (ILCs) are a family of lymphoid cells that

play important roles in both homeostasis and disease (137–142).

They are found in various tissues throughout the body but are

particularly enriched at mucosal barriers (143–150). Following

their activation by lipid mediators, alarmins, or neuropeptides,

ILCs regulate inflammation and adaptive immunity at these

barriers (142, 151). The ILC family encompasses NK cells and

three subtypes of ILCs: group 1 (ILC1), group 2 (ILC2), and

group 3 (ILC3). ILC1s, ILC2s, and ILC3s can be distinguished

based on their transcription factor, cytokine, and cell surface

marker expression, and are functionally homologous to the Th

subsets of the adaptive immune system (152–154). ILC2s are

defined as lineage− CD127+ c-kit+ Sca1+ ST2+ GATA3+ cells

(154). They have been extensively studied in allergic airway

inflammation and helminth infections, in which they promote a

type 2 inflammatory response (143–146, 148, 155). They have

garnered particular attention, however, as a potential therapeutic

target for preventing or treating allograft rejection based on their

newly characterized roles in tissue repair, suppression of

damaging type 1 inflammation, and induction of other

immunosuppressive cells (146, 154, 156–164).

ILC2s regulate the immune response through the production of

soluble proteins and direct cell-cell interactions, as seen in

Figure 4. They interact with T cells, firstly through the

production of various effector cytokines, including IL-4, IL-5,

and IL-13, to promote type 2 inflammation (143–146, 148, 155).

As early and potent sources of these cytokines, ILC2s recruit and

activate Th2 helper T cells to sites of inflammation, stimulating a

positive feedback loop and suppressing more damaging Th1 and

Th17 inflammation (165, 166). Like other innate immune cells

described in this review, ILC2s can activate Tregs through the

production of amphiregulin and direct cell contact, including

signaling through inducible co-stimulator (ICOS)/IOCS ligand

(ICOSL) and GITR/GITRL binding (160, 163, 167). In various

cancers, ILC2s have been found to inhibit the anti-tumor

immune response by promoting the infiltration and activation of

MDSCs via IL-13 signaling (159, 168, 169). They have also been

shown to stimulate and maintain M2 macrophages in inflamed

tissues, which are less inflammatory than their M1 counterparts,

through IL-5 and IL-13 signaling (157, 161).

Finally, ILC2s play a protective role in tissue repair,

proliferating in response to alarmins, such as IL-33 and IL-25,

released by the damaged epithelium after tissue injury or

ischemia (154, 164, 170, 171). ILC2s subsequently upregulate

their signature cytokines and amphiregulin, the latter of which

controls the expansion and differentiation of various cell types

through epidermal growth factor receptor signaling, to promote

repair of the damaged epithelium (146, 172). To further support

their potential role in solid organ transplantation, recent studies

have illustrated that ILC2s attenuate IRI through M2 macrophage

activation by IL-4, IL-13, or amphiregulin (164, 173).

There is limited correlational data regarding ILC2s in

transplant patients, with one single-center cohort study
frontiersin.org

https://doi.org/10.3389/frtra.2023.1067512
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


FIGURE 4

Immunosuppressive mechanisms of ILC2s. ILC2s express ICOS and activate Tregs by binding their cognate ICOS-L. They secrete amphiregulin, which
activates Tregs and M2 macrophages. ILC2s produce IL-4, IL-5, and IL-13, which then stimulate MDSCs, M2 macrophages, and Th2 helper T cells,
promoting a Th2 polarized inflammatory response.
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demonstrating an inverse relationship between the number of

ILC2s in lung allografts following reperfusion and the risk of

primary graft dysfunction (174). While they are the least

extensively studied cell type in this review and will require

further investigation to elucidate their role in solid organ

transplantation, a few preclinical studies have shown that ILC2s

can be expanded in vitro and adoptively transferred to shape the

alloimmune response. These studies will be covered in the next

section.
3. Engineering tolerance and the
development of innate immune
cellular therapeutics

