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The transformative potential of
artificial intelligence in solid
organ transplantation
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PA, United States, 2Health Sciences Research Training Program, University of Pittsburgh, Pittsburgh, PA,
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Solid organ transplantation confronts numerous challenges ranging from donor
organ shortage to post-transplant complications. Here, we provide an overview
of the latest attempts to address some of these challenges using artificial
intelligence (AI). We delve into the application of machine learning in
pretransplant evaluation, predicting transplant rejection, and post-operative
patient outcomes. By providing a comprehensive overview of AI’s current
impact, this review aims to inform clinicians, researchers, and policy-makers
about the transformative power of AI in enhancing solid organ transplantation
and facilitating personalized medicine in transplant care.
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Introduction

Transplantation is the best treatment for end-stage organ failure. While significant

advancements have led to improvement in access to transplantation and graft outcomes,

challenges like organ shortage, chronic alloimmune injury, and post-transplant

complications hinder reaching their full potential. Recent Artificial Intelligence (AI)

breakthroughs have re-captured attention as they can address these challenges. AI, a

multidisciplinary field encompassing machine learning (ML), deep learning, natural

language processing, computer vision, and robotics, has rapidly advanced. Its

application is facilitated by increased access to awesome computational power. Its

utilization in transplantation has already yielded promising results, providing deeper

insights into disease processes, and identifying potential prognostic factors. For

example, ML algorithms can predict graft survival, optimize allocation, and guide

immunosuppression, improving success rates. Additionally, AI-driven image analysis

enhances organ quality assessment accuracy, efficiency, and diagnosis of rejection,

guiding informed medical decisions. This scientific review comprehensively explores the

use of AI in solid organ transplantation, examining its applications, current state of

development, and future directions. We critically examine existing literature and

evaluate AI’s potential impact on pretransplant evaluation, rejection prediction, and

post-transplant care. Ultimately, if properly employed, AI integration can potentially

enhance patient outcomes.
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Pretransplant evaluation

Pretransplant evaluation is a rigorous process that involves

multidisciplinary efforts (1). It includes donor assessment, organ

evaluation, recipient risk stratification, and organ allocation.

Currently, available methods to guide this process suffer from a

lack of consistency, subjectivity, non-generalizability, and labor.

AI can offer models to address these challenges, making the

process more efficient and consistent. Evaluating donor kidneys

for volume and structural abnormality is a key routine pre-

transplant practice that usually depends on findings of donor

Computed Tomography (CT) scans of the abdomen (2). Kidney

volume is widely used as a surrogate to measure the nephron

size (3). However, it does not differentiate between cortical and

medullary compartments. One of the major drawbacks of such a

practice is interobserver variability, the tedious work it requires,

and its potential to misclassify a kidney as not transplantable

erroneously. To unify kidney volume measurement, an

automated kidney segmentation algorithm was developed and

validated using contrast-enhanced CT exams from the Aging

Kidney Anatomy study (4). The algorithm was trained on 1,238

exams and validated on 306 exams with manual segmentations.

The Dice similarity coefficient, which measures the overlap

between the automated and manual segmentations, was 0.94 for

the cortex and 0.90 for the medulla, with a low percent

difference bias. The algorithm was tested on 1,226 external

datasets and performed on par with manual segmentation, with

high Dice similarity metrics for both cortex and medulla

segmentation. Along the same lines, Ram et al. explored the use

of CT scans and supervised “dictionary learning” approach for

screening donor lungs before transplantation (5). The algorithm

was trained to detect pulmonary abnormalities on CT scans and

predict post-transplant outcomes. The model was trained on a

subset of 14 cases evenly split between accepted and declined

donor lungs for transplantation. The training data consisted of

CT scans of freshly procured human donor lungs, and the

“ground truth” for training was determined by the final decision

of 6 experienced senior thoracic surgeons. In other words, the

model was trained to detect pulmonary abnormalities on CT

scans by learning to associate specific CT image features with the

classification of “accepted” or “declined” lungs, as determined by

blinded thoracic surgeons. This algorithm assumes that each

lung region on the CT scan can be accurately represented as a

linear combination of very few dictionary elements. This allows

the ML model to perform accurately, even with small data sets.

The performance of the ML model was evaluated using a test

set of 66 cases, consisting of 52 accepted and 14 declined donor

lungs. The overall classification accuracy and area under the

receiver operating characteristic curve (AUC) were 85% and

0.89, respectively.

On the other hand, lesion scores on procurement donor

biopsies are commonly used to assess the health of deceased

donor kidneys, guiding their utilization for transplantation (6).

However, frozen sections present challenges for histological

scoring, leading to inter- and intra-observer variability and

inappropriate discard. Yi et al. constructed deep-learning-based
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models to assess kidney biopsies from deceased donors (7). The

models, Mask R-CNN for compartment detection and U-net

segmentation for tubule prediction enhancement, accurately

identified tissue compartments and correlated with pathologists’

scores with the digital score for Sclerotic Glomeruli showing the

strongest correlation (R = 0.75). In addition, Arterial Intimal

Fibrosis % and Interstitial Space Abnormality %, also showed

significant correlations with the corresponding pathologist scores

(R = 0.43 and R = 0.32, respectively). The digital scores

demonstrated higher sensitivity in identifying abnormalities in

frozen biopsies, providing a more objective and accurate

evaluation of features that were difficult to assess visually.

Another layer of preoperative assessment is identifying that

transplantation is the suitable therapeutic approach to treat the

patient’s condition. This stands as a challenge in heart and lung

transplantation, especially due to limited organ availability and

the postoperative complications such invasive procedures carry.

Therefore, identifying a suitable therapeutic approach for

advanced heart failure patients is not an easy task, considering

the absence of a consistent consensus. To address this issue, Yao

et al. developed an interpretable ML algorithm to identify

potential candidates for advanced heart failure therapies (8). The

algorithm encoded observations of clinical variables into

humanly understandable fuzzy concepts that match how humans

perceive variables and their approximate logical relationships.

Instead of using predefined thresholds, the method learned fuzzy

membership functions during model training, allowing for a

more nuanced representation of variables. The model included

an algorithm for summarizing the most representative rules from

single or multiple trained models. This summarization process

helped provide a parsimonious set of rules that clinicians could

easily interpret and use. When benchmarked against other

interpretable models, the author’s model achieved similar

accuracy but better recall and precision and, hence, a better F1

score. The study had limitations such as a small dataset, limited

follow-up data, and differences between the registry datasets

regarding variable measurement and illness severity, which may

affect the generalizability of the algorithm’s findings. Although

the overall performance of this model is not great, it represents a

good starting point that can be improved by expanding the

datasets of patients and providing a unified assessment of their

risk factors.

Predicting graft function can be immensely helpful pre-

transplant since resources can be allocated more efficiently to

those who are more likely to benefit from the procedure. In fact, a

ML prediction model for immediate graft function (IGF) after

deceased donor kidney transplantation was developed (9). The

model used well established algorithms such as eXtreme Gradient

Boosting (XGBoost), light GBM and GBC. XGboost performed the

best in predicting IGF and distinguishing it from delayed graft

function (DGF) with an AUC of 0.78 and a negative predictive

value (NPV) of 0.92. To keep in mind, XGBoost considers donor

related factors such as age, diuresis, and KDRI. This suggests that

creating a model for predicting IGF or DGF can enhance the

selection of patients who would benefit from an expensive

treatment, as in the case of machine perfusion preservation.
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Prioritizing transplantation to patients who need it the most is

essential in organ allocation. Indeed, organ transplantation might

represent a life-saving option for a select group of patients (10).

