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In light of ongoing shortage of donor organs for transplantation, alternative
sources for donor organ sources have been examined to address this supply-
demand mismatch. Of these, xenotransplantation, or the transplantation of
organs across species, has been considered, with early applications dating back
to the 1600s. The purpose of this review is to summarize the early experiences
of xenotransplantation, with special focus on heart xenotransplantation. It aims
to highlight the important ethical concerns of animal-to-human heart
xenotransplantation, identify the key immunological barriers to successful long-
term xenograft survival, as well as summarize the progress made in terms of
development of pharmacological and genetic engineering strategies to address
these barriers. Lastly, we discuss more recent attempts of porcine-to-human
heart xenotransplantation, as well as provide some commentary on the current
concerns and possible applications for future clinical heart xenotransplantation.
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Introduction: the current problem

Heart transplantation remains the optimal solution for select patients with advanced

end-stage heart failure (1). Approximately 4,000–5,000 heart transplants are performed

worldwide annually (2). Currently, the number of potential heart transplant recipients

greatly outweighs the number of available donors. Although the number of annual

transplants has increased in recent years, this number is still primarily limited by the

availability of donor organs. To address the growing donor-recipient mismatch, numerous

efforts have been focused on both expanding the available human heart donor pool, as

well as developing mechanical technologies to aid and/or replace the human heart.

In order to expand the current human donor pool, several methods have been adopted,

which are summarized in Table 1. These methods include the use of organs from donors

outside of the conventional norms of practice, as well as those with hepatitis C (3–6). In

addition to these efforts to expand the current pool, recent perfusion technologies and

strategies (7, 8) have re-ignited interest in the use of donation after circulatory death

(DCD) hearts, a source that had since long been abandoned in the early years of

transplantation, but has shown promising results in recent history (9–11).

Due to the inconsistency and relative shortage of human donor organs, long-term

mechanical heart assistance and replacement have been of great interest. The most

successful and widely adopted form of durable mechanical support has been the left

ventricular assist device (LVAD). Since early development, these devices have evolved
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TABLE 2 Early solid organ xenotransplants.

Surgeon Number of
transplants

Source
animal

Year(s) Longest
xenograft/

TABLE 1 Recent efforts to expand the current human cardiac donor pool.

Use of extended criteria donors

Age >50 years

Left ventricular ejection fraction <50%

Predicted ischemic time >4 h

Presence of left ventricular hypertrophy (>1.2 cm)

Presence of coronary artery disease

Utilization of donors with hepatitis C

Donation after circulatory death

Direct procurement

Thoracoabdominal normothermic regional perfusion
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from a para-corporeal design to a fully implantable one (12). LVAD

therapy has been shown to not only improve life expectancy, but

quality of life in patients with advanced heart failure over

medical therapy alone (13, 14). While newer generations of

LVADs are able to support patients for longer periods of time

with fewer device-related complications (15), they continue to

have significant shortcomings. These include increased risk of

stroke, gastrointestinal bleeding, dependence on anticoagulation,

and risk of infection due to an externalized driveline and power

source. Because they are designed to support only the left

ventricle, they are not ideal for candidates with concomitant

right ventricular failure. Total artificial heart devices have been

developed for biventricular support (16, 17); however, past

results have been disappointing. A newer generation of total

artificial heart systems are currently in development (18), but it

remains to be seen if these devices can achieve outcomes

comparable to those of replacement with living human heart tissue.

Despite our best efforts to expand human donor organ sources,

the number of available organs pale in comparison to the number

of patients who may benefit from heart transplantation. In the

absence of effective mechanical solutions to total heart

replacement, man must look to organ sources beyond those of

fellow man, and to perhaps those of fellow beast. If made

possible, animal-to-human heart xenotransplantation may offer

several advantages over human-to-human allotransplantation.

Most importantly, xenotransplantation would provide a

consistent, predictable source of donor organs and alleviate the

current shortages and selection restraints faced by transplanting

centers and waitlisted candidates alike. In addition, an elective

xenograft harvest would avoid the harmful effects of brain death

on transplanted organs, and organ sources could be regulated

insomuch to ensure harvested organs are free from exogenous

disease and blood-borne pathogens (19). In this report, we

describe the early attempts of non-human-to-human organ and

heart xenotransplantation, its major obstacles, and current

advances within the field.

recipient survival

Kidney
Princeteau 1 Rabbit 1905 Kidney non-viable,

child died
postoperative day 16

Jaboulay 2 1 pig 1906 Early graft failure, graft
removed on day 31 goat

Unger 1 Monkey 1910 Early graft failure

Hitchcock 1 Baboon 1963 Graft failure at 4 days

Reemtsma 6 Chimpanzee 1964 9-month survival of
one recipient

Starzl 6 Baboon 1964 49 days

Liver
Starzl 3 Chimpanzee 1966–1974 14 days

Starzl 2 Baboon 1992–1993 70 days

Heart
Hardy 1 Chimpanzee 1964 Immediate graft failure

Ross 1 Pig 1968 Immediate failure

Cooley 1 Sheep 1968 Immediate failure

Barnard 2 (heterotopic) 1 baboon 1977 4 days

1 chimpanzee

Bailey 1 Baboon 1984 20 days
Early xenotransplantation

Xenotransplantation has been conceptualized for at least 300

years, with several attempts over the past few centuries. In the

1600s, Jean-Baptiste Denis, physician to King Louis XIV of

France, experimented with xenotransfusion across species. In

1667, he transfused blood from a lamb into a 15-year-old boy

with a fever (20). That patient went on to recover, and several

xenotransfusions followed in other human recipients. The fourth

patient likely experienced the first documented case of a

transfusion-related acute hemolytic reaction. The patient died,

but it was later determined that his wife had also been poisoning

him with arsenic. Nevertheless, both the French and English

Parliament banned transfusions shortly thereafter, and this ban

remained in place in France for over 200 years.