Based on the immunosuppressive properties of these innate

immune effector cells in vivo, they have been proposed as

therapeutic targets either to reduce reliance on

immunosuppressive drugs or modulate peripheral tolerance

through interactions with other immunoregulatory cells. As they

are generally not present in sufficient numbers during the
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alloimmune response, however, they require stimulation or

modulation ex vivo to exert robust immunosuppressive effects. In

this section, we summarize preclinical studies applying in vitro-

generated innate immune cells to models of transplantation, as

well as clinical trials that have been conducted in transplant

patients to date.
3.1. Myeloid-derived suppressor cells

MDSCs develop from immature myeloid cells in response to

signals of chronic inflammation, including granulocyte colony-

stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), TNF-α, IFN-γ, TGF-β,

lipopolysaccharide (LPS), CXCL-1/2, IL-2, and IL-6 (8, 9, 18,

175–179). Previous work has demonstrated that MDSCs can be

induced in vitro from human bone marrow precursors cells in

the presence of IL-6, GM-CSF, and G-CSF (179). Their

subsequent immunosuppressive capacity, however, varies based

on the cytokines used, with the greatest effect observed with

combination GM-CSF and IL-6 treatment (179).
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MDSCs have been shown to delay allograft rejection in

multiple animal models, as summarized in Table 1. As

mentioned above, activated MDSCs have been generated in

culture using cytokines such as IL-6, G-CSF, and GM-CSF or

induced in vivo with G-CSF or IL-33, both of which promoted

skin allograft tolerance (36, 40, 175, 179–184). MDSCs generated

in vitro with GM-CSF and IL-6 successfully delayed

islet allograft rejection up to 200 days through CD8+ T cell

suppression and NO production, the latter of which promoted

antigen-specific Treg expansion and migration to lymphoid

organs near the allograft (26, 37, 179). Lastly, MDSCs prolonged

the survival of vascularized allografts in rodents following

adoptive transfer or induction with agents such as IL-33 and

anti-CD40L monoclonal antibody for co-stimulation blockade

(14, 185, 186).

There are no clinical trials of MDSCs in transplant patients to

date. While it remains unclear why they have not been pursued

more aggressively as cellular therapeutics in these patients, the

inherent challenges of generating immature immune cells, such

the risk of differentiation once removed from artificial culture

conditions and difficulties tracking their reconstitution in vivo,

are likely contributing factors. Additional studies examining

methods to expand these cells in vivo may yield more durable

results.
3.2. Human monocyte-derived suppressor
cells

Several studies have described the anti-inflammatory effects

of human monocyte-derived suppressor cells (HuMoSCs) in

murine models of graft-versus-host disease (GVHD) (187–189).

HuMoSCs share many features with human M-MDSCs, as they

are generated in vitro from PBMCs in the presence of GM-CSF

and IL-6 and are defined as CD11b+ CD14+ CD33+ cells, but

notably differ based on the former’s high expression of HLA-DR

(189). Using a xenogenic model of GVHD in which human
TABLE 1 Studies of MDSCs in animal models.

Organ Species Source Induction Agent(s) Ad

Skin Mouse Recipient (36, 40,
175, 180–183)
Donor (36)

G-CSF (182)
GM-CSF (175, 181)
M-CSF (36, 180)
IL-6 (175, 181)
IL-33 (183)
IFN-λ (36)
LPS (40, 175)
TNF-α (180)

N/A

Islet Mouse Recipient (26, 37,
179)

G-CSF (179)
GM-CSF (37, 179)
IL-4 (37)
IL-6 (179)
Hepatic stellate cells (26, 37)

N/A

Heart Mouse Recipient (14, 184,
185)

IL-33 (184)
Ethyl-carbodiimide treated
donor splenocytes (185)

anti-C
mAb (

aExperimental versus control, days.
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PBMCs were injected into immunocompromised NSG mice,

