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Extracellular vesicles: a potential
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Identification of recipients with pre-existing antibodies and cross-matching of
recipient sera with donor lymphocytes have reduced the incidence of antibody-
mediated rejection (AMR) after human lung transplantation. However, AMR is still
common and requires not only immediate intervention but also has long-term
consequences including an increased risk of chronic lung allograft dysfunction
(CLAD). The mechanisms resulting in AMR remain largely unknown due to the
variation in clinical and histopathological features among lung transplant
recipients; however, several reports have demonstrated a strong association
between the development of antibodies against mismatched donor human
leucocyte antigens [donor-specific antibodies (DSAs)] and AMR. In addition, the
development of antibodies against lung self-antigens (K alpha1 tubulin and
collagen V) also plays a vital role in AMR pathogenesis, either alone or in
combination with DSAs. In the current article, we will review the existing
literature regarding the association of DSAs with AMR, along with clinical
diagnostic features and current treatment options for AMR. We will also discuss
the role of extracellular vesicles (EVs) in the immune-related pathogenesis of
AMR, which can lead to CLAD.
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1. Introduction

Lung transplantation (LTx) is the primary treatment for patients with end-stage lung

disease. Surgical advancements have improved outcomes, but the long-term function of

the transplanted lungs remains disappointing, with a median survival after LTx of 6.2

years (1–4). Antibody-mediated rejection (AMR) of transplanted lungs remains an

important problem, which is further complicated by a lack of consensus on the clinical

characteristic as well as the immunological profile, histological features, and management

strategies (5, 6).
Abbreviations

AMR, antibody-mediated rejection; APC, antigen presenting cell; BOS, bronchiolitis obliterative syndrome;
CLAD, chronic lung allograft dysfunction; DSAs, donor-specific antibodies; EVs, extracellular vesicles;
ISHLT, International Society of Heart and Lung Transplantation; IVIG, intravenous immune globulin; LTx,
lung transplantation; LTxR, lung transplant recipient; PRA, panel reactive antibodies; RAS, restrictive
allograft syndrome.
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Antibody-mediated rejection is a complex pathological,

serological, and clinical process affecting graft function after

transplantation. It has been better characterized in kidney and

heart transplant recipients than in lung transplant recipients

(LTxRs) (7). In LTxRs, specific B-cells and plasma cells producing

antibodies directed against donor lung antigens can often be

detected even before transplant, implicating these antibodies in the

immunopathogenesis of AMR (8). Recent literature provides

strong evidence of an important role for antibodies in AMR since

antibodies to mismatched donor human leukocyte antigens,

known as donor-specific antibodies (DSAs) and to lung self-

antigens are often detected in patients with AMR. De novo

production of DSAs can be detected within weeks to months after

transplantation (6, 9, 10). Further, the presences of DSAs are

associated with a poor prognosis and possibly accelerated graft

failure, particularly within the first post-transplant year (11–13).

Investigations in the last few decades in solid organ transplants

have demonstrated that antibodies, with or without a cellular

response, could lead to ligation of major histocompatibility

complex molecules, resulting in complement-dependent cell lysis

with or without C4d deposition, which can damage the allograft

(14–17). Other risk factors for AMR include gender; female

recipients have higher risk of AMR post-transplant in cardiac

patients (18–20); higher levels of pre-transplant panel reactive

antibodies (PRAs) to HLA (21, 22); development of de novo

DSAs resulting in positive donor-specific crossmatch (23); and

re-transplantation (24). Per the International Society of Heart

and Lung Transplantation (ISHLT) consensus, patients with

AMR can be symptomatic (hypoxemia, decrease in FEV1,

dyspnea, and pulmonary infiltrates) or asymptomatic (5, 25, 26).

AMR can be clinical or subclinical with normal allograft function

(25, 26), which can be further sub-categorized into definite,

probable, and possible. These categories are based on the degree

of certainty related to (a) pathologic, (b) serologic, (c) clinical,

and (d) immunologic presentations (26).