Early experimental xenotransplantation of various tissues

began in the 1800s. Skin from various animals (sheep, cats,

chickens, frogs, etc.) was used as free or pedicled skin grafts (21).
Frontiers in Transplantation 02
The true success of these early grafts is not well known, as they

may have merely covered and provided protection for skin

ulcerations, which ultimately healed under the xenograft. Pig-to-

human corneal xenotransplantations were also performed in the

1800s (22), more than 60 years before the first human-to-human

corneal allotransplantation in 1905 (23). Few other early

transplants were attempted, including the placement of slices of

either baboon or chimpanzee testicle into human testicles in

order to increase testosterone and reverse the effects of aging in

older men (24). Performed by Serge Voronoff in Paris, France,

these operations likely had no therapeutic benefit, but were

mostly well-tolerated.

Table 2 highlights some of the early clinical solid organ

xenotransplantation attempts. The first kidney

xenotransplantation attempts in human recipients were

performed in the early 1900s. In 1905, Princeteau inserted

pieces of rabbit kidney tissue into the kidneys of a child with

renal failure. However, the child died 16 days later due to

pulmonary complications (25). In 1906, Jaboulay attempted
frontiersin.org
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two kidney xenotransplants using pig and goat kidneys using

vascular anastomoses. In addition, Unger attempted non-

human primate (NHP)-to-human xenotransplantations.

Unfortunately, in the transplants performed by both Jaboulay

and Unger, the renal xenografts experienced early failure due

to vascular thrombosis (25, 26). Short-term success with

kidney xenotransplantation would not be achieved until the

1960s. By this time, human-to-human allotransplantation had

been performed, first unsuccessfully in the 1930s, and then

successfully described in 1954 by Dr. Joseph Murray who

performed a living-donor kidney transplant from one twin

brother to another (27).

During the 1960s, the supply of donor organs was low and

chronic dialysis was not available. Given these circumstances, Dr.

Keith Reemtsma and colleagues at Tulane University looked to

non-human primate sources for donor renal grafts. In his series of

xenotransplant experiments, he performed a total of six transplant

operations, in each case transplanting two kidneys from a

chimpanzee into a human (22, 28). In this first series, published

in 1964, six human recipients with terminal uremia requiring

dialysis received kidneys from chimpanzee donors. The recipients

were treated with pre-transplant azathioprine, actinomycin C, and

steroids. In these operations, an en bloc segment of donor aorta

and inferior vena cava containing the origins of the renal arteries/

veins were anastomosed to the recipient external iliac artery and

vein, respectively. The donor ureters were anastomosed to the

recipient bladder. Most of these xenografts failed in 4–8 weeks,

but one patient survived for 9 months after renal

xenotransplantation. At autopsy, the chimpanzee kidney did not

appear to show signs of rejection, and the patient’s sudden death

was thought to be due to electrolyte derangement, possibly due to

high urine output from the renal xenograft (29). A series of six

baboon-to-human renal xenotransplants were also performed by

Thomas Starzl while at the University of Colorado (30). In this

series, the duration of urine excretion from these xenografts was

10–49 days, with the recipients surviving 19–49 days. Unlike that

of Reemtsma and colleagues, there were no longer-term survivors.

A few other groups from the United States and France attempted

NHP-to-human renal transplant, though these series were very

small (22, 31).

The first NHP-to-human liver xenotransplants were performed

by Thomas Starzl in the 1960s while at the University of Colorado,

utilizing livers from chimpanzees. These first attempts were largely

unsuccessful, with the longest-surviving recipient living for only 9

days (32, 33). In the 1990s, after moving to the University of

Pittsburgh, Dr. Starzl achieved longer-term survival after liver
FIGURE 1

Timeline of significant events in the development of heart xenotransplantatio
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xenotransplantation when he transplanted two baboon livers into

human recipients. In this series, one patient survived 70 days (34).
First cardiac xenotransplantation
efforts

James Hardy performed the first NHP-to-human heart

xenotransplantation in 1964 at the University of Mississippi

Medical Center (35)—3 years before the first human-to-human

heart allotransplant described by Christiaan Barnard (Figure 1).

Before this first transplant, Dr. Hardy had performed preclinical

transplant operations, first in canine models and then in bovine

models, exceeding 200 transplant operations before performing

his first human transplant. At this time, the ethics of brain death,

withdrawal of life support, and organ donation had not been

established in the United States or across the world. Dr. Hardy

postulated that it may take months to even years until the

“perfect” scenario of a hospitalized donor dying of brain damage

would align with a simultaneously hospitalized patient dying of

terminal myocardial failure at the University Hospital. While

awaiting the circumstances for the first human-to-human

transplant, a dry run occurred on January 11, 1964. Human-to-

human allotransplantation was not performed due to a

mistiming of donor and potential recipient circumstances.