Janikashvili et al. demonstrated that concurrent infusion of

autologous HuMoSCs could prevent GVHD and improve overall

survival (189). Interestingly, these HuMoSCs inhibited both

autologous and allogenic effector T cells in vitro and promoted

expansion of CD8+ Tregs in vivo, the former of which is

particularly relevant for targeting donor and recipient T cell

contributions to the alloimmune response (189). In a follow up

study, HuMoSCs retained their immunosuppressive capacity in a

proinflammatory cytokine milieu and demonstrated an enhanced

survival benefit in GVHD with the concurrent administration of

cyclophosphamide (187). Given difficulties generating large

numbers of HuMoSCs in vitro due to limited yield from PBMCs

with existing protocols, administration of their culture

supernatant as a therapeutic was trialed and found to alleviate

xenogenic GVHD in mice, thought to be mediated by various

immunosuppressive proteins including IL-1RA, GPNMB, and

galectin-3 (188). Together, these studies support the feasibility of

generating immunosuppressive myeloid cells from human

PBMCs and the efficacy of the cells themselves or their products,

which is encouraging for such application of HuMoSCs and

MDSCs (187–189).
3.3. Regulatory dendritic cells

While the optimal method for generating stable regDCs

remains a subject of debate, they are commonly induced in vitro

from bone marrow cells in rodents and PBMCs in human

subjects by culturing with GM-CSF with or without IL-4,

followed by an anti-inflammatory or immunosuppressive agent

to arrest further maturation (49, 69, 190–197). Such agents

include anti-inflammatory cytokines (such as TNF-α, TGF-β, or

IL-10), immunosuppressive drugs (such as mycophenolate,

rapamycin, or corticosteroids), vitamins (such as vitamin D3 or

retinoids), or tissue factors (such as vasoactive intestinal peptide

or hepatocyte growth factor) (49, 69, 190–197).
juncts Mean or Median
Allograft Survivala

Mechanism Ref

45 vs. 23.5 (181)
40 vs. 16 (182)

HO-1 (40)
iNOS (36, 180)
IL-10 (40)
Treg expansion (181)
Effector T cell
apoptosis (181)
T cell anergy (182)

(36, 40, 175,
180–183)

N/A C-EBPβ (179)
iNOS (37)
Activation of Tregs
(26)

(26, 37, 179)

D40L
14)

29 vs. 9 (184) IDO (185)
iNOS (14, 185)

(14, 184, 185)
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The immunoregulatory properties of regDCs were first

investigated in other inflammatory conditions, particularly

autoimmune disorders following the observation that deletion of

DCs induces spontaneous autoimmunity in mice (48, 190, 198).

Preclinical studies demonstrated a protective role for in vitro-

generated regDCs in such diseases, including rheumatoid arthritis

and Crohn’s disease, and more recently their short-term safety and

efficacy were supported in clinical trials of patients with these

disorders, type 1 diabetes mellitus, and multiple sclerosis (199–206).

RegDCs also attenuated GVHD following bone marrow

transplantation in mice (190). Based on these findings, multiple

studies have investigated donor-derived regDCs in preclinical

transplant models, as summarized in Table 2 (193, 207–216).

Preoperative or postoperative administration of a single dose of

donor-derived regDCs prolonged heart allograft survival beyond

100 days in mice and rats, with these regDCs inhibiting T cell

responses both in vitro and in vivo (207, 208). Interestingly, Lan

et al. observed that the effects of regDCs could be potentiated

with concurrent administration of CTLA-4 immunoglobulin (Ig),

further delaying allograft rejection, while Bohnam et al. described

similar results after genetically modifying regDCs to express

CTLA-4 Ig (209, 210). Additional studies demonstrated a

synergistic effect between regDCs and low dose
TABLE 2 Studies of regDCs in animal models.

