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Development of a portable device
to quantify hepatic steatosis in
potential donor livers
Mac Klinkachorn1, Christian Tsoi-A-Sue2, Raja R. Narayan3,
Haaris Kadri2, Taylor Tam4 and Marc L. Melcher2*
1Department of Engineering, Stanford University, Stanford, CA, United States, 2Department of Surgery,
Stanford University, Stanford, CA, United States, 3Department of Surgery, Mass General, Boston MA,
United States, 4Menlo School, Menlo Park, CA, United States

An accurate estimation of liver fat content is necessary to predict how a donated
liver will function after transplantation. Currently, a pathologist needs to be
available at all hours of the day, even at remote hospitals, when an organ
donor is procured. Even among expert pathologists, the estimation of liver fat
content is operator-dependent. Here we describe the development of a low-
cost, end-to-end artificial intelligence platform to evaluate liver fat content on
a donor liver biopsy slide in real-time. The hardware includes a high-resolution
camera, display, and GPU to acquire and process donor liver biopsy slides. A
deep learning model was trained to label and quantify fat globules in liver
tissue. The algorithm was deployed on the device to enable real-time
quantification and characterization of fat content for transplant decision-
making. This information is displayed on the device and can also be sent to a
cloud platform for further analysis.
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Introduction

Thousands of patients die every year from the shortage of donor livers for

transplantation (1). Therefore, transplant surgeons seek to expand the criteria and safe

use of potentially transplantable livers. Livers with high fat content or steatosis are

thought to function poorly following transplantation, increasing the risk for early graft

dysfunction, need for re-transplantation, or death (2, 3). However, some have argued

that these organs are transplantable especially if appropriate recipients are chosen (4).

Recent reports raise concerns that manual fat scores between different pathologists can

vary (5–7). More accurate estimates may enable the use of more livers. About 33% of

livers considered for transplantation are biopsied as part of the evaluation process (8).

Often, a community pathologist is called in to evaluate the liver tissues, night or day,

wherever the liver donor is located. However, this process takes time and studies have

shown significantly different fat scores reported between different pathologists (5)

Recognizing this problem, several groups have sought to automate steatosis scoring

(6, 7, 9, 10).

Previously, we detailed the development of a machine-learning algorithm to label fat

globules with high accuracy by leveraging pre-trained neural networks built on a labeled

database of donor liver slides (11, 12). The analysis of these data resided on the cloud

posing practical limitations when considering their implementation in a clinical setting.

First, cloud analysis depends on secure access to the internet which may not be readily

accessible in remote community hospitals where donors may become available. Second,
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waiting for the transplant surgical team to retrieve the donor liver

biopsy for analysis at the transplanting center, can delay the

determination of whether the organ is safe for use and prolong

cold ischemia time. Lastly, reliance on the cloud is associated

with the risk of private patient data exposure while transferring

health information for central analysis. The use of a point-of-

care device enables the private analysis to be de-identified and/

or deleted without the risks of exposure related to the cloud.

Therefore, we propose the development of an end-to-end

device that leverages an artificial intelligence (AI)-based

algorithm, a graphics processing unit (GPU), and a high-

definition camera to detect percent steatosis in livers of patients

with high precision and accuracy. The device is portable,

computationally efficient, independent of internet access, and of

low cost.
Results

Software for AI-based steatosis detection at
the point-of-care

There are several challenges in developing a machine learning

algorithm that runs on a device. Since the algorithm for segmenting

fat cells usually requires significant computational resources and

memory, we use model compression techniques to transfer the

machine learning model to the Nvidia Jetson Nano device

(Figure 1A). We also utilize the GPU computing power to

improve the latency of slide analysis and inference to allow

almost real-time results.
FIGURE 1

Workflow to calculate percent steatosis. The slide image (A) is captured (B) an
device (C). The algorithm generates a mask that labels fat vacuoles as white a
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Hardware assembly

To take pictures directly through the microscopes’ eyepiece we

mounted an IMX477—IR Cut Arducam camera module (12.3

megapixels) with low-light sensor capabilities to a 3D printed adapter.

The adapter is friction fitted to the microscope eyepiece of 38 mm in

diameter (Figure 1B). The camera driver has auto-focus and can

adjust to low light capabilities. Less expensive cameras without low

light capability did not take adequate photos. The IMX camera

module connects directly to the JetsonNano (Nvidia) via theCSI-2 port.