Before this “dry run,” Dr. Hardy had spent time in New

Orleans with Dr. Reemtsma to witness his previously described

NHP-to-human kidney xenotransplantation work. Inspired by

this work, he decided to purchase two chimpanzees in

anticipation of a chimpanzee-to-human heart xenotransplant,

should the specific circumstances needed for human-to-human

transplantation not be met for a potential recipient. On 27

January 1964, a 68-year-old man with cardiovascular disease and

left leg gangrene, who had been admitted in a comatose state 2

days prior, became the first human heart transplant recipient.

The patient was actively dying, supported on vasoactive

medications, and without improvement after left leg amputation.

Because it was unlikely that a suitable human donor would be

available in time, they considered chimpanzee-to-human

transplant for this patient. The larger of the two chimpanzees

available at the University was selected, and the team proceeded

with xenotransplantation. Unfortunately, it became clear that the

chimpanzee heart was too small for this human recipient after

the xenotransplant was performed, and that this heart could not

keep up with the recipient’s venous return without significant

distention and need for manual cardiac massage and
n.
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decompression. Ultimately, further support efforts were

abandoned, and the patient died. Histopathological assessment

determined that antibody-mediated rejection was the primary

cause of graft failure (19, 36). The response that followed from

both the public and the medical community ultimately deterred

Dr. Hardy from attempting heart transplantation again. The first

human-to-human heart transplant was then performed in 1967

by Christiaan Barnard in Cape Town, South Africa (37).

Dr. Barnard himself also performed two heterotopic heart

xenotransplantations in 1977 (38). The first recipient was a 25-

year-old woman who underwent prior aortic valve replacement

for severe aortic stenosis. Unfortunately, she experienced

hemolysis from the prosthetic Björk–Shiley valve, and she

underwent reoperation with aortoventriculoplasty and the

insertion of a larger valve. After the reoperation, the patient

experienced post-cardiotomy shock and the inability to separate

from cardiopulmonary bypass despite the addition of intra-aortic

balloon pump. As a salvage maneuver, and in the absence of a

suitable donor, Dr. Barnard performed a heterotopic heart

transplant using a baboon heart. The patient was able to separate

from bypass and was transferred to the intensive care unit.

However, within a few hours, the recipient heart, followed by the

baboon donor heart, both developed ventricular fibrillation and

were not able to be resuscitated after multiple efforts. Dr.

Barnard later addended this first report to describe a second

heterotopic xenotransplant that was performed on October 13,

1977, using a chimpanzee heart. The recipient was a 60-year-old

man who experienced cardiogenic shock and the inability to

wean from mechanical support after an aortic valve replacement.

After heterotopic implantation of the chimpanzee heart, this

patient was weaned from cardiopulmonary bypass and survived 4

days. The heterotopic xenograft experienced a gradual decline in

function over those 4 days. A postmortem examination revealed

evidence of severe rejection (38).

The next primate orthotopic heart xenotransplantation into a

human recipient would later be performed on October 26, 1984,

by Leonard Bailey at Loma Linda University (39). At this time,

donor infant hearts for transplantation were scarce. This recipient,

known as Baby Faye, was a 2.5 kg female infant born at 36 weeks.

She was diagnosed with hypoplastic left heart syndrome, which, at

the time, carried a grave prognosis. The donor for this operation

was a female baboon. Baby Faye was blood type O, Rh positive,

which very rarely occurs in the baboon species (3 of 1,307

baboons tested in a prior report) (40). During the operation, the

neonate was found to have mitral and aortic valve atresia, as well

as a hypoplastic aortic arch. In addition to orthotopic heart

transplantation, Dr. Bailey reconstructed the recipient’s aortic arch

under hypothermic circulatory arrest. After the xenotransplant,

Baby Faye was extubated by post-transplant day 3 and was

documented to have normal-appearing neurologic function and

urine output. She had received an infusion of cyclosporine 38 h

before the transplant, and this continued in the post-transplant

period, and eventually transitioned to an oral regimen. However,

by post-transplant day 14, functional impairment of the xenograft

was documented, with later clinical decline and evidence of acute

graft rejection by post-transplant day 17. Anti-rejection therapy
Frontiers in Transplantation 04
consisting of antithymocyte globulin, azathioprine, and

methylprednisolone was initiated, but unfortunately the patient’s

clinical status continued to deteriorate with accelerated

deterioration in the graft’s function. She died later that evening on

post-transplant day 20. It was postulated that blood type

incompatibility between the donor and recipient may have also

contributed to the rejection of the donor xenograft.

In addition to early heart xenotransplantation attempts using

NHP hearts, several experiments were also performed using the

hearts of non-primate animals (19). Before Christiaan Barnard’s

heterotopic xenotransplant, in 1968 Donald Ross (London, United

Kingdom) performed a heterotopic heart xenotransplant in a 48-

year-old man utilizing a pig as a donor animal (41). The xenograft

experienced immediate hyperacute rejection and failed within

4 min. In another attempt, he perfused a pig heart with an

extracorporeal circuit primed with human blood. This graft also

failed immediately and was never transplanted. Also in 1968,

Denton Cooley attempted an orthotopic implantation of a sheep

heart into a 48-year-old man with ischemic cardiomyopathy in

Houston, Texas (42). The heart xenograft unfortunately

experienced hyperacute rejection and failed in the operating room.

Two other heart xenotransplants were performed in the 1990s in

Sasnoweic, Poland, and Sonapur, India, using pig heart xenografts.

