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The applications of Vascularized composite allotransplantation (VCA) are
increasing since the first successful hand transplantation in 1998. However, the
abundance of muscle tissue makes VCA's vulnerable to ischemia-reperfusion
injury (IRI), which has detrimental effects on the outcome of the procedure,
restricting allowable donor-to-recipient time and limiting its widespread use.
The current clinical method is Static cold storage (SCS) and this allows only
6 h before irreversible damage occurs upon reperfusion. In order to overcome
this obstacle, the focus of research has been shifted towards the prospect of
ex-vivo perfusion preservation which already has an established clinical role in
solid organ transplants especially in the last decade. In this comprehensive
qualitative review, we compile the literature on all VCA machine perfusion
models and we aim to highlight the essentials of an ex vivo perfusion set-up,
the different strategies, and their associated outcomes.

KEYWORDS

ex-vivo perfusion, ex-vivo limb perfusion, vascularized composite allograft (VCA),
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The history of organ preservation using machine perfusion dates back to the 1930s
with the work of Carrell (1) and Lindbergh (2). The first successful clinical
transplantation of machine-perfused donor organs was in the late 1960s with both the
kidney (3) and liver (4) organs. However, this approach fell out of popularity for a
period of time due to a better understanding of the benefits of cooling (5) and the
development of preservation solutions (6-8) that provided an easier yet still effective
method for organ preservation. This method is Static Cold Storage (SCS) and involves
flushing the organ with a preservation solution and immersing it in the solution at 4°C.
This allows up to 24-h preservation for kidneys (9) and around 12 h for livers (10, 11)
without significant post-operative graft dysfunction.

To match the increasing need for organs, extended criteria donors (ECD) and donors
after circulatory death (DCD) are used in increasing numbers (12, 13). These grafts are
frail by definition, and machine perfusion systems come into play by allowing graft
assessment and reconditioning, which cannot be achieved by SCS. For instance, ex vivo
perfusion of lungs now allows high-risk organs or even discarded organs to be assessed
and transplanted successfully with longer preservation times (14-16). Again, successful
transplantation of declined or marginal livers can now be performed after resuscitation

with machine perfusion (17, 18). Quality assessment of kidneys can also be performed
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before transplantation (19). Moreover, machine-perfused kidneys
have been shown to have less frequent delayed graft function
when compared to static cold preserved kidneys in the clinical
setting (20). Machine perfusion systems now have an increasing
clinical application in solid organ transplantations, exceeding the
limits of SCS.

The relatively new field of vascularized composite tissue
allotransplantation (VCA)—which is the simultaneous transfer
of multiple types of tissues such as that of the skin, muscle,
nerve, and bone as a single functioning unit—faces a distinct
obstacle in terms of preservation. The obstacle is due to the
abundance of muscle tissue that is highly metabolically active
). IRI
defines a series of well-studied predictable events that occur
). In
general terms, the depletion of ATP during ischemia results in

and sensitive to Ischemia-Reperfusion injury (IRI) (21,
when the blood supply is cut in any given organ (

the disruption of various membrane antiports (24), the
mitochondrial electron transport chain (25), and various
enzymes (26), resulting in acidosis and cellular swelling. Upon
reperfusion, the accumulated cations continue to create an
osmotic gradient after normalization of the extracellular space,
). In

addition, reactive oxygen species (ROS) reappear, and the

which further induces cellular swelling and death (

reduced capability of the cell to withstand oxidative stress (28)
again leads to cellular death, which clinically manifests as
diminished function of the muscle (27). Also, the reperfusion
which is
). The SCS
method here is not as successful as solid organs and allows only
a period of 4-6h before the detrimental effects of IRI are
irreversible (27, 31).

In its third decade, the field of VCA is expanding, reaching
over 140 hand-upper extremity transplantations (32) and 40

phase initiates an inflammatory response (29),
associated with sensitization and acute rejections (

craniofacial transplantations (33) worldwide. As the clinical
of VCA and with
shortcomings of SCS in muscle preservation, there has been a

applications increase, respect to the
coincidental increase in the amount of research on the prospect
of machine perfusion of limbs and other VCA models
specifically in the last decade. This comprehensive review
compiles the literature of all VCA machine perfusion models
( , 2) and aims to highlight the essentials of an ex vivo
perfusion setup, the different strategies, and their associated

outcomes.