Organ Species Source Induction
Agent(s)

Adjuncts

Skin Mouse Recipient GM-CSF N/A

Islet Mouse Recipient (193,
217)

1, 25(OH)2D3 (193)
GM-CSF (217)

MMF (193)
anti-CD3 Ab (2

Rat Recipient GM-CSF
IL-4

ALS

Heart Mouse Donor (207, 209–
212, 219)
Recipient (220)

GM-CSF (207, 210–
212, 219, 220)
IL-4 (207, 211, 212,
220)
IL-10 (209)
TGF-β (209–212)
Rapa (220)

CTLA-4 Ig (209
210, 219)
anti-CD40L mA
(211, 212)
anti-ICAM mAb
(219)
FK506 (220)

Rat Donor (208, 221,
222)
Recipient (62,
223–225)

GM-CSF (62, 208, 221–
225)
IL-4 (221–225)
Dex (222)

ALS (221, 223)
CSA (222)
CTLA-4 Ig (222
Rapa (225)
LF 15-0195 (225

Kidney Rat Donor GM-CSF
IL-4
Dex

CTLA-4 Ig
CSA

Rhesus
macaque

Donor (215, 216)
Recipient (226)

1, 25(OH)2D3 (215,
216, 226)
IL-4 (226)
IL-10 (215, 216, 226)
GM-CSF (226)

CTLA-4 Ig (215
216, 226)
Rapa (215, 216,
226)

CTA Rat Donor (213)
Recipient (214)

GM-CSF (213)
Rapa (213)
Cell-free donor spleen
lysate (213)
IL-10 (214)

CSA (213)
ALS (213)
FK506 (214)

ALS, anti-lymphocyte serum; CSA, cyclosporine; Dex, dexamethasone; MMF, mycoph
aExperimental versus control, days.
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immunosuppression in prolonging cardiac and renal allograft

survival (211, 212, 217–219). Furthermore, donor-derived regDCs

have successfully induced tolerance of rodent renal and

composite tissue (CTA) allografts with standard-of-care

immunosuppressants (193, 213, 214, 218). Donor-derived regDCs

were then investigated in non-human primates (NHPs), with a

single infusion of cells extending allograft survival nearly

threefold to a median 113.5 days (from 39.5 days in controls)

following MHC-mismatched kidney transplantation in rhesus

macaques with minimal immunosuppression (216). Of note,

these regDCs were found to have no adverse effects and induced

substantial donor-specific memory T cell exhaustion (215, 216).

Given that donor-derived regDCs would be largely limited to

use in living donor transplants and could cause sensitization,

additional efforts have been dedicated to developing recipient-

derived (or autologous) regDCs as cellular therapeutics

(220–227). Autologous regDCs pulsed with donor allopeptides

were found to delay islet, cardiac, and CTA rejection in rodents,

likely through the indirect allorecognition pathway (220–222).

As seen with donor-derived regDCs, the effects of autologous

regDCs could be potentiated by an adjunct, as Baas et al.

described superior islet allograft survival with concurrent anti-

CD3 antibody administration (221, 222). Autologous regDCs
Mean or Median
Allograft Survivala

Mechanism Ref

31 vs. 23.5 T cell anergy (181)

17)
> 70 vs. 23 (193)
77.4 vs. 19.6 (217)

Activation of Tregs (193)
Treg expansion (217)

(13, 193)

> 200 vs. 10.3 Acquired thymic tolerance via
indirect pathway

(218)

,

b

> 100 vs. 8 (207)
29 vs. 11.1 (209)
71 vs. 10 (210)
77 vs. 12 (211)
> 100 vs. 20 (219)
46.8 vs. 9.1 (220)

IL-10 (209)
T cell anergy (207, 211, 219,
220)
Inhibition of T cell
proliferation (209)
Apoptosis of effector T cells
(210, 212)
Treg expansion (209)

(207, 209–212,
219, 220)

)

)

> 100 vs. 10.2 (223)
16.5 vs. 6 (224)
100 vs. 6 (225)