Though little documentation exists of these transplants, they were

reported to function for 23 h and 7 days, respectively (41). Alas, it

became clear that significant immunologic barriers existed between

humans and other animals, especially in non-primate species.
Choosing the ideal animal donor

The ideal animal donor for heart xenotransplantation must

possess several important features. First, the donor animal must be

of adequate size with a heart that can support human circulation.

In addition, it should have a heart that anatomically resembles

that of the human heart, as well as one that is immunologically

compatible. For widespread adoption and utilization of these NHP

hearts, other factors should be considered, such as the ease of

animal breeding and cost of care, reproductive potential of the

animal, and the age at which the animal is mature enough for

heart donation. Other factors, such as the risk of xenozoonosis or

the spread of diseases across species, must also be taken into

consideration. Baboons, as well as other NHPs, share anatomic

and immunologic similarities to humans, and for these reasons,

NHPs were utilized in the first attempts at animal-to-human heart

xenotransplantation. Because of several limitations, including cost

and ethical concerns, widespread utilization of baboons as organ

source animals is problematic. Although the pig possesses a

greater degree of immunological barriers for donation into human

recipients (discussed in the next section), commercial breeding for

organ donation would prove to be far more cost-effective and less

likely to garner ethical scrutiny (22). For these reasons, pigs have

been identified as a possible source of organs for

xenotransplantation. The advantages and disadvantages of using

pigs as source animals for donor hearts are listed in Table 3. In

the following section, we describe the major obstacles and
frontiersin.org

https://doi.org/10.3389/frtra.2023.1125047
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


TABLE 3 Advantages and disadvantages of heart xenotransplantation with
pig source animal over non-human primate.

Advantages Disadvantages
• Low breeding and raising costs
• Higher reproductive potential
• Reproductive and donor maturity
at younger age

• Greater experience with genetic
modification/engineering

• Lower xenozoonosis risk/ability to
raise animals that are “pathogen-
free”

• Less ethical constraints

• Less anatomically similar to human than
NHPs

• Greater degree of immunological barriers
to overcome with genetic modification/
immunosuppression

NHPs, non-human primates.

Hess and Kaczorowski 10.3389/frtra.2023.1125047
advances in xenotransplantation utilizing pigs as a source of organs

for transplantation into humans.
Overcoming obstacles to
xenotransplantation

In order for porcine-to-human xenotransplantation to be

successful, a number of immunological barriers and molecular

obstacles must be overcome in order for the pig heart to survive

in a human body (43). Below are brief summaries of some of

these major barriers, as well as some of scientific advances,

which can also be found in Table 4.
Hyperacute rejection and acute humoral
xenograft rejection

As was observed in Donald Ross’s early first attempt at pig-to-

human xenotransplantation, pig xenografts, when perfused with
TABLE 4 Genetic modifications of pigs used in preclinical xenotransplant mo

Genetic modification

Hyperacute/acute humoral rejection
α1,3-galatosyltransferase knockout Prevention of gal

Cytidine monophosphate-N-acetylneuraminic acid hydroxylase
knockout

Prevention of N-

β-1,4-acetyl-galactosaminyltransferase 2 knockout Prevention of Sda

Inflammation/complement/coagulation dysregulation
Human thrombomodulin expression Cofactor in throm

Human endothelial protein C receptor Membrane protei

Human membrane cofactor protein (CD46) expression Complement regu

Human decay-accelerating factor (CD55) expression Complement regu

Human protein CD47 expression Reduced recruitm

Heme oxygenase-1 expression Protection from o

Human A20 Inhibit tumor ne

Cellular rejection and chronic xenograft vasculopathy
CTLA4-Ig expression Inhibit T-cell-dep

Major Histocompatibility Complex knockouts Surface proteins e

Myocardial overgrowth
Growth hormone receptor knockout Transmembrane

xenograft
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human blood, develop hyperacute rejection similar to that of

human-to-human allotransplants performed across blood types.

This is in part because humans and NHPs possess pre-formed

anti-pig antibodies that bind to the pig vascular endothelium.

This binding triggers the complement cascade, which leads to

thrombosis, interstitial hemorrhage, and ultimately early failure

of the pig xenograft (44, 45). A surface carbohydrate antigen on

the pig endothelium, galactose-α1,3-galatose (Gal) is the

predominant target of these pre-formed antibodies (46). This

carbohydrate is lacking in humans and Old World NHPs, but

present in most other mammals. In humans and Old World

NHPs, this anti-pig (anti-Gal) antibody is believed to develop

within the first few months as a response to the colonization of the

gastrointestinal tract with microorganisms that express this surface

antigen (47). Initial efforts to address the presence of these

antibodies were to deplete the recipient of anti-Gal antibodies

through plasmapheresis, immunoadsorption, or other methods (19).

In addition, another approach was to deplete or inhibit the

recipient’s complement system (48). Instead of instant graft failure,

xenografts could survive days or weeks until the recipient resumed

production of anti-Gal antibodies and/or complement. The

histological appearance of this “acute humoral xenograft rejection”

was similar to that of those that hyperacute rejection.

Genetic engineering has since allowed for a more durable solution

to xenograft hyperacute rejection and acute humoral xenograft

rejection. By 2003, the production of pigs deficient of this

carbohydrate had been made possible through disruption and an

enzyme crucial to its synthesis (α1,3-galatosyltransferase) (49–51).