The Jetson Nano was mounted on a custom-designed 3D-

printed case made of polylactic acid. The case has multiple open

sides for easy access to ports. On the top is a vent hole designed

to allow optimal airflow for the heat sync. In front of the vent is a

display mount which allows for a liquid crystal display to be easily

attachable and detachable (Figure 1). With the display mounted,

the device is 24 cm high, 16.2 cm wide, and 14.5 cm deep.
Device software

A Python script provides a graphical user interface to access the

camera capture function natively. To reduce strain on the CPU, the

resolution was set to 1080 × 720 p and the frame rate to 60 fps.

Using the script, a user can trigger the device to acquire an

image through the microscope and store it in the internal

memory where it can be accessed for analysis.

The U-net network that we use to detect liver fat content

accepts 256*256 pixel tile input (12). Therefore, we developed a

script to tile the image captured from the sensor into multiple
d tiled before analysis by the trained U-NET model using the GPU on the
nd all else as black (D).
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FIGURE 2

Correlation of cloud and device scored steatosis. With trend line intercept set at 0,0, a strong correlation (r= 0.9339) was noted with a few outliers that
were subsequently inspected. Open circle, ○, point corresponds to Slide #20; X-point corresponds to Slide #26 (see Figure 3).

Klinkachorn et al. 10.3389/frtra.2023.1206085
256*256 tiles. The tiles are then passed into the neural network to

create a steatosis mask. The network analyzes each pixel in the tiles

to identify whether it represents a fat pixel. By programmatically

counting all fat vacuoles and using a filter to remove the

background, the device can estimate the percent steatosis in the

liver tiles. The system then computes the average steatosis across

the images that were sampled from the slides.
Comparison between cloud platform and
end-to-end device

The assessment of the steatosis on 33 slides by the device was

compared to the whole slide assessment using the same algorithm

on a cloud-based platform previously described (12). There was a

strong positive correlation (r = 0.9399) between the two

techniques. Figure 2 shows a plot of cloud-based steatosis scores

against device-derived scores. When slides that were particularly

divergent between the two techniques (Slide 20) were compared

to less divergent slides (Slide 26), the former had patches of

steatosis rather than the uniform distribution seen on the latter

(Figure 3).
Discussion

Currently, the assessment of liver biopsies for steatosis can be

variable and even difficult to obtain outside of dedicated liver

transplant centers. Therefore, we developed this prototype stand-

alone device capable of acquiring images of liver biopsies from a

microscope, processing them, analyzing them, and measuring the

percent steatosis. We hope that these assessments will facilitate the
Frontiers in Transplantation 03
evaluation of donated livers for transplantation to reduce the

number discarded and optimally match them with appropriate

recipients. The device relies on the AI algorithm our group

previously trained on a Google Cloud Platform to label fat vacuoles

in a liver specimen. Fortunately, our previous work had shown that

the algorithm was very good at recognizing artifacts in the image

caused by tears in the tissue and not scoring these as steatosis (12).

While the steatosis correlation between the device and the

cloud was high, it was not perfect. Despite the device capturing

three images from each slide, steatosis percent varied

considerably on several slides. Therefore, three images may not

be enough to score steatosis reproducibly. Future iterations of

this algorithm should include an assessment of the image and

biopsy quality to identify images out of focus or with too many

artifacts rendering the image unusable.

This end-to-end device can be used at a donor hospital to

obtain images from their microscope and assess the steatosis of a

donor liver without a digital scanner or a connection to the

internet. The device is powerful enough that images could be

analyzed on the device without needing to load large files to a

cloud platform. Keeping the data on the device also reduces the

danger of sending protected personal health information to the

cloud. The biopsy data would not be permanently stored on the

device and can be erased as soon as a result is given. The results

are obtained more rapidly and reliably by using the device. Since

the slides are relatively large, it can take a substantial amount of

time to transfer over the network with limited bandwidth. In the

case of the device, the image acquisition and analysis are done

on the device using a GPU; therefore, the analysis can be

completed within a few minutes.