However, death while waiting for an organ is a crucial factor that

is often overlooked (11). Recently, Bertsimas et al. developed and

validated a prediction model called optimized prediction of

mortality (OPOM) for liver transplant candidates (12). OPOM

was generated based on available data within the Standard

Transplant Analysis and Research (STAR) database, which are

routinely collected on all waitlisted candidates. OPOM not only

predicts a candidate’s likelihood of dying but also becoming

unsuitable for transplantation within three months. OPOM

significantly improves its predictive capabilities compared to the

current Model for End-Stage Liver Disease (MELD), especially

within the sickest candidate population. OPOM maintained a

significantly higher AUC values, allowing for a more accurate

prediction of waitlist mortality. MELD’s predictive capabilities

deteriorated significantly with increasing disease severity, while

OPOM’s predictive power was maintained. This is important

because the candidates with the highest disease severity warrant

the most accurate mortality prediction for accurate prioritization

on the liver transplant waitlist. MELD allocation includes using

exception points for certain subpopulations of candidates, such

as those with hepatocellular carcinoma (HCC). However, studies

have shown a lack of survival benefits among patients

undergoing liver transplantation based on MELD exception

points (13). OPOM provides a more objective and accurate

prediction of mortality without the need to raise MELD score

artificially. OPOM uses more variables than MELD, including

trajectories of change in lab values linked to MELD. These

additional variables contribute to OPOM’s accuracy in predicting

mortality. Using OPOM could potentially save hundreds of lives

each year and promote a more equitable allocation of livers.

Recipient evaluation is one of the most tedious pre-operative

elements of transplantation (14). AI would provide more

consistent and efficient models to help clinicians in this process.

Physiological age that considers the cardiovascular fitness of

transplant candidates is a well-established risk factor for

postoperative complication and graft dysfunction. One study

investigated the relationship between electrocardiogram (ECG) age,

determined by AI, and mortality risk in kidney transplant

candidates (15). The study found that ECG age was a risk factor

for waitlist mortality. Determining ECG age through AI may help

guide risk assessment in evaluating candidates for kidney

transplantation. Patients with a larger age gap between ECG age

and chronological age were more likely to have coronary artery

disease and a higher comorbidity index. Adding the age gap to

models that include chronological age improved mortality risk

prediction by increasing the concordance of the models. The study

demonstrated that each 10-year increase in age gap is associated

with a more than 3-fold increase in mortality risk (HR 3.59 per

10-year increase; 95% CI: 2.06–5.72; p < 0.0001). Integrating the

age gap in the model improved mortality risk prediction beyond

chronological age and comorbidities in waitlisted patients.

Transplant candidate selection depends heavily on predicting

post-transplant survival of each candidate (16). This allows for
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allocating scarce organs to patients who would benefit the most

from organ transplantation. Such predictions are subjective and

highly dependent on clinicians’ judgment, institutional policies,

patient and donor demographics, and post-transplantation time.

A unified prediction model that accounts for all variables is

needed. Yoon et al. introduced a personalized survival prediction

model for cardiac transplantation called Trees of Predictors

(ToPs) (17). The ToPs algorithm improves survival predictions

in cardiac transplantation by providing personalized predictions

for identified patient clusters and selecting the most appropriate

predictive models for each cluster. Compared to existing clinical

risk scoring methods and state-of-the-art ML methods, ToPs

significantly improve survival predictions, both post- and pre-

cardiac transplantation. Another model was developed for

predicting kidney graft survival based on pretransplant variables

using a Bayesian Belief Network (18). The model accurately

predicted graft failure within the first year or within 3 years

based on pretransplant donor and recipient variables. Variables

such as recipient Body Mass Index (BMI), gender, race, and

donor age were found to be influential predictors. The model

was validated using an additional dataset and showed comparable

results. The validation process showed that the predictive model

had reasonable accuracy in identifying graft failure at 1 year and

3 years (AUC 0.59 and 0.60, respectively) after transplantation.

Both studies can be used to optimize organ allocation by looking

at different transplant outcomes: patient survival vs. graft

survival. A model that can predict both might provide the

utmost benefit in the allocation and listing process.

On the other hand, Brahmbhatt et al. evaluated different

models, including the Lung Allocation Score (LAS), the Chan

et al. 2019 model, a novel “clinician” model, and two ML models

(Least Absolute Shrinkage and Selection Operator (LASSO) and

Random Forest (RF)) for predicting 1-year and 3-year post-

transplant survival (19). The LAS overestimated the risk of death,

particularly for the sickest candidates. Adding donor variables to

the models did not improve their predictive accuracy. The study

highlights the need for improved predictive models in lung

transplantation. The immediate post-transplant period represents

a critical time point to consider when a candidate is evaluated

for transplantation. To predict the 90-day survival of patients

with acute-on-chronic liver failure (ACLF) following liver

transplantation, Yang et al. explored the use of four ML

classifiers: Support vector machine (SVM), logistic regression

(LR), multilayer perceptron (MLP) and RF (20). Compared with

conventional clinical scoring systems such as the MELD score,

ML models performed better at predicting the 90-day post-

transplant survival of ACLF patients. RF outperformed the rest

of the employed models with an AUC of 0.949. Taken together,

these findings suggest that ML models, especially RF classifier,

can provide a better tool for organ allocation that is tailored to

clinical patients’ outcomes. In the pediatric population, Garcia-

Canadialla et al. explored the use of ML to analyze

echocardiographic and clinical data in pediatric patients with

dilated cardiomyopathy (DCM) (21). k-means identified groups

with similar phenotypes, allowing for the identification of 5

clinically distinct groups associated with differing proportions of
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death or heart transplant (DoT). The study identifies distinct patient

groups with different clinical characteristics and outcomes and

suggests that ML can improve prognostication and treatment of

pediatric DCM. The integration of comprehensive echo and

clinical data helps identify subgroups of DCM patients with

varying degrees of dysfunction, aiding in risk stratification and

providing insights into the pathophysiology of pediatric heart failure.

Last, an important area in transplantation involves HLA

matching. Neimann et al. developed a deep learning-based

algorithm called Snowflake (22), which considers allele-specific

surface accessibility in HLA matching. The focus of Snowflake is

to calculate solvent accessibility of HLA Class I proteins for

deposited HLA crystal structures, supplemented by constructed

HLA structures through the AlphaFold protein folding predictor

and peptide binding predictions of the APE-Gen docking

framework. This allows for the refinement of HLA B-cell epitope

prediction by considering allele-specific surface accessibility. This

can improve the accuracy of B-cell epitope matching in the

context of transplantation. This approach may also help in

identifying potential gaps in epitope definitions and verifying

Eplets with low population frequency by antibody reaction

patterns. It remains to be shown whether this approach benefits

outcomes. Table 1 summarizes all studies reviewed in this section.
AI and diagnosis of rejection

The Banff Automation System is an automated histological

classification system for diagnosing kidney transplant rejection

(23). This tool has been developed to eliminate or minimize

misclassification due to the misinterpretation of the histological

findings of pediatric and adult kidney allograft biopsies that

result from the complex and tedious international Banff

classification rules. The Banff Automation System was developed

to improve the precision and standardization of rejection

diagnosis in kidney transplantation by providing a

comprehensive and automated algorithm based on the Banff

classification system. The system has been tested on kidney

transplant recipients and has shown promising results in

reclassifying rejection diagnoses and improving patient risk

stratification. In a user-friendly fashion, this system allows

clinicians to input all the necessary parameters for an accurate

Banff evaluation, including histological lesion scores, relevant

associated histological lesions, non-rejection-related associated

diagnoses, C4d staining, circulating anti-HLA DSA, electron

microscopy results, and molecular markers if available. The

system computes the inputs and generates a diagnosis according

to the Banff classification, along with notes and suggestions for

complex cases. It also provides a decision-tree visualization to

help users understand the process that led to the diagnosis. In

fact, the cases that were reclassified correctly as rejection by the

system after being diagnosed as rejection had worse graft survival

(HR = 6.4, 95% CI: 3.9–10.6, p value < 0.0001). In contrast, the

cases that were initially diagnosed as rejection by pathologists

and then reclassified as no rejection by the system had better

graft survival (HR = 0.9, 95% CI: 0.1–6.7, p value = 0.941).
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By automating the diagnostic process and providing standardized

criteria, the Banff Automation System reduces inter-observer

variability and improves the consistency of rejection diagnosis. It

ensures that clinicians follow the established Banff rules and

guidelines, leading to more precise and reliable diagnoses. The

system has been validated by independent nephropathologists

and transplant physicians in real-life clinical use, further

confirming its accuracy and consistency.