By blocking the expression of this enzyme, and ultimately the

carbohydrate antigen, pig organs transplanted into NHPs

demonstrated a dramatic decrease in the incidence of hyperacute

rejection (52, 53). In addition, pigs were also engineered to express

human complement regulatory proteins (i.e., CD46 =membrane

cofactor protein; CD55 = decay-accelerating factor; and CD59 =
dels.

Effect

actose- α1,3-galatose (Gal) synthesis and expression

glycolylneuraminic acid (Neu5GC) synthesis and expression

synthesis and expression

bin-induced activation of protein C in anticoagulant pathway

n that enhances activation of protein C in anticoagulant pathway

latory protein

latory protein

ent of T cells, neutrophils, and monocytes in areas of inflammation

xidant-mediated tissue injury

crosis factor mediated apoptosis

endent antibody responses

ssential for the adaptive immune system

receptor for growth hormone. Knockout reduces myocardial overgrowth of cardiac
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membrane attack complex inhibitor protein), which would provide

protection from the NHP recipient’s innate complement system

(54). Simultaneous Gal transferase knockout and expression of

complement regulatory protein, CD55, further protected pig

xenografts from hyperacute rejection and complement activation

that may occur in response to other antigens other than Gal (55).

In addition to Gal, other carbohydrate pig xenoantigens have been

discovered. These include N-glycolylneuraminic acid (Neu5GC) and

Sda. While it is possible many humans do not have antibodies to

pig cells with triple-knockout of the expression of these three

surface antigens (56), baboons may still express additional anti-pig

antibodies (57), highlighting the limitations of a baboon

xenotransplant recipient model.

To further combat antibody-mediated rejection, pre-transplant

depletion of B cells through the use of an anti-CD20 antibody, as

well as the suppression of the CD154 (CD40 Ligand or CD40l)-

mediated B-cell activation have been effective at prolonging

xenograft survival (58–60). The initial attempts at blocking the

CD40-CD154 (CD40 Ligand) costimulatory pathway were

complicated by thrombocytopenia and thrombotic events, as CD154

is also expressed on platelets (61, 62). However, inhibition of the

CD40-CD154 (CD40 Ligand) costimulatory pathway through the

use of a primatized (mouse-rhesus chimeric) anti-CD40 antibody

(2C10R4) that was not associated with consumptive coagulopathy

resulted in the prolonged survival of genetically engineered pig

cardiac xenografts in a heterotopic model (58).
Inflammation and dysregulated coagulation

Transplantation of a pig heart into a NHP results in a

significant inflammatory response in the host animal. This

response is associated with increased levels of tumor necrosis

factor-alpha in the recipient animal (63–66), perhaps related to

ischemia-reperfusion injury (67, 68). Despite the use of

genetically engineered pigs with knockout of Gal and expression

of human complement regulatory proteins, additional thrombotic

phenomena have been noted in xenografts transplanted into

NHP recipients. Both thrombotic microangiopathy and a

systemic consumptive coagulopathy have been observed (69).

While not fully understood, this coagulation dysregulation may

be, at least in part, due to this state of increased inflammation as

well as the recipient animal’s innate immunity (70). This

hypercoagulable state often cannot be mitigated by either the pig

or NHP’s endogenous anticoagulant mechanisms, ultimately

resulting in thrombotic microangiography, graft dysfunction, and

eventual failure. To reduce these thrombotic sequelae, two

mechanisms have been proposed: (1) transgenic expression of

anticoagulant factors and pharmacological anticoagulation; and

(2) a reduction of the inflammatory response.

To reduce the propensity of dysregulated coagulation in pig

xenografts, transgenic expression of human coagulation

regulation proteins, such as thrombomodulin (71–74),

endothelial protein C receptor (75), tissue factor pathway

inhibitor (76), and CD39 (77), have been pursued. To reduce the

inflammatory state associated with xenotransplantation,
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etanercept, an anti-tumor necrosis factor-alpha agent, has been

administered as an anti-inflammatory medication (78, 79). In

addition, genetically engineered pigs that express human

inflammatory regulatory proteins, such as heme oxygenase-1

(HO-1) and human A20, have been developed (80, 81).
Cellular xenograft rejection and chronic
xenograft vasculopathy

Unlike human-to-human heart allotransplantation, acute

cellular rejection has not been a significant cause of xenograft

failure after porcine-to-NHP xenotransplantation. This is likely

because humoral, or antibody-mediated, rejection presents such a

significant barrier to xenotransplantation, and its rapid

development likely results in graft failure before cellular rejection

can occur. Nonetheless, as methods to prevent hyperacute and

acute humoral xenograft rejection improve, prevention of acute

cellular rejection, and ultimately chronic xenograft vasculopathy,

will be required to ensure the long-term functionality of

transplanted xenografts (43). Immunosuppressive medications

commonly used in human allotransplantation may delay graft

failure in heart xenotransplantation models but may be coupled

with a higher risk of infectious complications (82, 83). Another

method of inhibition of the adaptive immune system is through a

blockade of T-cell costimulatory pathways. In attempts to block T-

cell co-stimulation, genetic engineering of transgenic pigs has been

developed that expresses the T-cell co-stimulation blockage agent,

CTLA4-Ig (84, 85). Unfortunately, transgenic expression of

CTLA4-Ig limited survival in these genetically engineered pigs due

to its powerful immunocompromising effects (85). Other areas of

areas of interest include genetically engineering pigs with Major

Histocompatibility Complex class I knockouts (86).