To access the quality of a donated liver, a transplant team

considers multiple donor variables including age, medical history,
frontiersin.org
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FIGURE 3

Comparison of poorly correlating slides (#20) to strongly correlating slide (#26). Poorly correlating slide #20 appears to have a more heterogeneous
distribution of fat globules than the strongly correlating slide #26.
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cause of death, and laboratory values. After the organ is

provisionally accepted, a procurement team is dispatched to the

hospital in which the donor candidate is located. In many

circumstances, the potential donor may be at a remote

community hospital that does not have an experienced, on-call,

liver pathologist, who could readily screen for liver steatosis, or

there may be an extended delay in bringing in an on-call

pathologist to review a donor liver biopsy in the middle of the

night. Moreover, review of fat globules in the community

hospital setting is uncommon on hematoxylin and eosin-stained

frozen biopsy slides as other stains that take days to process are

the preferred modality for non-urgent clinical circumstances. In

some cases, a screenshot of the donor liver biopsy slide through

the microscope may be crudely sent to the supervising transplant

surgeon who can review the image to visually estimate the degree

of fat involvement before approving liver procurement to begin.

A point-of-care device offers several advantages over a cloud-

dependent platform for donor liver biopsy analysis. First, a

remote community hospital may lack the internet access and

computing power necessary to utilize a robust cloud-dependent

platform. Second, a point-of-care device can quickly define the

degree of fat involvement without requiring a pathologist to

arrive, often, in the middle of the night to review the slide before

permitting transplantation. Before deciding not to use a liver

solely based on the assessment provided by the device, we would

recommend having a pathologist examine the slides to prevent

the unnecessary discarding of livers. Third, the use of a such

device for real-time, rapid evaluation of biopsies could also be

advantageous in assessing the impact of machine perfusion on

reducing fat content in donated livers intended for

transplantation. Finally, the use of a closed system device,

disconnected from the internet, reduces the risk of private health

information exposure that may occur during the transference of
Frontiers in Transplantation 04
data onto a cloud-based central system. Logistically, a device

available in real-time can streamline the transplant decision-

making process to limit the aforementioned barriers to

transplantation.

This device is still a prototype. As such, there are several

improvements to be made. Despite being relatively small, it

is clunky and will benefit from useability studies to improve

the design. The microscope adapter will need to come in

different sizes to accommodate different lab microscopes.

Currently, the use of this device still requires the slides to be

prepared and therefore is not completely independent of local

hospital support. Additional work needs to be done to

characterize macro- versus microsteatosis and its impact on

outcomes. Initial work suggested a distribution of vacuole sizes

rather than two distinct populations. Biopsy characteristics

such as fibrosis and inflammation are not characterized by the

device and should be trained into future versions of the

algorithm. In addition, it is important to acknowledge

competing technologies based on increasingly powerful

smartphones and access to cloud computing (9). Machine

perfusion pumps may also mitigate concerns about prolonged

cold ischemia times.
Methods

Hardware components

The components of this device include the Jetson NanoTM

(Nvidia) with a graphic processing unit (GPU), a Waveshare HQ

Camera with a 12.3MP IMX477High Sensitivity, a 7inch IPS

capacitive touch display, ribbon connectors, a power supply, and

an HDMI cable.
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Software components

We develop our platform on the native UbuntuTM 18.04 which

is the operating system on the Jetson Nano. Scripts were written in

PythonTM, with the help of the following libraries, Tensor FlowTM

for machine learning and deep learning inference, OpenCVTM for

image analysis, and Argus API for image ingestion.
Liver steatosis detection algorithm

Previously, a U-net network has been pre-trained on a cell

segmentation task capable of segmenting fat vacuoles with high

accuracy (12). Utilizing an established U-net platform to detect

the fat content in the liver tissues, the algorithm was able to

assess every pixel on a liver donor biopsy slide to determine

whether they represent fat vacuoles or normal liver cells.
Imaging and data collection

Three images of each slide were acquired by the device. The

physician can adjust the microscope to different areas of the

slides and use the touchscreen on the device to collect the

sample images on the area of interest. After the image

acquisition, several filters are applied to confirm that the picture

is stable and remove any background noise from the data

collection process. The images are then processed into 256 ×

256-pixel tiles to be analyzed by the AI algorithm. Within these

tiles, the AI algorithm labels each pixel as a “one” for the

presence of steatosis or a “zero” for the absence of steatosis to

create the mask.
Evaluation metrics

The capability of device analysis to the cloud analysis was done

by plotting the two modalities against each other.
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