An example of a standard ex vivo machine perfusion setup is
shown in . The limb or the composite tissue is procured
with its vascular pedicle and the artery is cannulated. The circuit
starts with a reservoir containing the perfusate. The perfusate is
driven by a pump to a membrane oxygenator attached to a heat
exchanger for the delivery of perfusate at the desired
temperature. Continuous pressure monitoring is made at the
level of the artery. The venous return is gravity-fed back to the

reservoir to complete the circuit.
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The temperature is the key determinant in the ex vivo
perfusion of a limb or other composite tissue models as the
metabolic activity changes according to temperature. Every 10°
C drop in temperature results in about a two-fold decrease in
metabolic activity (73). This relationship also impacts the
composition of the perfusate and other parameters to meet the
demand of the tissue at a given temperature. Currently, there is
no consensus regarding the optimal perfusion temperature, and
a wide range (4°C-39°C) has been used in experimental models
( ,
categories suggested by Karangwa et al. (
(0°C-12°C), Mid-thermic (13°C-24°C), Subnormothermic
(25°C-34°C), and Normothermic (35°C-38°C). Experiments
should be assessed in their temperature context, and this

). Perfusion temperatures fall into one of the four
): Hypothermic

nomenclature will be used to group and review studies in the
following sections.

Since the first attempts at organ preservation with machine
perfusion using autologous blood in solid organs, a wide array of
commercially available preservation solutions has been developed
and experimented with, and custom-made cellular/acellular mixes
have also been reported. Thus far, for limb and composite tissue
machine perfusion experiments, there have been adaptations
from solid organ preservations ( , 2). In broad terms, a
perfusate can be formulated as Colloid + Electrolytes + Oxygen
carrier & Additives. This can be thought of as a mimicry of
mammalian blood in which plasma contains proteins that
create colloid oncotic pressure along with electrolytes and
oxygen is delivered to the tissues via Hemoglobin in red blood
cells (RBCs).

Colloids

Colloids are macromolecules that cannot move through
membranes and help to decrease the fluid escape to prevent
edema. One of the most common colloids that were used in
VCA machine perfusion is dextran 40, a polysaccharide that has
been used for plasma volume expansion. It is the colloid used in
commercial preservation solutions like Low-potassium dextran
(LPD-Perfadex) and Steen solution (LPD solution with albumin)
as well as in custom-made RBC-based perfusates. Albumin is the
common colloid of choice in RBC-based custom perfusates as
well as the aforementioned Steen solution. Pentafraction is a
starch (HAES),
polysaccharide, and is the colloid used in UW-MP solution.

form of hydroxyethyl which is another
Another compound used in machine perfusion solutions is
polyethylene glycol (PEG), which is used in the enrichment of
custom-made perfusates ( , 2, “Perfusate base” section).
The composition of commercial products that have been tested

