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Scarcity of high-quality organs, suboptimal organ quality assessment,
unsatisfactory pre-implantation procedures, and poor long-term organ and
patient survival are the main challenges currently faced by the solid organ
transplant (SOT) field. New biomarkers for assessing graft quality pre-
implantation, detecting, and predicting graft injury, rejection, dysfunction, and
survival are critical to provide clinicians with invaluable prediction tools and
guidance for personalized patients’ treatment. Additionally, new therapeutic
targets are also needed to reduce injury and rejection and improve transplant
outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers
of health and disease statuses and therapeutic targets. A protein can exist in
different molecular forms, called proteoforms. As the function of a protein
depends on its exact composition, proteoforms can offer a more accurate basis
for connection to complex phenotypes than protein from which they derive.
Mass spectrometry-based proteomics has been largely used in SOT research for
identification of candidate biomarkers and therapeutic intervention targets by
so-called “bottom-up” proteomics (BUP). However, such BUP approaches
analyze small peptides in lieu of intact proteins and provide incomplete
information on the exact molecular composition of the proteins of interest. In
contrast, “Top-down” proteomics (TDP), which analyze intact proteins retaining
proteoform-level information, have been only recently adopted in
transplantation studies and already led to the identification of promising
proteoforms as biomarkers for organ rejection and dysfunction. We anticipate
that the use of top-down strategies in combination with new technological
advancements in single-cell and spatial proteomics could drive future
breakthroughs in biomarker and therapeutic target discovery in SOT.
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1. Introduction

Solid organ transplantation (SOT) is the standard-of-care treatment for patients with

end-stage organ disease (1). Despite considerable progresses made in the field to improve

transplant outcomes, there are still significant challenges that must be overcome,

including scarcity of high-quality organs suitable for transplant, suboptimal assessment of
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organ quality pre-transplantation, and unsatisfactory long-term

organ and patient survival (2, 3).

Most grafts derive from brain-dead (BD) donors. However,

their usage results in higher rejection rates and worse transplant

outcomes compared to those obtained from living donors that

are less damaged in pre-implantation (4–6). Organs are subjected

to damage from the pre- and peri-implantation procedures (i.e.,

Ischemia reperfusion injury, IRI) that can trigger higher recipient

immune response (7, 8). Higher immunoactivation increases the

risk of T-cell and antibody mediated rejections (TCMR and

ABMR), graft dysfunction, and graft loss (9–12). While

immunosuppressive (IS) therapies are used to prevent and treat

rejection by dampening the recipient immune system, those

cause toxicity and make the recipient more susceptible to

infections, malignancies, and graft injury resulting in diminished

graft survival (13) (Figure 1A).

Therefore, to increase the amount and quality of donor supply,

avoid rejection, and improve long-term transplant outcomes, it is

crucial to identify accurate and reliable biomarkers to (1) assess

donor organ quality pre-implantation, (2) early detect

immunoactivation and rejection, (3) monitor rejection and

disease progression and the response of patients to

immunotherapies. In addition, the transplant field lacks

prognostic biomarkers that can predict (1) transplant outcomes

before implantation based on organ quality, (2) graft rejection,
FIGURE 1

Translational MS-based proteomics for identifying novel biomarkers and therap
SOT outcomes. (B) Workflow of translational bottom-up and top-down MS-b
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dysfunction, and failure before their occurrence, and (3) the

response of patients to immunosuppression. Such biomarkers

could guide allocation, decision-making, patient risk stratification,

and personalized treatments (14).

Mechanisms behind graft injury and rejection are not well

understood. Their characterization is fundamental for developing

new therapeutic strategies aimed to minimize injury due to graft

origin, IRI and its sequelae to improve graft quality, function,

and survival. More targeted graft pre-treatment would be

particularly beneficial to expand the pool of organs suitable for

transplant and improve long-term graft survival.

Proteins are directly responsible for the function, structure, and

regulation of cells, tissues, and organs (15–17). Therefore, the

identification and characterization of proteins involved in injury

and rejection is crucial to advance transplant research.