The diagnosis of AMR in LTxRs is challenging as there is a lack

of specific diagnostic criterion as well as tremendous variability in

DSAs and allograft damage from patient to patient. There is a

definite need to develop new diagnostic tools and techniques to

diagnose and describe the clinical presentation of AMR, and

ISHLT is currently attempting to come to a consensus on

defining AMR (25, 27).

Chronic lung allograft dysfunction (CLAD) is the main barrier

to good long-term outcomes the first year after lung

transplantation (28, 29). Antibody-mediated rejection after lung

transplantation is a progressive process that has been identified

as a significant cause of morbidity that can lead to CLAD,

eventually resulting in graft failure (5). In the current article, we

will discuss recent updates on the understanding of AMR and

our ongoing research on extracellular vesicles and their contents.
2. Pathogenies of AMR

Studies in kidney transplant recipients have helped to define

the mechanisms of AMR (30, 31). AMR can be (a) hyperacute
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(occurring within minutes after the vascular anastomosis), (b)

acute (occurring days to weeks after transplantation), (c) late

acute (occurring within 3 months after transplantation), and (d)

chronic (occurring months to years after transplantation) (5, 32).

Recent research has demonstrated that B cells and plasma cells

produce DSAs that interact with the endothelium, leading to the

activation of signaling pathways (31, 33). Antibody binding leads

to the recruitment of immune cells leading to graft dysfunction,

which can be either complement dependent or independent

(34–36). The antibodies interacting with endothelium and

activating different signaling pathways can be specific to HLA or

non-HLA molecules (35, 36).

Non-HLA antibodies are further classified as alloantibodies

and autoantibodies (37, 38). Unlike antibodies specific to HLA,

non-HLA antibodies use alternative pathways to bind to

endothelial cells causing injuries that do not involve binding to

integrins (37). Fernandez et al. have demonstrated that one-third

of lung recipients have pre-existing antibodies against non-HLA

self-antigens, which can lead to hyperacute rejection (39).

Subramanian et al. confirmed this viewpoint using a murine lung

transplant model of rejection by administering antibodies specific

to the lung self-antigen K alpha 1 tubulin (40).
3. Diagnosis of AMR and associated
challenges

Allograft failure within 12 months of LTx due to AMR is one of

the leading causes of early death in LTxRs (41). Combinations of

multiple AMR diagnostic criterions are used at different centers.

Several different invasive (biopsies, molecular microscopy) and

noninvasive approaches (specific antibodies, donor-derived cell-

free DNA, chemokine analysis, etc.) are used to diagnose AMR.

As per ISHLT consensus on pulmonary AMR (25), a diagnosis

of allograft dysfunction requires histologic evidence, complement

component 4d (C4d) deposition, circulating DSAs, and the

reasonable exclusion of other causes (11, 17). Although histology

remains a popular diagnostic approach, new noninvasive

methods involving blood (DSAs, donor-derived cell-free DNA,

mRNA assays) or urine (chemokines, urinary mRNA, and

urinary proteomics) are also becoming popular (5, 27, 42). We

have summarized AMR diagnosis with invasive and non-invasive

methods and treatments in Table 1.
3.1. Histologic evidence

Lung graft dysfunction is associated with certain histological

types. De Nicola et al. analyzed 41 biopsies from LTxRs with or

without circulating DSAs. The authors concluded that

pathological findings of grade 2+ neutrophilic infiltration is the

most closely related to DSAs with graft dysfunction (50). Per

ISHLT consensus (25, 27), the histopathologic features of AMR,

which can progress to Chronic Lung Allograft Dysfunction

(CLAD) include: neutrophilic margination (43), neutrophilic

capillaritis, organizing pneumonia, pulmonary capillaritis
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TABLE 1 Types of antibody-mediated rejection, diagnosis, and treatment
options.