HO-1 (62)
T cell anergy (221)
Activation of Tregs (222)
Acquired thymic tolerance
via indirect pathway (223)
iNOS (224)

(62, 82, 208,
221–224)

N/A Treg expansion (222)

, 113.5 vs. 39.5 (216)
56 vs. 39.5 (226)

Memory T cell exhaustion
(215, 216)
Effector T cell exhaustion
(226)
Suppression of Th17
inflammatory response (226)

(215, 216, 226)

98.5 vs. 10 (213)
46.7 vs. 5 (214)

T cell anergy (213)
IL-4 (214)
IL-10 (213, 214)

(213, 214)

enolate mofetil; FK506, tacrolimus; Rapa, rapamycin; 1, 25(OH)2 D3, vitamin D3.
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promote tolerance in an antigen-specific manner by inducing anergy

of alloreactive T cells and proliferation of Tregs in vivo in various

transplant models, while syngeneic regDCs without alloantigen

exposure delay rejection in a non-specific manner through NO

production (224–226). Furthermore, allopeptide-pulsed autologous

regDCs led to modest delays in MHC-mismatched renal allograft

rejection in NHPs to 56 days (from 39.5 days in controls with no

infusion and 29 days with naïve regDC infusion) in an HO-1-

dependent manner (62, 227).

RegDCs are undergoing investigation in a few transplant

clinical trials (228). The ONE Study (NCT02252055) tested

multiple regulatory cell products in living donor renal transplant

recipients in seven separate study arms, with one arm

investigating one-time infusion of non-pulsed autologous regDCs

one day prior to transplantation followed by standard-of-care

immunosuppression (228). In this phase 1/2 trial, aggregate

analysis demonstrated these regulatory immune cell products,

including regDCs, were safe, feasible, associated with fewer viral

infections, and led to successful weaning of immunosuppression

in many participants at one year post-transplant (228). Phase 1/2

clinical trials of donor-derived regDCs in living donor kidney

and liver transplant patients are ongoing at the University of

Pittsburgh (NCT03726307, NCT03164265). Similar to the ONE

Study, investigators will attempt to wean immunosuppression in

these patients starting at six months post-transplant in the

absence of rejection (228). Additional studies and clinical trials

will clearly be needed to compare the efficacy of donor- and

recipient-derived regDCs, the optimal dosing and timing of

administration, and their long-term effects in transplant patients.
3.4. Regulatory macrophages

Mregs may be generated from bone marrow precursors or

PBMCs in vitro following the activation of two signals. The first

signal initiates the polarization of monocytes to monocyte

macrophages, which then activate Mregs, and can be triggered by

agents such as growth factors [including GM-CSF and macrophage

colony-stimulating factor (M-CSF)], apoptotic cells, and

glucocorticoids (78, 87, 229–232). With the second signal, Mregs

are directly activated by TLR ligands and cytokines, which leads to

downregulation of inflammatory factors and upregulation of

inhibitory factors (95, 233–235). Mregs have been successfully

generated from PBMCs in culture using M-CSF, human serum, and

a brief 24-h pulse of IFN-γ, and while this approach has been

utilized in clinical trials with renal transplant patients, their optimal

induction method remains unclear (86, 92).
TABLE 3 Studies of Mregs in animal models.

Organ Species Source Induction Agent(s) Adjuncts
Heart Mouse Donor M-CSF, IFN-γ Rapa, MMF