Mass spectrometry (MS)-based proteomics can elucidate

biological processes in depth (18, 19) and has been extensively

used to analyze the protein composition of a variety of clinical

samples from transplant recipients (20). There are two general

approaches for performing MS-based proteomics analysis:

Bottom-up (BUP) and Top-down proteomics (TDP). In BUP,

proteins are digested into peptides prior to MS analysis, while in

TDP, the analysis is conducted directly at intact protein level

(Figure 1B) (21, 22). Here, we discuss the application of both

approaches in SOT research.
eutic targets in SOT research. (A) Overview of mechanisms contributing to
ased proteomics approaches in SOT.

frontiersin.org

https://doi.org/10.3389/frtra.2023.1286881
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Huang et al. 10.3389/frtra.2023.1286881
2. Bottom-up proteomics in
transplantation

BUP is the strategy traditionally used for proteomics studies

(23–25). In BUP (Figure 2A), proteins are extracted from the

clinical sample, enriched by immunoprecipitation or

fractionation when needed, and digested with trypsin into

peptides (26). Peptides are then seperated by liquid

chromatography (LC) or capillary electrophoresis (CE), ionized

by electrospray ionization (ESI) (27), and injected into the mass

spectrometer for producing precursor ion (MS1) spectra. Next,

individual peptides are fragmented via higher-energy collisional

dissociation (HCD) or collision-induced dissociation (CID) to

obtain the fragment ion (MS2) (28) spectrum in either

untargeted or targeted mode. In untargeted mode, fragmentation

is performed based on top-intensity peptides or MS1 mass-to-

charge ratio (m/z)-selected ranges. In targeted mode,

fragmentation targets are specific peptides with known sequence

and m/z information. Data from MS1 and MS2 spectra is

combined and used to sequence peptides, infer proteins, identify

posttranslational modifications (PTMs), and quantify peptides/

proteins present in the sample using a variety of computational

engines (29–32). Aside from label-free quantitative approach that
FIGURE 2

BUP and TDP strategies for biomarker and therapeutic target identification.
spectrometry imaging approaches.
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relies on the intensities of the peptides obtained in MS1 (33),

labeling approaches are commonly used in BUP for relative and

absolute quantitation. In particular, Tandem Mass Tags (TMT)

and Isobaric tags (iTRAQ), use multiplex isobaric tags to label

peptides and base the quantitation analysis on the intensity of

reporter ions from the tag found in MS2 spectra (34, 35).

Most BUP studies aimed at identifying biomarkers to detect,

monitor, and predict acute rejection, TCMR, ABMR, injury, and

dysfunction while uncovering mechanisms behind injury and

rejection to find novel therapeutic targets. Such studies have been

conducted both on solid tissue biopsies (gold standard in the

field but invasive), and the less invasive body fluids, including

urine, blood, bronchoalveolar lavage (BAL) fluid, and perfusates.

Importantly, the combined analysis of different sample types can

help elucidating pathophysiological scenarios. For example, solid

tissue biopsies can inform on the outset of the disease process

(i.e., immune cell infiltration and allograft injury), while body

fluids on the presence of circulating blood immunological

proteins (i.e., antibodies) migrating into the site of injury (36) or

proteins secreted from the allograft in the urine (37).

Kidney is the most transplanted organ (38). Given its

physiological role, urine has been largely investigated for

biomarker discovery (39). Sigdel et al. identified urine protein
Workflows of BUP (A), TDP (B) and spatial proteomics (C) using mass
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panels able to distinguish different conditions after kidney

transplant, including acute rejection (AR), chronic allograft

nephropathy, BK virus nephritis, and stable grafts (40). Other

studies found potential urinary biomarkers for diagnosing acute

tubulointerstitial renal allograft rejection (41) and chronic

allograft nephropathy (i.e., beta-2-microglobulin) (42, 43);

exosomal tetraspanin-1 and hemopexin for early detection of

TCMR (44); collagen peptides and matrix metalloproteinase-8 as

reporters for clinical and subclinical TCMR (45); matrix

metalloproteinase-8 as indicator of renal allograft inflammation

and injury (46); and a 10-protein panel distinguishing ABMR vs.

no-ABMR (47).

BUP analysis of plasma, serum, and peripheral blood

mononuclear cells (PBMCs) led to the identification of (1)

several proteins with AR diagnostic value, including properdin,

keratin 1, titin, kininogen-1, and lipopolysaccharide-binding

protein (48, 49); (2) serum aminoacylase-1 as a potential

diagnostic biomarker of delayed graft function (DGF) severity

with moderate outcome predictive power (50); and (3) protein

profiles with high predictive accuracies of Chronic Allograft

Nephropathy severity (51).