Chronic xenograft vasculopathy has been documented in some

pig-to-baboon xenografts that have survived longer than 3 months

(87). The histological appearance is similar to that of chronic

allograft vasculopathy seen after human-to-human

allotransplantation, characterized by concentric intimal hyperplasia

of the coronary arteries and longitudinal, diffuse luminal

narrowing of the vessels. However, in xenografts with Gal

knockout and expression of human CD46 and thrombomodulin,

one surviving more than 2 years, this xenograft vasculopathy was

not noted (88). Further study is needed to address the true

incidence and impacts of chronic rejection in xenotransplant models.
Long-term preclinical xenograft
survival

Currently, the pig-to-NHP xenotransplantation model remains

the standard preclinical model to precede eventual clinical

xenotransplantation (89). Similar to that of the first pig-to-human

xenotransplant attempts using non-genetically modified pig hearts,

the first attempts at pig-to-NHP heart xenotransplantation resulted

in very early graft failure. With the addition of some of the

genetic modifications of porcine hearts described above, along
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with improvements in immunosuppression regimens, xenograft

survival has been greatly improved.

Early pig-to-NHP heart xenotransplant models consisted of

xenografts that were implanted in the heterotopic (non-life

supporting) position within the abdomen. In early studies,

expression of human complement regulatory proteins was able to

extend xenograft survival to several weeks in the heterotopic

position (19, 90) as opposed to minutes with unaltered, wild-type

pig hearts. With the introduction of Gal knockout genetic

engineering, xenograft survival had been improved to almost 6

months in some recipients (91). However, xenografts with

knockout of Gal and expression of complement regulatory

proteins still experienced thrombotic complications, particularly

thrombotic microangiopathy. In response to the problem of

ongoing coagulation dysregulation, Mohiuddin et al. evaluated

the addition of human coagulation regulatory protein expression

(i.e., thrombomodulin) to Gal knockout and complement

regulatory protein expression. In this model, with this

combination of genetic manipulations and blockade of the

CD40-CD40l pathway, they were able to extend heterotopic

xenograft survival further, with one graft surviving for 945 days

(71, 72). Following the success of porcine-to-NHP xenograft

survival in the heterotopic position, researchers now aimed to

achieve consistent xenograft survival in the orthotopic, life-

sustaining position in order to pave the way toward clinical

xenotransplantation.

In the year 2000, the International Society of Heart and Lung

Transplantation set a goal for a minimum survival of 3 months

to be achieved in 60% of orthotopic, life-sustaining pig-to-NHP

xenografts before a clinical xenotransplantation trial could be

considered (92). They recommended that at least 10 animals

reach this survival point in the absence of life-threatening

complications from the genetic modifications and

immunosuppression. In 2018, Längin et al. published their

success in orthotopic pig-to-NHP heart xenotransplantation (79).

In this series, pig hearts with Gal knockout and expression of the

complement and coagulation regulatory proteins, CD46 and

thrombomodulin, were used. In a first group of five animal

transplants, the porcine xenograft was preserved from the time of

procurement to the time of implant with a clinically utilized

crystalloid preservation solution. However, xenograft survival was

disappointing. In a second cohort of four xenotransplant

animals, the porcine xenograft was preserved via hypothermic (8°

C), non-ischemic, continuous perfusion using Steen solution

(93), an oxygenated albumin-containing hyperoncotic

cardioplegic solution containing recipient animal blood. In this

group, one animal was sacrificed due to complications stemming

from technical failure, but the other three grafts survived 18, 27,

and 40 days, respectively. The authors noted progressive left

ventricular stiffening and diastolic failure in these grafts. A

histological examination revealed myocardial cell hypertrophy,

along with multifocal myocardial necroses, thromboses, and

immune cell infiltration. Based on prior preclinical and clinical

work and findings (94–97), the team performed a series of five

xenotransplants but with the utilization of antihypertensive

therapy, mTOR inhibition using temsirolimus, as well as early
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tapering of steroid medications. One animal died of surgical

complications at 51 days, and two others were euthanized at 30

days according to the study endpoint. However, the study

endpoint was extended to 6 months for the remaining two

animals. At 175 days and 161 days for these animals,

respectively, there was no evidence of systolic or diastolic

dysfunction, and temsirolimus was discontinued at this point.

After discontinuation, cardiac overgrowth and diastolic failure

were observed, and the animals survived to 195 and 182 days,

respectively. In this last series, multiple variables had been

altered. Specifically, the authors added temsirolimus but also

weaned steroids early and aggressively controlled recipient blood

pressure. Given that multiple changes were made in the

experimental protocol, it is not known whether the addition of

temsirolimus alone was responsible to suppression of myocardial

overgrowth or whether this was due to the other changes that

were made in the protocol. Further, it is also unclear whether the

hearts eventually became thick after temsirolimus was withdrawn

as a result of overgrowth or whether this was due to rejection

after temsirolimus was withheld. In one of the animals that

survived for 6 months, there was evidence of myocardial necrosis

without cellular infiltrates or microangiopathy. The etiology of

this myocardial injury is unclear but may represent an undefined

immune insult that will require further characterization.