in VCA machine perfusions can be seen in
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5 &« Electrolytes
g 2 5 &
= < < 3
§ = N In RBC-based perfusates for electrolytes, crystalloid solutions
S £ _33 T have been used such as Ringer’s Lactate, Plasmalyte (a crystalloid
0
E B % '}.:: solution that mimics plasma contents closely) (75) or plasma.
>3
g é é [ The mentioned commercial preservation solutions each have
E 3 2 E different electrolyte compositions, and the important difference is
& 2z s £ < the Na'/K" ratio. Solutions that have high Na" are extracellular
S X =
E & é g ;E Z types while those with high K" are intracellular types.
= = >
P g3 £ £ = Extracellular solutions mimic the post-ischemic environment and
3 82 g5¢ help the recovery of Na'/K* -ATPase (76), whereas intracellular
- solutions compensate for the lack of active transport in an
g o attempt to create cation balance (73) (Table 3).
2 g
<
S £
2 : 2 - :
z z & Oxygenation and oxygen carriers
S g 5
% o é é Mammalians have an average body temperature of 37.5°C (77),
g) § 5 i § and oxygen delivery is done via hemoglobin. When temperatures
= =] =
= é z; § are lower, the metabolic rate decreases and the solubility of oxygen
= o increases (78). With respect to this relationship, different
= oxygenation strategies were derived for different temperature settings.
5
]
£ . .
a S - < Hypothermic perfusions
Due to the decreased metabolic need under hypothermic
- conditions, perfusion without an oxygen carrier can be
2 g 5 £ attempted. Direct oxygenation of the perfusate is typically done
= = & g
3 § é 2 with a carbogen mixture (%95 O,/%5 CO,) (45, 50, 51), which is
<
= & & = also used in other temperature ranges in both limb and flap
z z Z models, and the perfusate partial O, pressure is maintained
@ around 300-500 mmHg (45, 46).
© gl g
= R I <] . . . .
§ g = ; =g Mid-thermic and subnormothermic perfusions
o "y
s £ %g . & S For mid-thermic and subnormothermic conditions, perfusion
o }5) =
Ao = > 2 |2 without an oxygen carrier has been attempted by Pendexter (34),
o - g Veraza (37), and Kruit (42) in limb models and by Taeger et al. in
. g - % ? multiple studies (65, 67, 69) (Tables 1, 2). Most of these studies do
o E = . . . .
u_? e =B S g not include SCS controls except for that of Kruit et al. in which
— o0 =
g B % Z = they report worse outcomes after 18 h of perfusion in histology vs.
@ X o~ Q 1 .
i § ER S d SCS controls yet preserved muscle contractility after replantation.
g The effect of adding an oxygen carrier under these conditions (21°
g— 9] 9] 3 C) was tested by Burlage et al. (36) in rat hindlimbs by adding
a N =]
it o o & HBOC-201, a hemoglobin-based oxygen carrier polymer
= (250 kDa) derived from bovine hemoglobin (79) to their custom-
. g
g o S = < 5 made perfusate consisting of BSA, PEG, and muscle cell media.
o] " R WIEE L 4 ® They reported a decrease in weight gain from a mean of 27.3% to
o 2= AE1E: E| o = - Yy rep ght 8
g é g g E|E o é N —-; 8=l g 4.9% and better histological outcomes. The idea of preserving a
S |8 E |E|=|8 g ) ) I .
= £ g | Z ";;: —‘é = = & “‘:E:,' =3 é = § limb at room temperature without any oxygen carrier is appealing
g z §- E ==l o) ;_E» - |2 ; £ because every intervention closing towards normal physiology
< | 5 . T T x| 2 2| R 14 . .
< gle |e|w[e|5|&a |BlEa |Ea b increases the complexity and the cost of the procedure. It should,
I 8 o however, be noted that due to the high metabolic need of muscle,
= ~ A = o
§ < = = s this idea may only apply for a certain range of temperatures and
. - 1 ° . .
= s 2 ) 2 most probably temperatures approaching the hypothermic range.
o o = . . . . . .
5*5' £ 3 '!: g g 3 § This would provide only a modest increase in preservation time
= alin © - /= & compared to common SCS conditions.
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FIGURE 1
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The essentials of ex vivo limb perfusion setup. Created with BioRender.com.

Temperature
1. Hypothermic (0-12°C)
2. Midthermic (13-24°C)
3. Subnormothermic (25-34°C)
4. Normothermic (35-38°C)

o _n

Heater-Cooler

Oxygen tank

Normothermic perfusions

For normothermic conditions, the need for an oxygen carrier is
obvious and reflected in the literature (Tables 1, 2). The most
common is the use of RBCs, which is typically arranged to
provide a hematocrit range of 10%-15%. Said et al. (44) used
HBOC-201 as an oxygen carrier in swine forelimbs and found
comparable results to their previous study using RBCs as carriers.
Moreover, Figueroa et al. (40) tested HBOC-201 vs. RBC based
perfusate in swine forelimbs at normothermic temperatures and
reported similar results for histology, although RBCs showed

slightly better outcomes in weight increase and compartment
pressures (13.18% +22.70./29 mmHg+15 vs. 23.10% * 3.00/
32 mmHg + 23). significantly  better
outcomes than SCS controls.

Both groups showed

Hemoglobin-based oxygen carriers (HBOC) are a good
prospect in replacing RBCs and should be further studied as an
oxygen carrier. RBCs have a significantly lower shelf life and
necessitate special storage conditions and are a valuable resource.
Moreover, mechanical hemolysis, the need for cross-matching,
and the risk of sensitization and transmission of infectious

TABLE 3 Commercially available preservation solutions tested in VCA perfusions.