Types Diagnosis and clinical
presentation

Treatment options

Acute antibody-
mediated rejection/
chronic antibody-
mediated rejection

Invasive conventional
methods:
(a) Histologic evidence:
Neutrophilic margination
(43) Neutrophilic capillaritis
Pulmonary capillaritis (44,
45) Septal capillary injury
syndrome (46) Septal
capillary necrosis (47).
(b) C4d staining (47–49).
(c) Detection of DSAs (HLA
or non-HLA) in the serum
Non-invasive newer methods
(blood/urine):
(a) donor-derived cell-free
DNA measurements (blood)
(b) Cytokine/chemokine
measurements (blood/urine)
(c) mRNA analysis (blood/
urine)
(d) Proteomics analysis
(blood/urine)

Plasmapheresis—antibody
removal from highly
sensitized patients
High-dose intravenous
immunoglobulin
Intravenous
immunoglobulin and
rituximab
Plasmapheresis,
intravenous
immunoglobulin, and
rituximab
Complement inhibition
Proteasome inhibitor
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(44, 45), septal capillary injury syndrome (46), and septal capillary

necrosis (47). Immunohistochemistry for C4d, either by

immunofluorescence (IF) or immunoperoxidase (IP) assays, may

also provide supportive evidence of AMR (47–49).
3.2. C4d deposition

C4d is a degradation product of the complement pathway that

binds to endothelium and is one of the markers of endothelial

injury mediated by complement deposition (30). C4d deposition in

recipients with AMR has been inconsistent and its role in the

diagnosis has been controversial. The sensitivity of C4d deposition

is always a question due to the emerging evidence of pulmonary

AMR in the absence of C4d deposition (6, 51, 52). C4d staining has

been difficult to interpret in lung biopsies because of poor

reproducibility, high background staining, and poor specificity for

AMR. Reports from the AMR studies in kidney and heart transplant

recipients led to the recognition of a unique AMR pathogenesis,

which is mediated primarily by natural killer cell interactions with

DSAs, independent of complement activation and bound to

endothelial cells (6, 53, 54). Studies from other organ transplant

recipients will provide impactful insights in determining the

incidence and clinical presentation of C4d-negative probable AMR

and C4d-positive definite AMR after human lung transplantation

(54, 55). Mauiyyedi et al. proposed that a correlation between C4d

deposition and DSAs could be a diagnostic marker for AMR (56).
3.3. Donor-specific antibodies

Donor-specific antibodies have been strongly associated with

acute allograft rejection after solid organ transplant, including
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kidney, heart, and lung (57–59). DSAs were first identified in

1960 in kidney transplant recipients undergoing AMR, and it

was postulated that they may be associated with graft rejection/

failure. Further evidence by other groups also supported this

concept (59, 60). All nucleated cells within transplanted lungs

can express HLA class I antigens (HLA-A, HLA-B, or HLA-C).

In addition, antigen-presenting cells (APCs) within the lungs

may also express HLA class II antigens (HLA-DQ, HLA-DR,

HLA-DP) (61). In addition, the expression of HLA class II

molecules can be induced on pulmonary endothelial cells in

response to pro-inflammatory cytokines (62, 63).

DSAs have been associated with not only AMR but also the

development of CLAD in lung transplant recipients, manifested

as bronchiolitis obliterans syndrome (BOS) or, more frequently,

restrictive allograft syndrome (RAS) (28, 29, 64).

Although there are number of traditional options to diagnose

AMR (histologic evidence, C4d deposition, and DSAs), there are

problems with the current identification methods: (a) positive

C4d stains without detectable DSAs; (b) positive C4d stains

without graft abnormalities; (c) variable levels of DSAs with

varying strength; and (d) antibodies to non-HLAs with or

without detectable DSAs, etc. Therefore, it is important to devlop

modern diagnostic techniques to determine AMR. One emerging

possibility, in addition to C4d staining, is non-invasive molecular

diagnostics (27, 42).
4. Management and treatment of AMR

Despite the identification of AMR in lung, kidney, and heart

transplant recipients, the literature describing the management of

AMR after lung transplantation is very limited. Treatment

strategies for AMR in LTxRs are based on experience with other

solid organ transplants which varies by center. There are

multiple treatment options that can be considered to treat AMR.