BUP analysis of kidney biopsies identified signatures

distinguishing healthy from injured tissues caused by TCMR or

polyomavirus BK nephropathy (52); differentially expressed

proteins in chronic rejection, including the alpha-1 chain of

collagen type IV and Integrin alpha-1; and several prognostic

candidates of fibrosis (53). Additionally, combining laser

microdissection of glomeruli from biopsies with BUP has allowed

for determining proteome profiles of active and chronic active

ABMR and identified three potential ABMR biomarkers (54).

Finally, various studies were conducted on tissue biopsies and

perfusates of kidney from living or deceased donors after IRI,

preservation, and DGF to elucidate injury mechanism and guide

the development of improved organ preservation strategies to

elevate graft quality (55–60).

Liver is the second most transplanted organ (38). Liver

transplant BUP research mainly focused on mechanisms of IRI

and acute rejection. Studies on biopsies showed that IRI alters

proteins involved in lipid and energy metabolism, metabolic

pathways, redox signaling, oxidative-stress response, and

cytoskeleton remodeling and indicated Ras GTPase-activating-like

protein IQGAP1 and Cytoplasmic protein NCK1 as potential

targets to reduce IRI (61, 62).

The comparison of global proteomes of liver tissues from acute

cellular rejection (ACR) and non-ACR transplant recipients

showed that proteins in ACR were mainly involved in immune

response and inflammation while those downregulated implicated

in metabolism dysfunction. Heme oxygenase-1 was indicated as a

candidate biomarker for ACR (63). Another study found 41

differential expressed proteins in sera of ACR patients, including

complement component 4q and 1q that could also predict ACR

(64).

BUP studies in lung transplantation focused on determining

biomarkers and mechanisms of chronic lung allograft

dysfunction (CLAD), a major contributor to poor long-term

transplant outcomes. BAL fluid analysis showed that the ratio of
Frontiers in Transplantation 04
Clara cell protein to lysozyme has diagnostic power (65). In

addition, the analysis of BAL from CLAD patients and controls

by parallel reaction monitoring (PRM) assays targeting

Angiotensin II-regulated proteins showed that these assays could

diagnose patients with graft inflammation and predict chronic

graft dysfunction (66).

In heart transplantation, BUP sought to identify potential

diagnostic and prognostic biomarkers of AR and graft dysfunction

in blood. It was found that (1) a set of exosomal serum proteins

could distinguish acute ACR and ABMR from no rejection patients

(67); (2) BD alters plasma proteome causing alterations in several

cellular processes, including coagulation and gluconeogenesis

among others; (3) expression levels of lysine-specific demethylase

3A and Kallikrein (KLKB1) could predict graft dysfunction, and

those of myosin Va and proteasome activator subunit 2 acute

rejection (68). The potential outcome predictive value of KLKB1

was also suggested in serum macrovesicles by others (69).
3. Top-down proteomics in
transplantation: the move from protein
to proteoform

Protein complexity is much broader than the amino acid

sequence determined by the genetic code. A single gene can

produce different forms of proteins called “proteoforms” deriving

from genetic variation, alternative splicing, and PTMs (70).

Different proteoforms can have different functions and

contribute to different phenotypes. Therefore, they can be more

accurate biomarkers of health and disease statuses and

therapeutic targets than proteins and their identification advance

SOT research (71, 72).

Several examples corroborate this hypothesis: (1) proteoform-

level information of histones, which are DNA binding proteins

regulating gene expression through combinations of PTMs (73),

correlate better to the biological outcome than the overall

abundance of histones or individual sites (74–77); (2)

proteoforms better distinguish cell types than proteins in PBMCs

(78); (3) serum apolipoproteins A-I and A-II proteoforms

specifically associate with cardiometabolic indices while no

significant differences were detected at protein level (79); and (4)

proteoforms of KRAS have distinct signaling functions in

colorectal cancer (80).

TDP is able to thoroughly characterize proteoforms informing

on exact mass, unambiguous isoform assignment, abundance, and

high-value PTM information (i.e., stoichiometry, types, and sites).