Composition EC uw Steen Perfadex HTK (Custodiol)
K" 115 125 6 6 10
Na* 10 25 138 138 15
Cl™ 15 20 142 142 22
Ca®* - 0.3 03 0.015
Mg** - 5 0.8 0.8 4
Colloid/Impermeant - Pentafraction 50 g/L Dextran 40 Dextran 40 Mannitol 30
Lactobionate 100 g/L 5g/L 50 g/L
Raffinose 30 Albumin 7 g/L
Buffer Phosphate Phosphate Phosphate Phosphate Histidine
Bicarbonate THAM THAM
Antioxidant - Glutathione Mannitol
Allopurinol Tryptophan
A-ketoglutarate
Glucose 19.5 - 5 5 -
Amino acids Histidine
Tryptophan
Others Sulfate
Adenosine

Units are given in mmol/L unless otherwise specified.
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diseases could represent issues. HBOCs, however, are acellular,
have low immunogenicity, have a longer shelf life, and can be
stored for up to 3 years at room temperature (80, 81).

Additives

Heparin is a common additive used in most perfusion
experiments. This is used in the first batch of the perfusate to
remove the residual thrombi that might form after procurement
Steroids
dexamethasone are also commonly used additives for their effect

and flushing. such as methylprednisolone and
of decreasing capillary leak and edema, but their relative effect
has not been tested in the machine perfusion setting. Antibiotics
such as vancomycin, cefazolin, and streptomycin have been used
by some groups. Colonization may be a problem, especially for
extended perfusion runs, as the perfusion system creates foreign
surfaces. Currently, no published data have analyzed bacterial
growth during VCA machine perfusions. Further testing will
provide insights as to which antibiotics may be needed. Another
additive the 50%

combination. As the amputated limb lacks endocrine control,

common is Dextrose-Regular  insulin
insulin may be used to enhance glucose uptake to the cells.

To sum up, currently, there is no optimal perfusate
composition that has shown consistent results in every given
temperature setting and model. Assessments should be made in
For instance, our
between SCS with

in an allogeneic rat

the context of temperature and procedure.
group has previously tested the differences
Heparinized saline, UW, HTK, and Perfadex
model and found better results with UW and Perfadex (82).
Similar experiments may be attempted especially for hypothermic
and mid-thermic perfusion strategies. Studying the limits of mid-
thermic perfusion without oxygen carriers can be another good
focus due to the relative simplicity of the approach.

Generally, the flow is adjusted to maintain a pressure goal. The
pressure goals vary but for hypothermic perfusions, a 30-
40 mmHg perfusion pressure is typically used in all models,
including rat, swine, and human. Kueckelhaus et al. (54) report
in their pilot studies less endothelial sheer and better structural
integrity of the muscle at 30 mmHg compared to 60 mmHg. The
same pressure range was also used in a mid-thermic setting by
) and Pendexter (34) in rat models. Under the
subnormothermic range, Miiller et al. (57) and Constantinescu
(58) have used 100-150 ml/min with an RBC-based perfusate,
which corresponded to 30 mmHg pressure. They reported

Burlage (

physiologic pressures resulting in significantly more edema, but
numerical data of extremities perfused at physiological pressures
were not included in the publication. On the other hand, Ozer
et al. (55, 56) used pulsatile perfusion. The pulses were driven at
60-80 mmHg with RBC-based perfusate under the
temperatures. In normothermic perfusions, 90 mmHg, which falls

same
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into the physiologic level of mean arterial pressure, is commonly
used (35, 39, 40, 47).

There are no studies that directly assess different perfusion
), four different
modalities in swine forelimbs were tested while keeping the

pressures. However, in a study by Amin et al. (

perfusate constant (RBC + Albumin based). The first group was
hypothermic (10°C) 30 mmHg (HMP-30), the second was
subnormothermic (28°C) 50 mmHg (SNMP-50), the third was
SNMP-70 mmHg, and the fourth group was normothermic (38°C)
at 70 mmHg (NMP-70). Results were reported to be better in
terms of histology and weight increase in the NMP-70 group, but
they do not discuss differences between the SNMP-50 and SNMP-
70 groups. More studies are required to provide better insights in
the optimal perfusion pressure for each temperature setting.