Another group that has developed a ML model to help

pathologists provide a more accurate diagnosis of kidney allograft

rejection is Zhang lab (24). The group trained their pipeline

using PAS-stained biopsies based on two deep learning

structures: the masked region-based convolution neural network

which help differentiate between various kidney compartments

and detect mononuclear leukocytes, and U-Net that allowed

tissue segmentation. The developed pipeline was used to

investigate clinically whole slide images (WSI) in order to

correlate them with an allograft outcome. Two scoring systems

were developed: one for initial biopsies (ITAS) and another for

post-transplant biopsies (Composite Damage Score). Both scores

strongly predicted graft loss within a year, acting as early

warning signs. This superior accuracy compared to Banff scoring

system suggests deep learning could become a more reliable and

objective tool for assessing transplant health. By stratifying

patients based on their individual graft loss risk, personalized

treatment plans and closer monitoring for high-risk patients

become possible.

Along the same lines, recent work has focused on better

describing the severity of rejection to complement a rejection

diagnosis since rejection severity dictates clinical management.

Naesens’ group developed and validated a tool to describe the

chronicity and severity of chronic alloimmune injury in kidney

transplant biopsies (25). They used a semi-supervised consensus

clustering algorithm called RejectClass to identify four chronic

phenotypes based on the chronic Banff lesion scores that are

associated with graft outcomes. The total chronicity score which

represents the sum of four weighted chronic lesion scores is

strongly correlated with graft failure, independent of acute lesion

scores. On the other hand, Labriffe et al. trained a boosted

decision tree model that performed well in diagnosing distinct

types of rejection and fibrosis in kidney graft biopsies (26). The

antibody-mediated rejection (ABMR) classifier yielded AUC of

0.97, 0.97, and 0.95, and precision recall (PR) area under the

curve of 0.92, 0.72, and 0.84 for the MH Hannover, KU Leuven,

and Necker Paris datasets, respectively. The T-cell-mediated

rejection (TCMR) model had AUCs of 0.94, 0.94, and 0.91, and

PR area under the curve of 0.91, 0.83, and 0.55 for the same

datasets. IFTA classifier had AUC ≥0.95 for both ROC and PR

curves in all datasets. This model helps standardize

histopathological rejection diagnosis, eliminating outcome

uncertainty in guiding clinical management or clinical trials.

However, this model depends on the biopsy procedure, sampling,

preparation, and elementary lesion grading, which are all

operator and observer dependent. This model assumes that all

biopsies are performed, processed, and read accurately. Such an

assumption might limit this model’s accuracy and reproducibility.
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TABLE 1 Summary of studies involving AI in pre-transplant evaluation.

Authors Year Application Test Comparison Performance Limitations Data availability
Korfiatis
et al. (4)

2022 Measuring kidney,
cortex and medulla
volumes

Segmentation using
modified 3D U-Net
architecture

Manual segmentation
using ITK-SNAP

– Dice similarity
metric of 0.94 (R
and L cortex), and
0.9 (R and L
medulla)

– Similar
interobserver
variability

– Lack of
generalizability
due to small
sample size and
lack of training
data samples from
multiple centers.

– Limited knowledge
in population with
less healthy or
diseased kidneys

The Aging Kidney
Anatomy Study: pre-
donation scans from 2012
to 2015 from Mayo Clinic
Arizona and Minnesota
(training), and Cleveland
Clinic (external validation
and testing).

Ram et al. (5) 2023 Evaluating donor
lung for any
abnormalities prior
to transplantation

Dictionary learning
algorithm based on
ex-situ lung CT scan

Clinical judgement of
blinded 6 experienced
thoracic surgeons

– Lack of
generalizability
due to the small
sample size and
the single center
nature of the trial.

100 subjects enrolled as
part of a single-center
prospective trial from
2016 to 2018 from the
University Hospital
Leuven

Yi et al. (7) 2022 Lesion score for
donor kidney biopsy
pre-transplantation

Deep learning based
tissue compartment
recognition and whole
slide image
investigation

Pathologist
assessment

– Digital score
paralleled
pathologist score
with the strongest
correlation for
glomerular sclerosis
and lowest for
Interstitial Space
Abnormality

– Superior association
with post-transplant
estimated
glomerular filtration
rates and graft loss

– Low performance
in detecting ISA is
due to challenges
in reading tubular
findings on frozen
biopsies.

– Lack of
generalizability

OPTN cohort

Yao et al. (8) 2022 Identifying patients
with advance heart
failure that require
heart transplantation
and durable LVAD
implantation

Machine learning
model based on
principles of tropical
geometry and fuzzy
logic

Other machine
learning models

– F1 score of 43.8%,
recall of 51.1, and
precision of 46.9%

– Outperform
Decision Tree and
Fuzzy Inference
Classifier in their
transparency and
ability to provide a
parsimonious set of
rules

– Samples used to
traing the model
does not reflect
the real-world
setting in terms of
advanced
therapies delivery

– Model identifies
patients who
require advanced
heart therapy but
does not identify
patients who
benefit the most
of such therapies.

REVIVAL (Registry
Evaluation of Vital
Information for VADs in
Ambulatory Life) and
INTERMACS
(Interagency Registry for
Mechanically Assisted
Circulatory Support)
registries

Quinino
et al. (9)

2023 Prediction for
immediate graft
function in deceased
kidney allograft
recipients

Popular Machine
Learning algorithms:
XG Boost,Light
Gradient Boosting
Machine, Gradient
Boosting VClassifdier,
Logistic Regression,
CatBoost Classifier,
AdaBoost classifier,
and Random Forest
classifier.

XGBoost outperforms
the other models:
– AUC of 0.78

(CI:0.71–0.84)
– Sensitivity of 0.64
– Specificity of 0.78

– Homogeneity of
the sample used
for training and
testing of various
models.

– Small sample size

Patients undergoing their
first deceased donors KTx
at our Transplant Service
between January 1, 2010,
and December 31, 2019

Bertsimas
et al. (12)

2019 Evaluating liver
candidate’s 3-month
waitlist mortality or
removal

Optimal classification
tree machine learning
model (OPOM)

Model for End-Stage
Liver Disease (MELD)

– OPOM
outperformed
MELD with an AUC
of 0.859Predictive
power of OPOM is
preserved at high
disease severity,
while MELD
performance
deteriorates with
disease severity.

– Generalizability
concerns
especially since
the model was
trained and tested
on a single center
dataset

Organ Procurement and
Transplantation Network
(OPTN) Standard
Transplant Analysis and
Research (STAR) dataset

(Continued)
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TABLE 1 Continued

Authors Year Application Test Comparison Performance Limitations Data availability
Lorenz et al.
(15)

2023 – Evaluating the
ECG age
(physiological
age)

– Integrating ECG
age into
predictive model
of pre-transplant
waitlist
mortality.