CTA Rat Donor M-CSF, IFN-γ N/A

Lung Pig Donor M-CSF, IFN-γ MP, FK506, preoperativ

FK506, tacrolimus; MMF, mycophenolate mofetil; MP, methylprednisolone; Rapa, rapa
aExperimental versus control, days.
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Mregs have been shown to delay allograft rejection in multiple

preclinical models, as demonstrated in Table 3 (55, 83, 181, 236–

243). Firstly, CSF1 treatment attenuates GVHD following bone

marrow transplantation in mice through the expansion of

recipient Mregs that inhibit allogenic donor T cell responses

(236). Subsequent adoptive transfer experiments demonstrated

preoperative donor-derived Mreg infusion delays rejection of

skin, CTA, and heart allografts, the latter in an iNOS-dependent

fashion enhanced by concurrent rapamycin administration (83,

181, 240, 243). In contrast to regDCs discussed above, only

donor-derived Mregs are effective in delaying rejection, with no

benefit observed with autologous Mregs (55, 83). In heart

transplant recipients treated with anti-CD40L mAb costimulatory

blockade, allograft tolerance was associated with enhanced

migration of Ly6Chi monocytes to the graft, which then

differentiated to Ly6Clo Mregs that secreted IL-10 in response to

DC-SIGN or TLR4 signaling (237–239). In a porcine lung

transplant model, donor-derived Mreg infusion did not prolong

allograft survival, perhaps due to an insufficient dosage of cells

(241). Finally, in vitro studies found that human Mregs can

suppress the xenogenic immune response to porcine cells in an

IDO-dependent manner, suggesting a potential role for these

cells in xenotransplantation (242).

Mregs are the most extensively studied innate immune cells in

transplant clinical trials (86, 228, 244–247). They were first

investigated in the phase 1 Transplant Acceptance-Inducing Cell

trial I (TAIC-I) in which deceased donor kidney transplant patients

received one infusion of donor-derived Mregs on postoperative day

five (244). No adverse effects were reported and two patients

successfully weaned from standard immunosuppression, but the

therapeutic benefit of these cells could not be clearly discerned (244,

245). TAIC-I was followed by several small phase 1 trials of

preoperative Mreg administration in living donor kidney

transplantation at various time points, with six out of eight patients

transitioning to tacrolimus monotherapy without eliciting rejection

(86, 246, 247). Of the two remaining patients, one was undergoing

living-related kidney transplant against which he was already

sensitized but was subsequently transitioned to low dose tacrolimus

and prednisolone with no rejection episodes (247). Interestingly, at

eight weeks postoperatively, he was found to be hyporesponsive to

his donor on mixed lymphocyte reaction and had resolved his

donor-specific antibodies, which remained absent through the 53

week follow up period (247). As previously mentioned, the ONE

Study (NCT02085629) investigated various regulatory immune cells

in living donor renal transplant patients, with one arm dedicated to

donor-derived Mregs (228). Administration of these cells, including

Mregs, led to no adverse events and was associated with a reduction
Mean or Median Allograft Survivala Mechanism Ref
66.3 vs. 8.7 iNOS (83)

7.7 vs. 5.7 N/A (240)

e XRT 307 vs. 92 N/A (241)

mycin; XRT, preoperative radiation therapy.
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in post-transplant viral infections and successful weaning of

immunosuppression (228). Overall, significant preclinical and early

clinical trial data suggest donor-derived Mregs may be harnessed to

prevent rejection in solid organ transplant patients.
3.5. Natural killer cells

In the setting of transplantation, NK cells have been found to

participate in both rejection and tolerance, likely due to the distinct

functions of their various subsets or differentiation states (248).

Despite these mixed findings, several preclinical studies support a

role for NK cells in inducing allograft tolerance (110, 111, 113, 121–

123, 249, 250). Firstly, NK cells were shown to attenuate the

severity of GVHD in mice by suppressing activated alloreactive T

cells, mediated by perforin and FasL signaling (249). As mentioned

in the prior section, several studies have found that tolerance

induction by costimulatory blockade is dependent on NK cells (121,

122). Various functions of NK cells have been implicated in this

phenomenon, including perforin secretion in an islet allograft model

and NKG2D receptor signaling in a heart allograft model (121,

122). Additionally, NK cells were shown to delay skin graft rejection

through cytotoxic killing of donor-derived APCs, which would

otherwise activate host alloimmune T cells (110, 111). NK cells also

delayed rejection of murine skin grafts by suppressing alloimmune

T cell responses directly, either through competition for shared

growth factors or cytotoxic killing (113, 250). Finally, upregulation

of the NKG2A receptor in NK cells following islet transplantation

stimulated secretion of IL-22, which attenuated inflammation and

prolonged allograft survival (123). These studies are summarized in

Table 4.