A series of experiments at the University of Maryland confirmed

that 6-month survival could be achieved in a life-sustaining pig-to-

NHP orthotopic model using genetically engineered cardiac

xenografts and a C40 blockade (78). Additional knockout of the

growth hormone receptor gene proved to be effective in

preventing xenograft overgrowth and obviate the need for

temsirolimus (98). Furthermore, Cleveland et al. (99) from the

University of Alabama at Birmingham published a series of four

pig-to-NHP orthotopic heart xenotransplant experiments in 2022.

In all five experiments, donor pigs had Gal knockout. Two donor

pigs additionally expressed CD55, and two other pigs expressed

CD46 and human thrombomodulin. While two recipient baboons

experienced early death, another two baboons survived a total of

90 days and 241 days, respectively. A pathologic examination of

the longest-surviving xenograft indicated a mixed antibody-

mediated and cellular rejection pattern. All together, these

experiments set the stage for initial attempts of transplanting

genetically engineered pig xenografts into humans.
Recent heart xenotransplantation in
human recipients

Pig-to-human xenotransplant at the
university of Maryland

On January 7, 2022, a 57-year-old man received a heart

xenotransplant from a genetically modified pig at the University of

Maryland (100). The recipient had a history of non-ischemic

cardiomyopathy, prior mitral valve repair, and presentation with

acute on chronic decompensated heart failure. He was hospitalized

and supported with intravenous inotrope medications as well as
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intra-aortic balloon counter-pulsation. Despite this, he continued to

have ventricular arrhythmias and cardiac arrests requiring

resuscitation and venoarterial extracorporeal membrane oxygenation

support. Because of his biventricular failure and history of

noncompliance, he was not considered a candidate for left

ventricular assist device or human heart allotransplantation. After

approval from the U.S. Food and Drug Agency for the experimental

transplant, as well as approval from the hospital ethics committee,

the operation was performed. A 110 kg pig with 10 gene edits

(glactose-alpha-1,3-galactose knockout, Sda blood group antigen

knockout, N-glycolylneuraminic acid knockout, growth hormone

receptor knockout, human CD46 expression, human decay-

accelerating factor (CD55) expression, human thrombomodulin

expression, human endothelial cell protein C receptor expression,

human protein CD47 expression, and human heme oxygenase 1

expression) was used as the donor heart xenograft. Despite the fact

that the operation was complicated by an intraoperative type A

dissection, excellent early graft function was observed.

After the transplant operation, the recipient experienced renal

failure, requiring continuous renal replacement therapy. He was

extubated on postoperative day 2 and venoarterial

extracorporeal membrane oxygenation was discontinued on day

4. He was taken to the operating room for an exploratory

laparotomy on day 12 for concern for bowel ischemia. Purulent

fluid was drained, but there was no evidence of ongoing

ischemia or bowel necrosis. Endomyocardial biopsies were taken

on post-transplant day 34 without evidence of rejection. On day

43, the patient became more somnolent and hypotensive, and

he was re-intubated. The patient was experiencing

hypogammaglobulinemia and had worsening lung infiltrates on

chest radiography. Due to concern for an infectious process,

antimicrobial coverage was broadened and intravenous immune

globulin was administered. Weekly serologic testing revealed a

gradual increase in pig cytomegalovirus (pCMV) levels (testing

of the donor pig’s spleen confirmed the animal had been

positive for pCMV), which further raised concern for an

infectious etiology. By day 49, there was evidence of xenograft

failure. The patient became hypotensive with rising serum

lactate levels and reduced mixed venous oxygen saturations

(33%). Echocardiography revealed preserved ejection fraction,

but with significantly increased left and right ventricular wall

thickness. He was re-cannulated for peripheral venoarterial

extracorporeal membrane oxygenation. After the inability to

wean for extracorporeal support, the decision of the transplant

team and family was to withdraw support, and the patient died

on post-transplant day 60. An autopsy of the heart revealed

significant edema with an almost doubling in the xenograft’s

weight from the time of transplant. Typical patterns of acute

cellular or antibody-mediated rejection were not seen, though

focal capillary injury in the absence of significant complement

deposition was noted—a pattern not typically seen in human-

to-human allotransplantation.

The outcome of this xenotransplantation attempt was certainly

disappointing, drawing considerable criticism and speculation as to

why the xenograft ultimately failed and the patient died. First, the

recipient was certainly not an “ideal” operative candidate for
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transplantation, allo- or xeno-. He had been supported with

extracorporeal support for 46 days before transplantation, which

was mostly spent bed-bound. Given this, there was much concern

about his strength, functional status, and ability to tolerate the

operation. Furthermore, his previously established medical

noncompliance had eliminated him for consideration for human-

to-human allotransplantation. Had the xenograft not failed in this

recipient, there is the question of whether he may have survived

the postoperative course given his medical comorbidity and frailty.

And if he should have survived this perioperative period, it

remains to be seen whether later complications pertaining to

immunosuppression regimen compliance, which, in terms of

xenotransplantation are as complicated if not more than

immunosuppression regimens used in allotransplantation, may

have developed. Another major concern was the potential

consequence of the development of a zoonotic infection in a

patient with a history of medical noncompliance. Should a

zoonotic infection occur, failure to comply with treatment may

allow spread and thereby put others at risk. This should be

considered in future attempts at xenotransplantation in humans.