While BUP identifies and quantifies protein groups with great

sensitivity and dynamic range, it has a big limitation in PTMs

and proteoform identification due to the inaccurate “inference”

of proteoform from peptide-level data (81). An example is

illustrated in Figure 2A. If a hypothetical protein has three

phosphorylation sites on different tryptic peptides, BUP can

neither determine the proteoform composition of the original

protein group, whether all three phosphorylations occur together

on one proteoform or a mixture of mono- to triple-

phosphorylated proteoforms or quantify their stoichiometries.
frontiersin.org
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TDP overcomes this issue by analyzing intact proteins. In TDP,

which is often coupled with LC, proteoforms are separated and

directly ionized into mass spectrometers where the intact mass

spectra (MS1) are collected, and ions further fragmented (MS2)

for sequencing and PTM site identification (Figure 2B). Further

advantages and limitations of TDP and BUP were reviewed

elsewhere (20, 82).

TDP has been applied in transplantation studies aimed at

identifying novel proteoform diagnostic and prognostic

biomarkers of graft rejection and dysfunction. A TDP study

conducted on PBMCs from 10 transplant recipients with and

without acute rejection (AR) identified and quantified 3,000

unique proteoforms (83). Of these, 111 showed significant

differential expression in the two conditions, including stress-

associated ER protein 1 and 60S ribosomal protein L35a (84, 85).

Another study analyzed PBMCs from a small cohort of liver-

transplanted patients to identify biomarkers of different

transplant outcome: transplant excellence (TX), acute dysfunction

with no rejection (ADNR), and AR. The analysis revealed 82

differentially expressed proteoforms and indicated that the most

significant variations were associated with chemokine/cytokine

signaling and cytoskeletal regulation (86).

In a follow-up “discovery mode” TDP study conducted on a

larger single-center cohort (n = 75), 61 differentially expressed

proteoforms were identified (78). Validation was conducted on

patients from another multicenter cohort using a “targeted”

method with narrower MS1 scan window focusing on the 61

proteoforms of interest. Among these proteoforms, 24 were

confirmed to be biomarker candidates for liver-transplant

dysfunction or rejection. For more stringent validation, Huang

et al. recently described the proteoform reaction monitoring

(PfRM) workflow, which resembles the BUP targeted MS2

quantification. In PfRM, the selected 24 proteoforms were

fragmented and the resulted ions used for a more sensitive and

specific quantification to femtomolar magnitude (87). We

anticipate that future studies will likely validate these

proteoforms on a larger scale.

TDP was also used in heart allograft evaluation studies. Zhang

et al. identified the phosphorylation of cardiac troponin I (cTnI) as

a candidate biomarker for chronic heart failure (CHF). Specifically,

they found that the relative abundances of total phosphorylated

cTnI forms in postmortem heart tissues decreased from those

with normal cardiac function to end-stage CHF. Similar studies

conducted on heart transplant tissues revealed a significant loss

of phosphorylation on cTnI Ser22/23 sites in end-stage failing

hearts compared to those from non-failing donors (88). Profiling

of other proteoform targets in heart tissues are currently ongoing

(89–91). Notably, while only a few studies applied TDP to

transplant research, TDP has shown promising translational

values in other clinical areas (92) and is expected to make a

similar impact in the transplantation field in the future (93).

TDP has several technical challenges that need to be overcome

to reach its full potential. One challenge is associated with

limitations in the size of the protein analytes due to difficulties

in separation (94, 95). Drown et al. recently demonstrated that

coupling capillary zone electrophoresis (CZE) with TDP further
Frontiers in Transplantation 05
increases proteoform identification by 1.7-fold across five

different tissue types compared to using LCMS only (96). This

technological improvement could be applied to graft evaluation

in the future. Another TDP challenge is the overlapping of

different species, charge states and isotopic distributions in the

limited m/z space of mass spectra. To address this, Kafader et al.

developed Individual Ion Mass Spectrometry (I2MS) that was

recently used for analyzing antibody repertoires against SARS-

CoV-2 in COVID-19 patients and vaccinated individuals (97–99).
4. Next frontiers in proteomics for
advancing transplant outcomes

MS-based proteomics is a promising approach for SOT

biomarker and therapeutic target discovery by providing global

profiling and quantitative readout of proteoform changes (20,

100). However, current proteomic workflows in SOT research

focus on the analysis of bulk clinical samples. Those fall short in

reporting proteomic changes in specific cell types and

populations and lose information on the spatial origin of the

cells in solid tissues.