Finally, with recent advances in genetic modification of

immune cells, chimeric antigen receptor (CAR)-NK cells have

been developed as novel therapeutics for advanced malignancies

resistant to standard treatment (251, 252). Unlike CAR-T cells,

CAR-NK cells can be generated from individuals other that the

recipient without the risk of GVHD and have not been

associated with common side effects of the former, such as

neurotoxicity or cytokine release syndrome (253–255). These
TABLE 4 Studies of NK cells in animal models.

Organ Species Source Induction Agent(s) Adjunct

Skin Mouse Recipient Depletion with anti-NK1.1
mAb (110, 111, 250)
Perforin knockout (110, 113)

CTLA-4 Ig (1
113)
Anti-CD40L m
(111)
Anti-OX40L m
(111)
Anti-gp39 mA
(113)

Islet Mouse Recipient (121,
123)

Depletion with anti-NK1.1
mAb (121)
Perforin knockout (121)

Anti-CD40L m
(121)

Heart Mouse Recipient anti-NKG2D Ab CTLA-4 Ig

aExperimental versus control, days.
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features are promising for their application as “off-the-shelf”

cellular products and with greater understanding of the inherent

immunosuppressive features of these cells, we imagine such

engineered NK cells may be explored as therapeutics to prevent

or treat rejection in the coming years. In summary, preclinical

studies suggest a subpopulation of NK cells can modulate the

alloimmune response to promote allograft tolerance, and recent

advances in immunotherapy support the feasibility and efficacy

of engineered NK cells as therapeutics.
3.6. Innate lymphoid cells

Preclinical studies investigating ILC2s in transplantation are

limited to date, as summarized in Table 5. Bruce et al. found

that adoptive transfer of activated ILC2s attenuated the severity

and mortality of GVHD in mice, as they migrated to the

gastrointestinal tract to improve barrier function and recruited

MDSCs to suppress inflammation (256). Perhaps most exciting,

Huang et al. demonstrated that systemic IL-33 treatment or

infusion of IL-33-primed ILC2s could significantly delay rejection

of islet allografts with major antigen mismatch via IL-10

secretion (257). The efficacy of IL-33 treatment was dampened

following depletion of Tregs, which themselves are stimulated by

IL-33 and have been shown to delay allograft rejection in other

transplant models (185, 257–260). Furthermore, IL-33 is also

known to activate MDSCs to delay heart allograft rejection in

mice, which was not investigated by the authors (185, 257).

Donor-derived ILC2s activated by IRI were recently shown to

enhance eosinophil recruitment to the allograft following lung

transplantation, leading to reduced T cell infiltration and

attenuating rejection at seven days post-transplant (261). Of note,

this axis was dependent on donor ILC2s, rather than infiltrating

recipient ILC2s, suggesting additional work will be required to

differentiate the roles of donor and recipient ILC2s in other

transplant models (261). These studies are reviewed in Table 5.

Overall, our current understanding of ILC2s suggests they may

be capable of inhibiting the alloimmune response and preventing

allograft rejection through multiple pathways, including
s Mean or Median
Allograft Survivala

Mechanism Ref

10,

Ab

Ab

b

> 80 vs. 16 (113)
15 vs. 12 (250)

Cytotoxic killing of donor
APCs (110, 111)
Cytotoxic killing of effector T
cells (113)
Inhibition of cytotoxic CD8+

T cells (250)

(110, 111,
113, 250)

Ab N/A Perforin (121)
Upregulation of NKG2D
(123)
IL-22 (123)

(121, 123)

47.5 vs. 22.5 NKG2D signaling (122)
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TABLE 5 Studies of ILC2s in animal models.