Convolutional neural
network

Chronological age Each 10-year increase in
the age gap is associated
with a more than 3-fold
increase in mortality
risk

Inability to associate
the elevated age gap
with a specific ECG
finding.
Inaccuracies in the
cardiac risk factors
listed in training
dataset
Selection biases in the
training population

All adult patients who
underwent evaluation for
KT alone or simultaneous
pancreas/kidney
transplant at Mayo Clinic
in Minnesota between
December 2014 and
December 2019

Yoon et al.
(17)

2018 Risk scoring for
heart transplant
candidates’
stratification

Trees of Predictors
(ToPs)

Clinical risk scoring
model: Donor Risk
Index, Risk-Stivity of
stratification Score,
and the Index for
Mortality Prediction
After Cardiac
Transplantation

ToPs outperforms the
best clinical risk scoring
model (RSS) with an
AUC of 0.66 vs. 0.587
and a sensitivity and
specificity of 80%.

Model fails to provide
pre-transplantation
risk assessment

The United Network for
Organ Sharing (UNOS)
database

Brown et al.
(18)

2012 Predicting kidney
graft survival

Bayesian Belief
Network using
pretransplant donor
and recipient variables

Predictive power for
graft failure with the first
year or within 3 years
with an AUC of 0.63 and
sensitivity of 40% and
specificity of 60%.

Information loss due
to binning continuous
data

The United States Renal
Data System (USRDS)

Brahmbhatt
et al. (19)

2022 Predicting 1 year
mortality based on
the Lung Allocation
Score (LAS)

Lung Allocation Score
(LAS)

Chan et al, 2019
model
Random Forest
Clinician model
LASSO

Low area under the
curve of all models
(0.55–0.62)
Reasonable NPVs
(0.87–0.9)
Poor PPV of less than
0.25

Limited variables
available that might
compromise the
model predictive
accuracy
Fewer outcome data
on recent
transplanted patients
LAS overestimate the
risk of death limting
access to
transplantation for
certain patients

The United Network for
Organ Sharing database
(UNOS)

Yang et al.
(20)

2022 Predicting 3 month
survival of acute on
chronic liver failure
patients post liver
transplantation

Four machine learning
models: support
vector machine,
logistic regression,
multilayer perceptron,
random forest

Five conventional
score systems: MELD
score, ABIC, CLIF-
SOFAs and CLI-C
ACLFs

ML models
outperformed
conventional models in
predicting short term
survival of AOCLF
patients post
transplantation.
RF performed the best
of all models with an
AUC of 0.94, meanwhile
the best performing
conventional model
wasMELD with an AUC
of 0.704

Single center
Retrospective data
Lack of donor data
Small sample size

132 ACLF patients
undergoing LT were
enrolled from the
Transplantation Center,
Third Xiangya Hospital,
Central South University
between March, 2012 and
December, 2019

Garcia-
Canadilla
et al. (21)

2022 Identifying the risk
factors for death or
heart
transplantation in
pediatric patients
with dilated
cardiomyopathy

Machine learning
model

Predict patients that are
at risk of ToD
Cluster at risk patients
into different pheno-
groups

Small sample size
Omission of clinically
relevant data during
training that include
biomarkers and
genotypes

Data from children, 0–18
years of age, diagnosed
with idiopathic, familial,
or genetic DCM,
presenting to our
institution between 6/
2004 (when digital
echocardiography started)
and 2016

Al Moussawy et al. 10.3389/frtra.2024.1361491
Although histological classification is the gold standard for

graft rejection diagnosis, this method suffers from inconsistencies

and lack of reproducibility due to the complexity of the Banff

classification system. Efforts have been made recently to use AI to

integrate transcriptomic or proteomic data to establish diagnostic
Frontiers in Transplantation 06
models (27). For instance, Fang et al. used quantitative label-free

mass spectrometry analysis on formalin-fixed, paraffin-embedded

biopsies from kidney transplant patients to identify proteomic

biomarkers for T-cell-mediated kidney rejection (28). The label-

free proteomics method allowed for quantifying 800–1,350
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proteins per sample with high confidence. Differential expression

analysis was then conducted to identify differentially expressed

proteins (DEPs) that could serve as potential biomarkers for

TCMR. Three different ML algorithms, including LDA, SVM, and

RF, were applied to the protein classifiers derived from the DEPs

identified in the label-free proteomics analysis. The group validated

the diagnostic model for rejection using an independent sample set

consisting of 5 TCMR and five stable allograft (STA) biopsies.

The leave-one-out cross-validation result demonstrated that the

RF-based model achieved the best predictive power over two

other ML models. In a follow-up blind test using an independent

sample set, the RF-based model yields 80% accuracy for TCMR

and 100% for STA. When applying the established RF-based

model to two public transcriptome datasets, 78.1%–82.9%

sensitivity and 58.7%–64.4% specificity was achieved.

Van Baardwijik used genes from the Banff-Human Organ

Transplant (B-HOT) panel to develop a decentralized molecular

diagnostic tool for kidney transplant biopsies (29). They

developed a RF classifier and compared the performance of the

B-HOT panel with other available models. The B-HOT+ model,

which included the B-HOT panel genes plus six additional genes,

achieved high accuracy in classifying rejection types. It achieved

an AUC of 0.965 for non-rejection (NR), 0.982 for ABMR,

however, lacked the sample size to test AUC for TCMR during

cross-validation within the GSE98320 dataset. In the independent

validation within the GSE129166 dataset, the B-HOT+ model

achieved an AUC of 0.980 for NR, 0.976 for ABMR, and 0.994

for TCMR. The B-HOT+ model had higher AUC scores than

other models, demonstrating its superior performance in

classifying kidney transplant biopsy Banff categories.

Some groups went above and beyond to create a new

classification system based on molecular phenotyping, claiming

that it is superior to histological assessment in diagnosing

rejection due to the subjectivity of the latter method. The

Molecular Microscope Diagnostic System (MMDx)-Kidney study

group presented a new system for assessing rejection-related

disease in kidney transplant biopsies using molecular phenotypes

(30). The researchers collected microarray data from over 1,200

biopsies. They used supervised ML methods (linear discriminant

analysis, regularized discriminant analysis, mixture discriminant

analysis, flexible discriminant analysis, gradient boosting

machine, radial support vector machine, linear support vector

machine, RF, neural networks, Bayes glm, and generalized linear

model elastic-net) to generate classifier scores for six diagnoses:

no rejection, TCMR, early-stage ABMR, fully developed ABMR,

late stage ABMR, and Mixed ABMR and TCMR. They then used

unsupervised archetypal analysis to identify six archetype clusters

representing different rejection-related states. The study found

that the molecular classification provided more accurate

predictions of graft survival than histologic diagnoses or

archetype clusters.

The use of AI to improve rejection diagnoses has been

expanded to involve different organ transplantation models. The

use of RNA sequencing (RNA-seq) and a RF-based classifier to

improve the diagnosis of acute rejection (AR) in heart transplant

recipients stands as an example (31). Peining et al. performed
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RNA-seq analysis on endomyocardial biopsy samples from 26

patients and identified transcriptional changes associated with

rejection events that were not detected using traditional

histopathology. They developed a diagnostic and prognostic

signature that accurately predicted whether the next biopsy

would show rejection with 90% accuracy. A weighted long-term

memory (LSTM) model was developed in liver transplantation to

detect graft fibrosis (32). The model outperformed [AUC = 0.798

(95% CI: 0.790 to 0.810)] multiple other conventional ML

algorithms and serum fibrosis biomarkers. The weighted LSTM

model showed promising results in improving the early diagnosis

of graft fibrosis after liver transplantation.

Halloran et al. focused on developing molecular assessments

for lung transplant biopsies and evaluating the impact of

molecular TCMR on graft survival (33). The researchers used

microarrays and ML to assign TCMR scores to transbronchial

biopsies and mucosal biopsies. The researchers assessed

molecular TCMR in lung transplant biopsies using the MMDx,

which is a validated system combining microarray-based

measurements with ML-derived algorithms. This system was

adapted for the INTERLUNG study to define the molecular

phenotype of lung rejection. Molecular TCMR was associated

with graft loss, while histologic rejection and donor-specific

antibodies were not. The study suggests that molecular TCMR

can predict future graft failure in lung transplant recipients.