The overall aim of AMR treatment is to deplete the circulating

antibodies, plasma cells, and B-cells to decrease antibody-

mediated graft injury. Combinations of therapies have also been

demonstrated in different centers that include plasmapheresis,

intravenous immune globulin (IVIG), plasma cell depleting

agents, T- or B-cell specific agents, and targeting of the

complement pathway.
4.1. Plasmapheresis and intravenous
immune globulins

Plasmapheresis and intravenous immune globulins remove

antibodies but also reduce cytokine levels. Multiple studies have

shown better graft function with the combination of plasma

exchange and intravenous immune globulins (IVIG) (65, 66).

Plasmapheresis is used to remove or reduce the level of existing

antibodies by replacing patient plasma with plasma from healthy

individuals. IVIG therapy decreases HLA sensitivity, which in

turn lowers the level of HLA antibodies by blocking their ability

to attack the transplanted organ.
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4.2. Anti-CD20 antibody

Rituximab, an anti-CD20 monoclonal antibody, has been used

for AMR treatment. Rituximab binds to pre-B-cells and mature

B-lymphocytes that express CD20 (67).
4.3. Complement inhibition

Eculizumab, amonoclonal antibody, is used to inhibit complement

component C5 during the formation of the membrane-attack complex,

which is the final common pathway of AMR (68).

Although there are multiple treatment options for AMR, the

combination of treatments depends on the patient′s status, and

center bias still holds dominance. To date, there is no uniformity

or consensus treatment for AMR. Different centers are using

different combinations of treatments depending on their results.

There is a need for more clinical trials, and studies are needed to

address the impact of gender, demographics, and populations in

different locations (69).
5. Extracellular vesicles

Extracellular vesicles (EVs) are a group of particles that are

encapsulated by a lipid bilayer; they are released from different types

of cells in the body and are present in body fluids (70). The origin of

EVs can be ectosomal or endosomal. They are divided on the basis

of size: (a) microvesicles (100–1,000 nm); (b) apoptotic bodies

(1,000–5,000 nm); (c) exosomes/small EVs <200 nm (71, 72)
FIGURE 1

Diagrammatic reprentation of extracellular vesicle carrying CD9, CD63, CD81, TS
transplant; cardiac myosin and vimentin in cardiac transplant; fibronectin, collagen
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(Figure 1). There are multiple terms associated with the

nomenclature of EVs and exosomes as per Minimal Information for

Studies of Extracellular Vesicles (MISEV) guidelines. Research to

identify biomarkers specific to different EVs is ongoing, but currently

there are no specific markers associated with EV subtypes. There are

different kinds of classifications: (A) based on origin of EVs. EVs

originated from endosomes are called “exosomes” and the EVs which

are plasma membrane-derived are referred to as “ectosomes”: (B)

Based on size, small EVs (<200 nm) and medium/large EVs

(>200 nm); (C) on the basis of density low, medium and high; and

(D) on the basis of composition CD9/CD63/CD81 etc. (74). Still

newer guidelines are needed for the uniformity of the terms related

to EVs. Witwer et al. have explained the different nomenclatures of

EVs and what is influencing the choice of authors (75). We will be

using the term EVs in the current manuscript. The composition of

EVs depends on the cells releasing them. This can vary depending

upon on the clinical status of the patient (acute and chronic

rejection, respiratory viral infections, cancers, etc.) and many other

clinical conditions (28, 76–78). EVs are encapsulated by a lipid

bilayer and carry specific surface markers (e.g., CD9, CD81, Flotilin,

HSP70, tetraspanins, Alix, CD63) along with major

histocompatibility complex (MHC) molecules. EVs not only

participate in intercellular communication but also have a role in

pathological and physiological processes related to diseases.
5.1. EVs in solid organ transplantation