Ex vivo perfusion platforms allow donor quality assessment
during organ preservation. The liver, bile, urea, and coagulation

cofactor productions can be monitored (83, 84). In kidney
perfusions, urine production can be observed during perfusion,
and kidney-specific markers such as NGAL (neutrophil

gelatinase-associated lipocalin) can be measured to assess injury
in the organ (85). In lungs, ventilation parameters can be
analyzed as airway resistance and pulmonary compliance during
reperfusion (86). On the other hand, the tissue of interest is not
a single specific organ that has a pre-determined, gradable
internal function for the continuation of homeostasis in VCA.
The overwhelming majority of clinical applications of VCA
involve extremity and craniofacial transplantations (87). In limb
transplants, the goal is to achieve a viable limb with good motor
that to be

accomplished independently. In craniofacial transplants, the goals

and sensory function allows daily activities
are to improve airway stability, mastication, speech, and overall
cosmesis depending on the pre-transplant condition of the
patient. A common feature in these grafts is the transfer of
functional muscle tissue with motor nerve coaptation to the
recipient motor nerve ends. Long-term functional outcomes also
depend on nerve repair level, regeneration, and rehabilitation (32,

). In that context, graft monitoring during ex vivo perfusion
differs from other organs. To document the function of the graft
during preservation, assessment of muscle contraction in
response to nerve stimulation has been a frequent practice (12
studies in extremity models, 40%) ( ). However, it must be
emphasized that the depolarization of a muscle fiber at a given
time is influenced by factors such as temperature, electrolyte
imbalances, and pH (88). A negative response does not mean
that the limb is “failing” or a perfusion without any contraction
response is worse than a perfusion with contraction. There is no
limb specific marker that can be used for every setting; however,
regular perfusate gas analysis is important to follow markers such
as lactate and potassium. Increased lactate indicates poor tissue
oxygenation and a shift to anaerobic respiration in any tissue in
the body (89). Potassium is abundant intracellularly (90) and is

indicative of cellular damage; however, the models involve cut
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ends of muscle bodies and some increase is usually observed.
Weight increase and compartment pressure are also monitoring
modalities that do not require histopathological and metabolic
analysis. There is currently no commonly accepted monitoring
protocol in ex vivo VCA perfusion studies. Studies so far show
the gas
histopathological analysis as a common practices in monitoring
VCA
stimulation, and metabolic analysis have emerged as frequent but

following: weight gain, perfusate analysis, and

ex vivo perfusions. Compartment pressure, nerve

not universal practices in monitoring VCA ex-vivo perfusion.

A common finding in all limb and VCA perfusions is the
weight increase over time due to the fluid escape to the
interstitium and the inevitable increase in vascular resistance and
compartment pressures. An extremely wide range of weight
increases have been reported (0%-99%) ( , 2).

Hypothermic perfusions

For hypothermic conditions, Kueckelhaus et al. (54) report a
44.06% mean weight increase in swine hindlimbs after 12h of
perfusion with Perfadex. A subsequent study again by Kueckelhaus
et al. (
after 12 h of perfusion with Perfadex. These were replanted with a 7-

) reported a 10% mean weight increase in swine forelimbs

day follow-up and compared to limbs replanted after 4 h of SCS. The
perfusion group had significantly better outcomes in terms of muscle
histology after replantation. Krezdorn et al. (50) perfused swine
forelimbs for 24 h with Steen solution and observed a 41% mean
weight increase. After replantation, perfused limbs showed better
histology compared to the 4-h SCS + replantation control group.
There was no information on the post-reperfusion weight or
compartment examination. Haug et al. (45) reported only a 4.3%
weight increase in human limbs when perfused with Steen solution
for 24 h with similar perfusion parameters (30 mmHg PP goal, at 10°C).

For flap models, Brouwers et al. (64) perfused swine rectus
abdominis myocutaneous flaps for 24 h at 10°C and reported a
weight decrease in UW perfused flaps (—6% and —7%), whereas
HTK perfused flaps had a 97% and a 60% increase in weight.
After
degenerative changes in muscle histology ( )

replantation and follow-up, both groups showed

Midthermic and subnormothermic
perfusions

Kruit et al. (42) perfused swine forelimbs with UW-MP
solution for 18h at mid-thermic temperature (13.5°C) and
observed a mean weight gain of —2.7% for perfused limbs vs.
+1.6% for SCS controls. The limbs were replanted and followed
for 12 h. At the end of the follow-up, perfused limbs had a 19%
weight increase, whereas SCS controls had an increase of 11.6%.
The perfused limbs showed worse outcomes in histology, but
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they preserved contractility at the end of reperfusion. Tawa et al.
(38) conducted their experiments at 21°C using a modified Steen
solution (further enrichment with PEG and albumin) and
observed a mean weight increase of 14.48% with continuous flow
after 24 h of perfusion in swine partial hindlimbs.