Protein distributions and changes in tissues and cells have been

traditionally probed by antibody-based approaches in SOT research

(101–103). These studies have been focused on proteins with prior

knowledge and have limitations in the discovery of novel protein-

based biomarkers. In recent years, emerging spatial and single cell

proteomics technologies have enabled the discovery of protein

signatures specific to functional tissue units, cellular

neighborhoods, and cell types. As infiltrating immune cell

populations are heterogeneous in allograft rejection, single cell-

resolved proteome measurement is crucial to elucidate transplant

rejection pathology and targeted cell therapy (104). BUP-based

single cell proteomic (SCP) technologies such as SCoPE-MS and

NANOPOTS have enabled the characterization of single cells in

heterogeneous cell populations (105, 106). These techniques

emerged from advances in high-throughput cell isolation,

preparation, and automated small volume cell processing. By

interfacing isobaric tag-based high-sensitivity LC-MS workflows,

thousands of proteins from single cells were quantified, opening

new avenues for SOT protein biomarker discovery (107–114)

(Figure 2A). In one example applied to organ transplantation

research, despite not single cells, Clotet-Freixas et al. collected

glomerular and tubulointerstitial compartments of transplant

kidney biopsies using laser capture microdissection that identified

protein signatures responsible for extracellular matrix remodeling

in antibody-mediated kidney allograft rejection (115). However,

despite significant advances in SCP, current technologies have

limitations in experimental throughput and rare cell profiling,

and proteoform-level measurement is yet to be achieved.

Spatial mapping of proteins directly in SOT biopsies preserves

the origin of cells of interest and their surrounding

microenvironment (116). Immunostaining-based multiplexed

protein imaging techniques have enabled dozens of proteins to

be imaged simultaneously in a tissue section. For example,

Imaging Mass Cytometry (IMC) (117) has been applied to
frontiersin.org
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kidney imaging and discovered spatial heterogeneity of immune

cells in cortex and medulla and a rare subset of proximal tubule

cell population representing regenerating cells (118). Despite

significant advances in the number of imaged proteins, these

techniques rely on pre-defined antibody panels for proteins with

prior knowledge. Imaging multiple protein markers in one tissue

sample in solid organ transplant biopsies significantly benefits

SOT research where availability and quantity of tissue biopsies

are extremely limited. Recently, protein and proteoform imaging

has been enabled by spatially resolved MS imaging (MSI)

approaches. Aside from MSI workflows utilizing spatial tissue

sampling coupled to LC-MS BUP proteomics (119), laser and

liquid extraction-based scanning MS imaging probes have

enabled spatial mapping of dozens to hundreds of intact proteins

and proteoforms (120–122). Specifically, liquid sampling probes

(nano-DESI) coupled with single molecule MS detection have

allowed imaging of intact proteoforms and native protein

complexes directly from tissue sections in a recently introduced

technique called proteoform imaging MS (PiMS) (114, 123–127)

(Figure 2C). In the first report, PiMS detected ∼400 proteoforms

from healthy human kidney tissues with many of them showing

localizations to different kidney tissue compartments and cellular

neighborhoods. These techniques can be readily adapted to tissue

biopsies in SOT research for protein and proteoform biomarker

discovery that were previously obscured by bulk measurements.
5. Conclusion

Although several promising biomarkers of graft injury and

rejection have been identified (14, 128, 129), robust diagnostic

and prognostic are still unavailable. In addition, there are no

efficacious treatments to block injury and rejection.

Proteins are the direct drivers of biological functions and

phenotypes, therefore, represent ideal biomarkers and druggable

targets. New advances in MS-based proteomics have enabled the

analysis of proteomes at unprecedented levels of granularity by

increasing the proteome coverage and providing information at

proteoform, single-cell and spatial resolution. Such information

could elucidate mechanisms underlying injury and rejection and

lead to novel biomarkers and therapeutic strategies. However,

technical, and economic challenges still prevent the transition of

these new technologies from discovery to clinical applications

(20, 93, 130).

Finally, the adoption of a multi-omics approach integrating

data generated by those powerful proteomics technologies,

genomics, transcriptomics, and metabolomics will help to unveil

mechanisms linking genotype and phenotype in SOT and drive

the identification of multi-biomolecules biomarker signatures, the
Frontiers in Transplantation 06
development of new therapeutics, and the advancement of

precise medicine (131).
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