A large number of reports are available on the role of EVs in

the activation and regulation of the immune system. It is highly
G101, ALIX, tissue-specific markers (collagen V and K alpha1 tubulin in lung
IV and perlecan in kidney transplant) (73). Images created using BioRENDER.
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possible that EVs carry intracellular and membrane proteins from

the cells of origin, which makes them a potential candidate for

biomarkers of various disease states. The ability of EVs to

circulate in different bodily fluids (serum/plasma, saliva, urine,

bronchial alveolar lavage, cerebrospinal fluid, etc.) makes them a

less invasive biomarker compared to tissue biopsies. These

biomarkers can be protein/peptide, DNA, RNA, or small

metabolites (79–81).

Solid organ transplantation is the last option for patients with

end-stage organ failure. Different groups have studied EVs in

different solid organ transplant recipients to identify various

biomarkers; this has been recently summarized by Garcia et al.

(82). The details of EVs as biomarkers in lung transplant

recipients are provided in Table 2. Our group is focused on lung

transplant, thus we will discuss more about EVs in lung

transplant recipients. Failure of normal lung function can be

caused by several diseases including cystic fibrosis, idiopathic

pulmonary fibrosis, chronic obstructive pulmonary disease,

autoimmune disease, and respiratory infections (91). There are

many advancements in the last decade in surgical strategies, but

the outcomes are still poor (92, 93), and the median survival of

LTxRs is limited to ∼5.8 years (41). Immune mechanisms are the

driving force behind the development of rejection after

transplantation. LTxRs who develop antibody-mediated rejection,

have a higher chance of developing CLAD, which depends on

the number and severity of early AMR episodes (83, 94).
5.2. EVs in chronic lung allograft
dysfunction

EVs can be potential biomarkers for LTxRs at risk for the

development of CLAD (28, 83, 84). We have also presented

evidence that EVs and their contents can differentiate between

different phenotypes of CLAD (BOS and RAS) (28, 84). Our

results have demonstrated significantly higher levels of lung self-

antigens, transcription factors, 20S proteasome, polymeric

immunoglobulin receptor (PIGR), and HLA antigens on the EVs

from CLAD as compared to stable patients. We further
TABLE 2 Extracellular vesicles as biomarkers in lung transplant recipients
with different clinical conditions.

Condition

CLAD/BOS/
RAS

Respiratory viral
infections

Antibody-
mediated
rejection

References

Lung self-antigens
(collagen V and
Kα1 tubulin),
LKB1, AMPK1α,
PIGR, HLA-DQ,
HLA-DR miR-155,
miR-142- 5p,
TLR2, miR-182,
miR-92a

Respiratory viral
antigens [rhino, corona
(HKU1, OC43, 229E,
NL63, SARS-CoV-2
spike protein and
nucleocapsid,
respiratory syncytial
virus], granzyme B,
MST1

LKB1, AMPK1α
(Not published)
Shuttle RNA
(esRNAs)

(28, 73, 76, 77,
83–90)

CLAD, chronic lung allograft rejection; BOS, bronchiolitis obliterans syndrome;

RAS, restrictive allograft syndrome.
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delineated this in different phenotypes of CLAD (BOS/RAS) in a

recent study, where we have demonstrated the significantly

higher amounts of transcription factor NFkB, 20S Proteasome,

PIGR, MHC Class I (W6/32) and II (HLA DQ, DR) in EVs

from RAS phenotype of CLAD (28). In addition, mice

immunized with EVs isolated from LTxRs with different CLAD

phenotypes caused damage to mice lungs with varying severity

and type of injury. Previous reports from our laboratory have

shown that small EVs play a significant role in development of

CLAD (28, 85) but the association of EVs with AMR has not

been explored.
5.3. EVs in AMR

Extracellular vesicles are emerging as key biomarkers and

mediators in several diseases by carrying specific markers

involving both cell-cell interaction and regulation (73, 86, 95, 96).