Gok et al. (49) reported a 3.1% weight increase after 6 h in a rat
hind limb model at 30°C-35°C using a Steen and RBC mixture.
Werner et al. (53) reported a mean 0.4% decrease in weight
using a RBC-plasma-based perfusate in human forearms at 30°
C-33°C after 24h of perfusion. Constantinescu et al. (58)
reported a 1.32% weight increase after 12h of perfusion with
autologous blood.

Taeger et al. (65, 67, 68), in their multiple studies, reported a
wide range of weight gain (49.5%-99%) after 6 h of perfusion in
swine rectus abdomins flaps. They reported better tissue
preservation with perfusion. However, it should be emphasized
that the control groups in these studies were subjected to
ischemia at room temperature rather than at 4°C ( ).

Normothermic perfusions
Under normothermic conditions, Duraes et al. (52) reported a
0.54% mean weight increase at 12 h with an RBC + albumin-based
perfusate. In the subsequent studies, from the same group (39, 40,
) they put forth the following as a discontinuation criteria for
limb perfusions: (1) Arterial pressure >115 mmHg, (2) 20% drop
tissue O, saturation, and (3)
>30 mmHg.

In a recent 2023 study, Meyers et al. (35) reported a positive

in Compartment pressure

correlation between weight increase, myocyte injury score (MIS),

and potassium and lactate levels. There was a negative

correlation with muscle contractility under normothermic
conditions. In their experiments, they reached a 2% weight
increase after 13 +5h, 5% after 15+ 6 h, 10% after 16 +6 h, and
20% after 19+4h of perfusion. MIS was significantly higher
than the baseline at 5% weight increase, and contractility was
significantly lower at 20% weight increase, when compared to
baseline values. Also, they reported a significant increase in
compartment pressures upon the termination of the perfusion

compared to SCS-preserved limbs (56.5 mmHg vs. 10.5 mmHg).

The clinical and pathological results after reperfusion are
critically important to evaluate the efficacy of machine perfusion.
Thus far, 11 studies (36%) in extremity models have included
some form of reperfusion. They used blood from unrelated
donors (swine) in one study, replantation in five studies (four
swine and one canine), and transplantation in five studies (one
rat study syngeneic; two rat studies unspecified; two swine
studies unspecified). Reperfusion follow-up periods ranged from
4 h to 12 weeks) ( ).
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Under hypothermic conditions, Kueckelhaus et al. (51)
observed higher heart rates, which were accompanied by
arrhythmias and a drop in oxygen saturation in static cold stored
preserved limb recipients vs. perfused limb (swine, 12 h, 10°C,
low-potassium dextran) recipients following replantation. This
clinical finding was also accompanied by higher markers of
muscle injury (myoglobin, K) in the static cold storage group.
Histopathology also showed segmental depletion and
vacuolization of the fibers in the cold storage group after 7 days
post-reperfusion. Similarly, Krezdorn et al. (50) observed that
heart and respiratory rates after replantation were increased in
the static cold storage group. There was increased damage in
muscle biopsy specimens obtained from animals in the static
cold storage group after 7 days when compared with those from
animals in the perfusion group (swine, 24 h, 8°C, Steen).
Furthermore, Gok et al. (49) observed that at 12 weeks post-
transplantation the perfusion group (rat, 6 h, 8°C, HTK) showed
similar results to the immediate transplantation group in terms
of muscle injury scores and muscle contractility while static cold
stored transplantations showed worse outcomes.

Under mid-thermic conditions, Kruit et al. (42) observed
higher muscle injury scores in perfused limbs (18 h, 15°C, UW)
at 12h post-replantation when compared to SCS, which was
attributed to edema formation during preservation. The mean
threshold stimulus for muscle contraction did not differ between
cold storage and perfusion groups. Clinical outcomes post-
reperfusion were not assessed in this study. In the study from
Burlage et al. (36), perfused limbs (rat, 6 h, 21°C, HBOC-201)
showed higher transplant survival rates in comparison to SCS
controls and were similar to the immediate transplant group at
30 days post-reperfusion.