Another important consideration to make was the choice of

post-transplant anticoagulation. In this case, the recipient was

maintained on an intravenous heparin infusion for

anticoagulation, reflecting that of the preclinical work done at the

University of Maryland (78). While the necessity of continuous

heparin may be debatable, the plan was to keep the post-

transplant immunosuppression and medication regimen as

similar as possible to preclinical models. Certainly, a heparin

infusion would be nearly impossible to maintain in the

outpatient setting, especially with a potentially non-compliant

patient. It is important to consider whether anticoagulation is

necessary, and if so, whether transition to an oral anticoagulant,

such as warfarin, or another direct oral anticoagulant.

Nevertheless, due to these concerns, it is reasonable to conclude

this recipient was not the optimal recipient to demonstrate long-

term success in pig-to-human heart xenotransplantation.

The “optimal” pig-to-human xenotransplant recipient is

debated. This recipient would have a set of characteristics that

would be favorable for tolerating a large operation, but also

maintain considerable equipoise among other surgical options for

heart failure available to the recipient. Ideally, the recipient would

be in good physical condition to tolerate a transplant operation, as

well as not have any major contraindications to surgery or

immunosuppression. As such, it is no surprise that the “perfect”

adult candidate for xenotransplantation would also be an ideal

candidate for allotransplantation. With the current status of

preclinical work and with the longest-surviving pig-to-NHP

models living less than 1 year, it is not reasonable to conclude

there is sufficient equipoise between xenotransplantation and

allotransplantation. Therefore, the first clinical trials of

xenotransplants are not likely to involve healthy adult recipients

who would otherwise be suitable candidates for heart

allotransplantation. The potential candidates for early trials in

cardiac xenotransplantation may include patients with cardiac

failure who cannot qualify for allotransplantation or a durable

mechanical support strategy (101, 102).
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Based on their preclinical work, Cleveland et al. (99) have

advocated for the consideration of xenotransplantation in infant

populations. As noted in their review, infant heart donors are

scarce, attributing to a high rate of mortality among waitlisted

candidates aged less than 1 year and with congenital heart disease

(e.g., hypoplastic heart syndrome). In fact, they mention that nearly

one-third of infants evaluated for heart transplants are denied

listing, die while waitlisted, or are removed due to clinical

deterioration. The authors conclude that this population may be a

potential target of early clinical trials of xenotransplantation in

humans. In this scenario, the xenograft would serve as a bridge to

human-to-human allotransplantation, given how several pig-to-NHP

cardiac xenografts survive to 6 months in NHP models at the

University Hospital of Munich, University of Maryland, and

University of Alabama at Birmingham. Residual questions that

remain to be addressed before a clinical trial include the recipient’s

immunological and physiological response to allotransplantation

after previous xenotransplantation. Early perioperative mortality for

patients undergoing surgical management of single ventricle

physiology and long-term survival has improved substantially. The

use of cardiac xenografts for these patients will need to be weighed

against this for patients who are candidates for the Fontan

procedure. Those patients at high risk for interstage mortality

during single ventricle palliation may be most likely to benefit from

cardiac xenotransplantation (103–106).

In addition to recipient candidacy after the University of

Maryland case, other factors have been discussed pertaining to the

cause of ultimate graft failure and the recipient’s eventual death.

First, the recipient was found to have rising levels of pCMV (first

detected on post-transplant day 20). This is despite husbandry

practices used to prevent the passage of pCMV from the mother

pig to its offspring as well as rearing of the donor pig in a

biosecure facility (100). It is possible that pCMV infection may

have contributed, at least in part, to the xenograft failure (107).

Another possible contributing factor was the administration of

intravenous immunoglobulin to the recipient, both on post-

transplant day 43 and again on day 50. As pointed out by Cooper

et al. (107) the impacts of IVIg use in preclinical models remain

debated, as prior preclinical work has suggested conflicting results

as to its benefits and/or harm. Yamamoto and colleagues, based on

their prior investigation of five different commercially-available IVIg

formulations (108), did not find cytotoxicity of the IVIg

preparations to red blood cells from triple-knockout pigs, suggesting

its use would be safe in recipients of xenografts from these pigs.

However, it is not known whether the IVIg preparations were

screened beforehand. Lastly, it is possible the Maryland xenograft

failed due to either insufficient immunosuppression or further

pig-to-human immunological barriers that have yet to be elucidated

and overcome.
Pig-to-human cadaver xenotransplants at
New York University

In June and July of 2022, Dr. Nader Moazami at the New York

University Lagone Health Medical Center transplanted two pig
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hearts into brain-dead human cadavers. These cadavers were

supported for 72 h after the transplant. The results of these two

experimental xenotransplantations are awaiting publication at the

time this article was written (109).
Conclusions

The successful long-term xenotransplantation of animal hearts

into human recipients has been a long sought-after goal with the

intent of addressing the shortage of donor hearts that currently

limits the number of cardiac transplants in an ever-growing

population with heart failure. Since its early conception and

attempts dating back to the 1960s, numerous ground-breaking

preclinical advances have been made in identifying and overcoming

the major immunological barriers to xenotransplantation. Although

xenograft survival has greatly improved through the developments

of genetic modifications of porcine organ sources and specialized

immunosuppression regimens, further study will be required to

achieve outcomes comparable to human-to-human

allotransplantation. As such, early clinical applications of heart

xenotransplantation are likely to not serve as a replacement to

human allotransplantation, but rather as a bridge to human

allotransplantation in select patients. However, as progress in

immunological research continues to move forward and these

barriers are overcome, the dream of a nearly endless organ supply

for long-term usage may eventually become reality.
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