Table 2 summarizes all studies reviewed in this section.
AI and immunosuppression in
transplantation

Immunosuppression is the mainstay postoperative measure to

maintain graft tolerance and prevent graft loss (34). However,

dosing of immunosuppressive drugs requires iterative monitoring

to reach a therapeutic blood level, especially during the

immediate postoperative period and during stresses such as

infections or rejection episodes. This process requires frequent

blood draws and office visits. AI can offer a non-invasive model

to predict immunosuppressive drug blood levels. One of the

earliest AI-based studies in transplantation utilized evolutionary

algorithms (EAs), symbolic AI, to create a pharmacokinetic

model for predicting cyclosporine blood levels in 101 heart

transplant patients (35). The EA-based software tool showed

accurate predictions and a strong correlation with observed

levels. The mean percentage error between the predicted and

observed cyclosporine concentrations for the training data set

was 7.1% (0.1%–26.7%), and for the test data set, it was 8.0%

(0.8%–28.8%). The correlation coefficient between predicted and

observed cyclosporine levels was 0.93 for the training data set

and 0.85 for the test data set. Besides using evolutionary

algorithms, other AI techniques that have been trained in

predicting drug levels and outcomes in transplant patients

include neural networks. For example, a study by Chen et al.

used a neural network with a genetic algorithm to predict

tacrolimus blood levels in 32 liver transplantation patients (36).

The neural network prediction for tacrolimus blood levels was
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TABLE 2 Summary of studies involving AI in rejection diagnosis.

Authors Year Application Test Comparison Performance Limitations Data availability
Yoo et al.
(23)

2023 Evaluating kidney biopsy
for diagnosis of rejection

Banff automation
System

International
Banff classification
by pathologists

In adults: Antibody
mediated rejection
reclassification rate of
29.75%
T cell mediated rejection
reclassification rate of
54.29%
Rejection reclassification
rate of 7.32%
In pediatrics: ABMR
reclassification rate of:
30.77%
TCMR rate of:30.77%

The automated system
doesn’t change the
pathologist’s grading
and scoring of a
specific lesion.
The classification
doesn’t consider the
clinical history of the
patient
Classification might
require changes and
updating in case Banff
classification system
changes

4,409 kidney transplant
biopsies from three
prospective multicentric
cohorts of adult and
pediatric kidney
transplant recipients
(Paris Transplant Group
cohort, University of
Wisconsin-Madison’s
cohort and the
international pediatric
cohort NIH project
1R21DK122229-01) and
two large clinical trials
(KTD-Innov
NCT03582436 and EU-
TRAIN NCT03652402)

Zhang
et al. (24)

2022 Diagnosing Kidney
allograft rejection based
on whole slide image.
Providing a prognostic
assessment based on
biopsy finding

Deep leaning models:
mask Region-based
Convolution Neural
Network And U-Net

Banff scoring by
pathologists

The deep learning model
effectively identified and
measured various
pathological lesions
within the biopsies,
outperforming
Both ITAS and the
Composite Damage Score
were highly predictive of
graft loss within one year
for baseline and post-
transplant biopsies,
respectively.

Small sample size
Single center
retrospective data
The model doesn’t
accurately
microvascular
inflammation and
arteritis
The model was not
trained to detect and
diagnose acute cellular
rejection

The Genomics of
Chronic Allograft
Rejection (GoCAR)
Australian Chronic
Allograft Dysfunction
(AUSCAD)

Vaulet
et al. (25)

2022 Assessment of kidney
lesion chronicity and
severity

Semisupervised
consensus clustering
algorithm,
RejectClass

Hazard ratio of 5.01 (CI:
2.83–7; p-vaalue <0.001)
independent of the total
activity

Algorithm
performance depends
heavily on the
histological Banff
scoring which is
subject to inter- and
intra- observer
variability

All kidney
transplantations
performed at the
University Hospitals
Leuven between March
2004 and February 2013
(training)
Electronic databases of
Lyon University Hospitals
and theNeckerHospital in
Paris (validation)

Labriffe
et al. (26)

2022 Diagnosing rejection
based on integrated
clinical and histological
findings

XGBoost Classifier High AUC of 0.95–0.97
for ABMR
High AUC of 0.91–0.94
of TCMR
High AUC > 0.96 for
IFTA.
95% accuracy in
discriminating active vs.
chronic ABMR.

The approach depends
heavily on biopsy
procedure, and
elementary lesion
pathology evaluation.

BIOMArkers of Renal
Graft INjuries
(BIOMARGIN,
NCT02832661) and
Reclassification using
OmiCs integration in
KidnEy Transplantation
(ROCKET, funded by
ERACoSysMed)
(training)
Data from three
transplant centers: KU
Leuven (Belgium), MH
Hannover (Germany),
andNecker Paris (France)
(validations)

Fang et al.
(28)

2023 Providing a more
efficient, accurate and
reproducible rejection
diagnosis

Machine learning
models-three
algorithms: LDA,
SVM, and RF to
provide a proteomic
based TCMR
diagnosis

Histological
evaluation

RF classifier
outperformed the other
two ML algorithms
RF based model
achieved an accuracy of
80% for TCMR and
100% for stable
RF-based model
sensitivity of 78.1–82.9
and specificity of
58.7–64.4

Very small cohort
Identified molecular
marker by proteomic
technology need to be
validated and verified
before being used for
diagnostic purposes

Kidney transplantation
cohort from the
University of Pittsburgh
Medical center

(Continued)
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TABLE 2 Continued

Authors Year Application Test Comparison Performance Limitations Data availability
Baardwijk
et al. (29)

2022 Providing more accurate,
efficient and
reproducible molecular
diagnosis of kidney
rejection

Multilabel random
forest model trained
on B-Hot panel genes
and Feature Selection
model most
predictive genes

Histological
evaluation of kidney
biopsy

Mean accuracy of 92.1%
AUC of 0.965 for non-
rejection and 0.982 for
ABMR

Retrospective data
Interobserver
variability in
evaluating kidney
biopsy pathology.
No TCMR data

Two public gene
expression datasets
(GSE98320 and
GSE129166) from the
Gene Expression
Omnibus database

Reeve et al.
(30)

2017 Enhancing rejection
diagnosis

Supervised machine
learning methods:
archetypal analysis

Histological
evaluation of kidney
biopsy

54% molecular
discrepancy with
histological rejection
diagnoses
16% showed molecular
rejection despite no
histological rejection

Retrospective data
Molecular elements
might require
validation prior to use

Gene Expression
Omnibus (GEO)
database

Piening
et al. (31)

2022 Improving the sensitivity
and specificity of
histopathological
evaluation of
endomyocardial biopsy
for assessment of cardiac
graft rejection

Differential
expression and RF
based machine
learning model

Histopathological
evaluation of
endomyocardial
biopsy

A prognostic signature
of non-histological
rejection, predicting
with a 90% accuracy
histopathological
determined rejection on
subsequent biopsies.

Small sample size CTOT-03 study (https://
clinicaltrials.gov/study/
NCT00531921)

Azhie et al.
(32)

2023 Early detection of
fibrosis in liver allografts

Weighted long short-
term memory

– Liver biopsy
(gold standard)
LSTM, recurrent
neural network,
tamporal
conventional
network, RF,
SVM,LR,Lasso
regression, Ridge
regression,
clinical findings
(Aspartate
aminotransferase
to platelet ratio
index, fibrosis-4
index and
transient
elastography)

Weighted LSTM
outperformed other
available model in
predicting advanced
liver fibrosis with an
AUC of 0.798

Small biopsy sample
size
Variability In liver
biopsy procedure and
interpretation
Models are trained on
patients whose clinical
state warranted a
biopsy, making the
extrapolation of this
model to include
follow up-outpatient
settings questionable
Time consuming
method

Adults who had received
a liver transplantation
(aged ≥18 years at
transplant) with at least
one post-transplant liver
biopsy done at the
University Health
Network (UHN),
Toronto, ON, Canada,
between Jan 1, 1992, and
June 30, 2020

Halloran
et al. (33)

2020 Developing a molecular
assessment for
transbronchial lung
biopsy and mucosal
biopsies and establishing
the impact of molecular
TCMR on graft survival

Unsupervised
machine learning
techniques:
Archetypal analysis
(AA) and principal
component analysis
(PCA)

Histological
evaluation of
bronchial and
mucosal biopsies

TCMR scores in
transbronchial biopsies
match those in mucosal
biopsy.