In the sub-normothermic range, Ozer et al. (55) observed
similar outcomes in single fiber contractility tests between
perfusion (swine, 12 & 24 h, RBC based) 27°C-32°C and normal
control groups at 12 h post-transplant. However, SCS-preserved
muscle showed a decrease in the contractility test.

Reperfusion after normothermic perfusion was tested by Amin
et al. (43) and was achieved by an additional 4 h of perfusion with
unrelated donor blood. Perfused limbs were hemodynamically and
biochemically stable on reperfusion in comparison to those
subjected to SCS, showing lower lactate, normal pH, and less
edema.

In flap ex vivo perfusion models, two studies have included a
reperfusion period (replantation of the flap) using swine rectus
abdominis myocutaneous flaps as models ( ). Brouwers
et al. (64) observed better outcomes of muscle injury in HTK
perfused flaps when compared to UW-perfused and cold-stored
flaps. Perfusion preservation was under hypothermic conditions
for 24 h followed by reperfusion for 7 days. Kruit et al. (66)
aimed to analyze the gene expression patterns in perfusion-
preserved flaps, using HTK and UW with SCS controls. Their
perfusion duration was 18 h followed by a reperfusion period of
12 h while the SCS duration was 4 h. The expression of genes
related to ischemia, apoptosis, and inflammation was comparable
between the ex-vivo perfusion and static cold storage groups.
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Midthermic,
Subnormothermic, and Normothermic) have emerged in VCA

Four major strategies (Hypothermic,
preservation as in solid organs with each one having
advantages and limitations. Similar strategies have resulted in
different outcomes in different studies, and current literature
lacks evidence to make conclusions mainly due to the complex
nature of these studies. Weight increase and compartment
pressure increases are the common consequences of ex vivo
perfusion, especially after 12 h. The current literature shows
that the simulation of physiology (Normothermic/RBC) seems
to have better outcomes in terms of edema. However,
promising results have also been obtained in other settings
even without oxygen carriers.

It must also be noted again that most of the studies so far do
not include a reperfusion phase, which is important to fully
assess the preservation method ( , 2, reperfusion
outcomes section). To move one step further for clinical
translation, the net effect of weight increase on compartment
pressures and the possible early post-operative consequences of
reperfusing an extremity that already has increased weight/
pressures should be thoroughly studied to provide stringent
criteria for discontinuation for each model used. After this,
optimizing and comparing approaches will be an easier exercise.
More studies are needed with reperfusion, especially allogeneic,
to better understand the course of machine-preserved limbs
against SCS-preserved limbs.

Currently, there is no optimal perfusate composition for limbs
and muscle containing composite flaps that has shown consistent
results in
Assessments should be made in the context of temperature and

every given temperature setting and model.
procedure. For instance, our group has previously tested the
differences between SCS with Heparinized saline, UW, HTK, and
Perfadex in an allogeneic rat model and found better results with
UW and Perfadex (

especially for hypothermic and mid-thermic perfusion strategies.

). Similar experiments may be attempted

Studying the limits of mid-thermic perfusion without oxygen
carriers can be another good focus due to the relative simplicity
of the approach.

Another important aspect of ex vivo limb perfusion studies is
the sampling of muscle tissues, especially for studies that do not
have a reperfusion phase. The weight increase in the proximal
part of the limb will not translate into an increase in
compartment pressure as the fascial compartment is released
during procurement, and over the course of ex vivo perfusion
this may create differences in viability compared to the distal
muscles in the limb confined in their fascial compartments.
There have been no studies investigating the possible
differences in histopathological or metabolic outcomes of the
different levels of the limb. We acknowledge that these
experiments are time and resource consuming. However,
this will be a good initial step to better understand the
effects of weight and compartment pressure increases of

ex vivo perfusions.
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We also acknowledge that the perfusion duration goals in the
given examples are arbitrary and designed to demonstrate how
much longer an extremity or VCA can be preserved by
using machine perfusion. In a future clinical scenario
completing the whole procedure “as soon as possible” will
remain a goal both for transplantation and replantation cases.
Nevertheless, ex vivo perfusion as a method of preservation for
VCA is an exciting field of research with a high potential for

clinical translation.
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