Organ Species Cell
Source

Induction Agent
(s)

Adjuncts Mean or Median Allograft
Survivala

Mechanism Ref

Islet Mouse Recipient IL-33, IL-2 complex N/A N/A IL-10 (256)

Lung Mouse Donor IL-33 CSA/MP N/A IL-5 mediated eosinophil
recruitment

(257)

CTLA-4 Ig

Anti-CD40L
mAb

CSA, cyclosporine; MP, methylprednisolone.
aExperimental versus control, days.
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stimulating tissue repair, secreting anti-inflammatory cytokines,

and activating other immunosuppressive cells (146, 154, 156–

164). Additional investigation, however, is clearly needed to

characterize the functions of ILC2s in different tissues, their roles

when derived from donor versus recipient, and their long-term

effects in human transplant patients.
4. Discussion

Preclinical and clinical studies performed to date investigating the

therapeutic potential of innate immune cells to prevent or treat

allograft rejection are encouraging. Infusion of MDSCs, HuMoSCs,

regDCs, Mregs, NK cells, and ILC2s may eventually reduce or replace

the need for non-specific, chronic immunosuppression, with early

clinical trials of Mregs and regDCs demonstrating successful weaning

in some patients (86, 228, 244, 246). Many questions, however, remain

regarding their use, including the most appropriate dosing range,

timing, and frequency of administration. Weekly adoptive transfers of

MDSCs, for example, led to superior allograft survival than a single

administration following skin transplantation in mice (175). Mreg

infusion has been trialed both preoperatively and postoperatively in

small clinical studies of kidney transplant patients, with no clear

conclusion yet as to the best strategy (86, 244, 246, 247).

Furthermore, additional studies are needed to elucidate the

optimal source of these cells. While only donor-derived Mregs

promote tolerance, both donor- and recipient-derived regDCs have

been utilized effectively in animal models (55, 83, 207, 208, 220,

224, 225). Given the breadth of signals that drive the proliferation

and maturation of these cells, it will be necessary to determine the

optimal conditions for their induction in vitro, as has been

investigated for MDSCs and Mregs to some extent (85, 86, 92, 179).

Given that these cells are known to interact with each other and

other immunosuppressive cells, whether infusion of multiple cell

types potentiates their effects in vivo warrants further investigation

as well (14, 26, 64–67, 159, 168, 169). Similarly, some studies have

demonstrated greater efficacy of these cells when administered with

an adjunct, such as CTLA-4 Ig with regDCs and rapamycin with

Mregs, which should be explored further (83, 209, 210).

Finally, recent studies suggest that innate immune cells may be

targeted in vivo to promote transplant tolerance by stimulating or

inhibiting various signaling pathways, including microRNA

(miRNA) and purinergic signaling (262–265). Usuelli et al. found

that suppression of miRNA-21 prevented allograft rejection and

chronic allograft vasculopathy in a murine model of cardiac
Frontiers in Transplantation 12
transplantation by promoting M2 polarization in infiltrating

macrophages (262). Conversely, other groups have shown that

miRNA-22 is critical for the development of functional MDSCs

and M2 macrophages following CSF1R signaling (263, 264).

Additional work will be needed to elucidate the roles of these

various soluble factors and signaling pathways in the alloimmune

response, and to determine which pathways could be selectively

targeted with novel therapeutics in these various regulatory

innate immune cells to promote tolerance.

Large scale clinical trials will be necessary to answer these

questions prior to the widespread implementation of innate

immune cells as therapeutics in transplantation. Long-term follow

up will be critical to characterize any adverse events or unintended

consequences of these cells over time, such as possible fibrosis

associated with prolonged ILC2 activation (266, 267). Overall,

innate immune cells represent a promising new therapeutic strategy

to induce tolerance following solid organ transplantation and we

look forward to their translation to clinical practice.
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