Lack of centralized
histology and DSA
assessment of the
biopsies
Kaplan Meier survival
analyses were not
adjusted to
confounding variables
RF of graft loss
omitted important
variables such as
donor age, and
primary graft
dysfunction
CLAD status needs
reassessments in the
light of new CLAD
consensus definition.

Adult lung transplant
recipients from 10
centers

Al Moussawy et al. 10.3389/frtra.2024.1361491
not significantly different from the observed value by a paired t-test

comparison (12.05 ± 2.67 ng/ml vs. 12.14 ± 2.64 ng/ml, p = 0.80).

More recent work by Min et al. focusing on 777 pediatric

transplant recipients utilized GWAS by SNP arrays to pinpoint 14

SNPs independently associated with tacrolimus levels. Linear

regression with stepwise backward deletion vs. LASSO model to

determine the significant predictors of log-transformed dose-

adjusted T1 levels (37). Both traditional and ML approaches
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selected organ type, age at transplant, rs776746, rs12333983, and

rs12957142 SNPs as the top predictor variables for dose-adjusted

36- to 48-h post tacrolimus initiation (T1) levels. In another study,

an ML model outperformed traditional Bayesian estimation

methods and showed potential for routine tacrolimus exposure

estimation and dose adjustment (38). Xgboost model yielded

excellent AUC estimation performance in test datasets, with a

relative bias of less than 5% and a relative root mean square error
frontiersin.org
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TABLE 3 Summary of studies involving AI in immunosuppression monitoring.

Authors Year Application Test Comparison Performance Limitations Data set Data
availability

Hoda et al.
(35)

2005 Prediction of
cyclosporine levels
in heart
transplantation
patients

EVIS-
Evolutionary
algorithms

Blood levels of
cyclosporine
(CyA)

AUC ranging between
80 and 90%
Correlation coefficient
between predicted and
observed CyA levels for
tested data set was 0.85
(p -value <0.001)

Algorithm doesn’t
account for patients’
lifestyle and non-
compliance.
Small sample size Chen

101 randomly selected
adult heart transplant
patients from the Heart
and Lung
Transplantation
Center, University of
Vienna Medical School

Chen et al.
(36)

1999 Prediction of
tacrolimus levels
in liver
transplantation
patients

Neural Network
combined with
genetic
algorithm

Blood levels of
tacrolimus

Average difference
between predicted and
observed tacrolimus
levels is 1.74 ng/ml

Small sample size
Retrospective nature of
the training data set

Liver transplant
patients from the
University of Iowa
Hospitals and Clinics

Min et al.
(37)

2022 Prediction of
tacrolimus level in
pediatric solid
organ transplant
recipients

Linear regression
using clinical
predictors,
genetic variables
and a
combination of
both

Blood levels of
tacrolimus

The combined
prediction model has
the lowest prediction
error and explains 30%
of the variation in
dose-adjusted
tacrolimus levels.

Only applies for pediatric
population
Selection bias in the
populations
(underrepresentation of
African Americans or
other racial and ethnic
groups)

POSITIVE cohort

Woillard
et al. (38)

2021 Prediction of
tacrolimus levels in
transplant patients

XgBoost
machine learning
model

Blood levels of
tacrolimus

Accurate estimation of
tacrolimus interdose
AUC

Small sample size
Retrospective nature of
the study

TAC AUC estimation
and dose
recommendation cohort

Al Moussawy et al. 10.3389/frtra.2024.1361491
(RMSE) of less than 10%. Additionally, the ML models

outperformed the MAP-BE method in six independent full-

pharmacokinetic datasets from renal, liver, and heart

transplant patients. These findings suggest that the ML models

can provide more accurate estimation of tacrolimus interdose

AUC and can be used for routine tacrolimus exposure

estimation and dose adjustment. Table 3 summarizes all

studies reviewed in this section.
Prognostication

Transplant patients require close follow-up post-operatively to

monitor graft function and detect any rejection episodes (39).

Providing clinicians with a tool to predict rejection or graft

failure would help patients and improve their outcomes. For

instance, Mulugeta et al. developed a model to predict the risk of

graft failure in kidney transplant recipients (40). Analyzing data

from a retrospective cohort of kidney transplant recipients at the

Ethiopian National Kidney Transplantation Center, the study

employed various ML algorithms to address the imbalanced

nature of the data, characterized by a disproportionate

representation of successful transplants compared to graft

failures. The authors employed a combination of strategies,

including hyperparameter tuning, probability threshold moving,

tree-based ensemble learning, stacking ensemble learning, and

probability calibrations. These techniques aimed to optimize the

performance of individual ML models, adjust classification

thresholds to account for the imbalanced data, harness the

collective strength of multiple tree-based models, leverage

stacking ensemble learning to create a more robust prediction

system, and ensure the predicted probabilities align with the

actual graft failure rates. The study’s findings demonstrated the
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efficacy of ML algorithms in predicting renal graft failure risk,

particularly when employing ensemble learning methods like

stacking ensemble learning with stochastic gradient boosting as a

meta-learner. This approach achieved an AUC-ROC of 0.88 and

a brier score of 0.048, indicating high discrimination and

calibration performance. Additionally, feature importance

analysis revealed that chronic rejection, blood urea nitrogen,

and creatinine were the most significant predictors of graft

failure. This study highlights the potential of ML models as

valuable tools for risk stratification and personalized care in

renal transplantation.

In addition, Tian et al. explored the development and

evaluation of a ML-based prognostic model to predict survival

outcomes for patients following lung transplantation (41).

Utilizing data from the United Network for Organ Sharing

(UNOS), the authors developed a Random Survival Forest (RSF)

model, incorporating a comprehensive set of clinical variables.

The RSF model demonstrated superior performance compared to

the traditional Cox regression model, achieving an AUC of 0.72

and a C-index of 0.70. Stratification of patients based on the RSF

model’s predictions revealed significant differences in survival

outcomes, with a mean overall survival of 52.91 months for the

low-risk group and 14.83 months for the high-risk group.

Additionally, the RSF model proved effective in predicting short-

term survival at one month, with a sensitivity of 86.1%, a

specificity of 68.7%, and an accuracy of 72.9%. These findings

suggest that the RSF model holds promise as a valuable tool for

risk stratification and personalized care management for lung

transplant recipients, enabling clinicians to make informed

decisions regarding treatment strategies and resource allocation.

Not only is survival an issue but complications can arise after

transplantation. Chen et al. used various preoperative and

intraoperative factors to predict the occurrence of postoperative
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sepsis (42). Their RF Classifier model outperformed the commonly

used Sequential Organ Failure Assessment (SOFA) score in

predicting postoperative sepsis in liver transplant patients. The

model demonstrated a higher AUC in the validation set than the

SOFA score (0.745 vs. 0.637).