Franzin et al. have shown that EVs can play a pertinent role in

tubular senescence and epithelial-to-mesenchymal transition in

kidney transplant recipients with AMR (97). In this study authors

have characterized the EVs from patients with AMR in Kidney

transplants. They have published the data on the difference in

presence of pro-inflammatory, pro-aging and profibrotic effects on

tubular and endothelial cells in kidney transplant recipients with

AMR and controls (No AMR). EVs from AMR patients carried

significantly higher amounts of miRNAs which were associated

with the renal inflammation, tubular senescence and renal fibrosis

as compared to controls. They have also demonstrated that EVs

from AMR patients induced Epithelial to mesenchymal transition

by significantly decreasing the endothelial markers, such as CD31

and VE-Cadherin and increasing the fibroblast markers Vimentin

and collagen I in the endothelial cells treated with EVs from AMR

patients. Limited literature is available on EVs and their

association with AMR after LTx.

Our preliminary data with LTxRs at the time of development of

AMR have shown the presence of lower amounts of LKB1, and

AMPK1α in EVs isolated from plasma as compared to stable

controls (data not presented). Lower levels of LKB1 and AMPKα

in EVs from LTxRs at the time of AMR is in agreement with the

in vitro and in vivo studies conducted by Rahman et al. with

samples from LTxRs with CLAD (87, 88). On the basis of our

published data on CLAD and preliminary investigations with

AMR in lung transplant patients (data not shown), there is a

possibility that LKB1 and AMPK1α may play a key role in AMR

and a biomarker for the development of CLAD. This hypothesis

needs further investigation and validation. Rahman et al. have

reported the role of the tumor suppressor gene LKB1 in the

initiation of epithelial-to-mesenchymal transition resulting in

CLAD after lung transplantation in humans and mice (87, 88).

Based on our published data on LTxRs with CLAD and

unpublished data on those with AMR, we propose LKB1 as a

potential EV biomarker for the onset of AMR in LTxRs as

shown in Figure 2. Future studies are needed to explore the

novel mechanisms of interactions and the role of LKB1 in the

pathogenesis of AMR.
frontiersin.org

https://doi.org/10.3389/frtra.2023.1248987
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


FIGURE 2

Diagrammatic representation of the mechanism of allograft rejection in lung transplant recipients (LTxRs) with antibody-mediated rejection (AMR).
Extracellular vesicles from LTxRs with CLAD carry lower amounts of liver kinase B (LKB1) and AMPKα than those from stable LTxRs. Decreased levels
of LKB1 downregulate AMPKα, which can potentially increase epithelial-to-mesenchymal transition followed by chronic lung allograft dysfunction and
graft loss. Similarly EVs in AMR can also play a potential role involving LKB1 and AMPKα which can be further associated with development of CLAD
followed by graft rejection, this hypothesis needs further investigation. Images created using BioRENDER.

Bansal et al. 10.3389/frtra.2023.1248987
6. Future directions

Due to a lack of experimental data regarding EVs and their

underlying mechanisms in LTxRs with AMR, the scope of

required EV biomarker research is huge. Comparing the levels of

biomarkers in EVs from the plasma isolated from LTxRs before

and after the onset of AMR may be predictive of clinical

outcomes, i.e., CLAD. Biomarker analysis on EVs in LTx needs

further investigation with a larger number of patient samples

from multiple centers. In addition, the analysis of EVs needs to

be expanded by studying the differences in biomarkers between

DSA-positive and DSA-negative samples from LTxRs with AMR.

A multi-parametric study considering pre-, current, and post-

AMR along with DSA status and following up with CLAD

development can help to elucidate the mechanisms of EVs.
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