Additionally, Banerjee et al. developed and evaluated a ML-based

survival tree algorithm, named ReSOLT (Recipient Survival After

Orthotopic Liver Transplantation), to predict post-transplant

survival outcomes for liver transplant recipients. The authors used

the UNOS transplant database (43). They identified eight significant

factors that influence recipient survival: recipient age, donor age,

recipient primary payment, recipient hepatitis C status, recipient

diabetes, recipient functional status at registration and at

transplantation, and deceased donor pulmonary infection. The

ReSOLT algorithm effectively stratified patients into 20 subgroups

with distinct survival probabilities, demonstrated by significant

log-rank pairwise comparisons (p < 0.001). The estimated 5- and

10-year survival probabilities varied considerably among the

subgroups, highlighting the algorithm’s ability to provide patient-

specific survival estimates. Furthermore, the ReSOLT algorithm

demonstrated superior performance compared to traditional

survival analysis methods, achieving an AUC of 0.742 and a C-index

of 0.728. These findings suggest that the ReSOLT algorithm can

serve as a valuable tool for personalized risk stratification and

treatment planning in liver transplant recipients, enabling clinicians

to make informed decisions that optimize patient outcomes.

Moreover, Ivanics et al. investigated the feasibility and

effectiveness of ML-based 90-day post liver transplant mortality

prediction models using national liver transplantation registries

from Canada, United States of America, and United Kingdom

(44). The models exhibited satisfactory performance within their

respective countries, but their applicability across different

countries was restricted. The average performance metrics across

countries were AUC-ROC of 0.70, accuracy of 0.74, sensitivity of

0.76, and specificity of 0.67. These findings indicate that ML-

based mortality prediction models could be beneficial for risk

stratification and resource allocation within individual countries,

but caution is advised when applying them across diverse

healthcare systems and patient populations.

Along the same lines, the Paris Transplant Group evaluated the

efficacy of ML algorithms in predicting kidney allograft failure

compared to traditional statistical modeling approaches (45).

Utilizing data from a large retrospective cohort of kidney

transplant recipients from 14 centers worldwide, Truchot et al.

compared the performance of various ML models, including

logistic regression, naive Bayes, artificial neural networks, RF,

bagged tree, and stochastic gradient boosting, against a Cox

proportional hazards model. The results demonstrated that no

ML model outperformed the Cox model in predicting kidney

allograft failure. The Cox model achieved an AUC of 0.78, while

the best-performing ML model, stochastic gradient boosting,

achieved an AUC of 0.76. These findings should not discourage

the application of ML in predicting graft outcomes; however,

scientists should think more creatively about how to best utilize

ML in hopes of outperforming current methods. One aspect of

ML techniques that outshines statistical modeling is the
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clustering and/or projection of unique patient groups. For

instance, Jadlowiec et al. employed an unsupervised ML

approach on the UNOS OPTN database to categorize distinct

clinical phenotypes among kidney transplant recipients

experiencing DGF (46). The group applied consensus clustering

techniques to identify four distinct clusters of DGF patients, each

characterized by unique clinical profiles and associated outcomes.

These clusters exhibited varying levels of severity, with one

cluster associated with a significantly higher risk of allograft

failure and death compared to the others. The findings

underscore the heterogeneity of DGF and highlight the potential

of ML in identifying subgroups of patients with distinct clinical

trajectories and risk profiles, enabling personalized treatment

strategies and improved patient outcomes. Similarly, our group

has utilized t-SNE, a dimensionality reduction technique, to

uncover strata of patients suffering from borderline rejection

(47). We detected 5 distinct groups of Borderline rejection

patients with markedly different outcomes.

Length of stay after transplantation reflects postoperative

complications. Identifying the patients at risk is essential to

provide them with the most optimal care to carry them safely

beyond the critical post-operative period. Gupta et al.

investigated the factors associated with prolonged hospital length

of stay (PLOS) after pediatric heart transplantation and

developed a predictive model using ML and logistic regression

techniques (48). Analyzing data from the Pediatric Heart

Transplant Society database, the authors identified several factors

associated with PLOS, including younger age, smaller body size,

congenital heart disease, preoperative use of extracorporeal

membrane oxygenation, and longer cardiopulmonary bypass

time. The ML model, which incorporated 13 variables,

demonstrated superior performance in predicting PLOS

compared to the logistic regression model. This suggests that ML

approaches may provide a useful tool for identifying patients at

risk of PLOS and optimizing post-transplant care strategies.

Outcome prediction for organ transplantation is not only

critical for organ allocation, patient stratification but also post-

operative patient risk assessment. Due to the iterative list of

variables that come into play, ML provides a user friendly and

more efficient model to compute outcome prediction. Miller

et al. found that ML and statistical models can be used to predict

mortality post-transplant, with RF achieving the highest AUC for

predicting 1-year survival at 0.893 (49). However, the overall

prediction performance was limited, especially when using the

rolling cross-validation approach. Additionally, there was a trend

toward higher prediction performance in pediatric patients. In

predicting mortality post-transplant, the performance of tree-

based models, such as XGBoost and RF, was substantially higher

compared to linear regression models. In the shuffled 10-fold

cross-validation, RF achieved the highest AUC for predicting 1-

year survival at 0.893, followed by XGBoost with an AUC of

0.820. In contrast, linear regression exhibited much lower

prediction performance, with logistic regression achieving an

AUC of 0.641 in the rolling cross-validation procedure.

Another study by Nitski et al. utilized deep learning algorithms

to predict complications resulting in death after liver
frontiersin.org

https://doi.org/10.3389/frtra.2024.1361491
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Al Moussawy et al. 10.3389/frtra.2024.1361491
transplantation (50). The algorithms outperformed logistic

regression models, with the Transformer model achieving the

highest accuracy. The models were trained and validated using

longitudinal data from two prospective cohorts. They predicted

various outcomes such as graft failure, infection, and

cardiovascular events and identified important variables for

prediction. The study highlights the potential of ML in

improving post-transplant care. Deep learning algorithms

outperformed logistic regression models in predicting

complications resulting in death after liver transplantation. The

AUC for the top-performing deep learning model was 0.807 for

1-year predictions and 0.722 for 5-year predictions, while the

AUC for logistic regression models was lower. The deep learning

models achieved the highest AUCs in both datasets, indicating

their superior performance in predicting long-term outcomes

after liver transplantation.

AI can offer prediction models for graft function or rejection

post-transplantation. Tongprayoon et al. used an unsupervised

ML consensus clustering approach to stratify black kidney

transplant recipients based on their baseline risk factors, donor

profile index score, and allograft type (deceased vs. living donor)

(51). The authors found clinically meaningful differences in

recipient characteristics among the four clusters identified based

on DGF. However, after accounting for death and return to

dialysis, there were no significant differences in death-censored

graft loss between the clusters. This suggests that recipient

comorbidities, rather than DGF alone, play a key role in

determining survival outcomes. Other factors such as

immunologic, cardiac, metabolic, and socioeconomic contributors

may also contribute to the varying outcomes associated with

DGF. Overall, the study highlights the need to consider recipient

characteristics and comorbidities when evaluating the impact of

DGF on graft survival. Such a model offers a tool to clinicians to

better assess their transplant candidates and allow them to

allocate the available organs more successfully.

Positron emission tomography (PET) imaging has been

evaluated and used as a noninvasive tool to assess graft function

during an episode of AR, especially in the context of heart and

lung transplantation. Tian et al. investigated the use of ML-based

radiomics analysis of 18F-fluorodeoxyglucose PET images for

monitoring allograft rejection in a rat lung transplant model (52).

The researchers found that both the maximum standardized

uptake value and radiomics score were correlated with

histopathological criteria for rejection. ML models outperformed

logistic regression models in detecting allograft rejection, with the

optimal model achieving an AUC of 0.982. The study suggests

that ML-based PET radiomics can enhance the monitoring of

allograft rejection in lung transplantation.

Jen et al. explored the use of ML algorithms to predict DGF in

renal transplant patients (53). The authors developed and

optimized over 400,000 models based on donor data, with the

best-performing models being neural network algorithms. These

models showed comparable performance to logistic regression

models. The study suggests that ML can improve outcomes in

renal transplantation. Additionally, the development of

automated ML pipelines, such as MILO (Machine Learning for
Frontiers in Transplantation 12
Organ Transplantation), can facilitate the analysis of transplant

data and the generation of prediction models. Zhou et al.

presented a study that used the LASSO algorithm to identify

protein biomarkers associated with the survival of renal grafts

after transplantation (54). The study analyzed data from 47

kidney transplant patients and identified two proteins, KIM-1

and VEGF-R2, as significant predictors for graft loss. The

authors also introduce a post-selection inference method to

assess the statistical significance of the selected proteins. They

addressed the issue of statistical significance in the selected

predictors by proposing a post-selection inference method for the

Cox regression model. This method provided a theoretically

justified approach to reporting statistical significance by

providing both confidence intervals and p-values for the selected

predictors. This approach allowed the authors to establish

pointwise statistical inference for each parameter in the Cox

model and to guard against false discoveries of “weak signals”

and model overfitting resulting from the LASSO regularized Cox

regression. The proposed post-selection inference method was

used to determine the statistical significance of the predictors

KIM-1 and VEGF-R2 in predicting the hazard of allograft loss

after renal transplantation. Yoo et al. analyzed data from a

multicenter cohort of 3,117 patients and compared the power of

ML models to conventional models in predicting graft survival in

kidney transplant recipients (55). The ML methods, particularly

survival decision tree models, outperformed conventional models

in predicting graft survival. The authors also identified early AR

as a significant risk factor for graft failure and highlighted the

feasibility of using ML approaches in transplant medicine. Using

ML methods, such as survival decision tree, bagging, RF, and

ridge and lasso, increased the predictive power of graft survival

compared to conventional models like decision tree and Cox

regression. Specifically, the survival decision tree model increased

the concordance index (C-index) to 0.80, with the episode of AR

during the first-year post-transplant being associated with a 4.27-

fold increase in the risk of graft failure. Additionally, survival

tree modeling had higher predictive power than existing

conventional decision tree models, increasing the reliability of

identified factors in predicting clinical outcomes.

Cardiac allograft rejection remains a significant barrier to long-

term survival for heart transplant recipients. The invasive and

costly nature of endomyocardial biopsy, the gold standard for

screening heart rejection, has prompted the exploration of non-

invasive alternatives. Tong et al. used ML, particularly deep

neural networks (DNNs), to offer a promising approach for such

a solution (56). In this study, authors developed and evaluated a

DNN model capable of predicting heart rejection using

histopathological WSI as input. Trained on a dataset of WSIs

from patients with and without heart rejection, the DNN model

achieved an accuracy of 90% when evaluated on an independent

dataset. Additionally, incorporating dropout, a regularization

technique, further enhanced the model’s performance, yielding

an accuracy of 92%. These findings underlined the potential of

DNNs as a non-invasive and cost-effective tool for predicting

heart rejection, offering a promising alternative to

endomyocardial biopsy. Further research should focus on
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TABLE 4 Summary of studies involving AI in post-transplantation prognostication.

Authors Year Application Test Comparison Performance Limitations Data availability
Mulugeta et al.
(40)

2023 Prediction of kidney
graft failure post
transplantation

Merit-based selected
probabilistic models
(Logistic regression,
naïve Bayes, and
artificial neural
network) and tree-
based ensemble (RF,
bagged tree, and
stochastic gradient
boosting)

Bagged tree and
random forest have
best and equal
discrimination
performance with an
AUC of 0.84
RF has the best
calibration
performance with a
brier score of 0.045

Small sample size and
minimum event per data

Retrospective cohort of
kidney transplant
recipients at St. Paul’s
Hospital Millennium
Medical College
National Kidney
Transplantation Center
in Ethiopia

Tian et al. (41) 2023 Providing a
personalized and
accurate prediction
for overall survival in
patients after lung
transplantation

Random Survival
Forests (RSF)

Cox regression Excellent prediction
performance with an
integrated AUC of
0.879 and an integrated
Brier score of 0.13

Single center retrospective
nature of the study
Omission of some
potentially influential
variables and predictors
form the model
Testing themodel included
data from both pediatric
and adult patients

Liver transplantation
patients at Wuxi
People’s Hospital
between January 2017
and December 2019

Chen et al. (42) 2023 Prediction of sepsis in
liver transplant
recipients within 7
days after
transplantation

Seven prediction ML
models were used: LR,
SVM,RF,GBM,ADA,
GNB, and MLP

RF performed the best
at predicting s7 day
post operative sepsis
with an AUC of 0.731,
accuracy of 71.6%,
sensitivity of 62.1% and
specificity of 76.1% in
internal validation and
an AUC of 0.755 in
external validation

Single center Retrospective
nature of the study
Sepsis might be confused
with postoperative graft
dysfunction
*% of septic patients were
missed by the models,
making the ML models
rather a supporting tool
rather than a diagnostic
measure

Liver Transplant
patients at the Third
Affiliated Hospital of
Sun Yat-sen University,
registered in the China
Organ Transplant
Response Systems
(www.cot.org.cn)

Rogers et al.
(43)

2023 Enhancing patient
-specific mortality
prediction and
determining covariate
interaction using
recipient and donor
data

Recipient Survival
After Orthotopic Liver
Transplantation
(ReSOLT) (survival
tree algorithm)

Effectively stratifies
patients into 20
subgroups with distinct
survival probabilities
Superior performance
compared to traditional
survival prediction
models with an AUC of
0.742 and C-index of
0.728

Retrospective nature of
the study
Analysis spans over more
than 20 years, making
data lack homogeneity in
reporting some of the
variables
Advances in hepatitis C
treatment might be
overlooked

The UNOS database

Ivanics et al.
(44)

2023 Predicting 90-day
post Ltx mortality

ElasticNet, LASSO,
LightGBM and Ridge
models

Ridge performed the
best in individual and
harmonized data sets.

Selection and
misclassification bias
since the cohort did not
include patients that
dropped off the waitlist

Canadian Organ
Replacement Registry
(CORR, Canada);
National Health
Service Blood and
Transplantation
(NHSBT, United
Kingdom), and United
Network for Organ
Sharing (UNOS,
United States)

Raymond et al.
(45)

2023 Enhancing risk
stratification for
kidney transplant
recipients by refined
predictions of survival
using clinical data

Bayesian joint models Excellent predictive
performance of
0.82–0.868

Donor risk factors are not
included.
Immunosuppression
adherence is not evaluated

The Paris Transplant
Group database

Thongprayoon
et al. (51)

2022 Risk stratifying black
kidney transplant
recipients

Machine learning
consensus clustering
approach

4 distinct clustered
were identified.
Cluster 2 had the most
favorable outcomes in
terms of death
censored graft failure,
patient death and
allograft rejection
Higher risk of rejection
was found in clusters 1
and 3

Incomplete and non-
consistent data
Allograft rejection rate
might be underestimated
due to attrition bias

OPTN/UNOS database

(Continued)
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TABLE 4 Continued

Authors Year Application Test Comparison Performance Limitations Data availability
Gupta et al.
(48)

2022 Predicting length of
stay in the hospital
post heart
transplantation in
pediatric patients

Stepwise logistic
regression, Gradient
boosting, and Random
Forest

Stepwise logistic
regression was not
inferior to machine
learning models (GB
and RF) in predicting
length of hospital stay
in pediatric cardiac
transplant recipients

Retrospective nature of
the study
Data uses only day 30 as
the cut-off for post
operative hospital stay
Physician behaviors and
institutional practices
were not taken into
consideration when
developing the prediction
model

PHTS cohort

Miller et al. (49) 2022 Predicting 1 year and
90 day all-cause
mortality after
Cardiac
transplantation
Predicting survival
post heart
transplantation

RF, XGBoost, and L2
regularised logistic
regression (LR)
For survival: Random
Survival Forest (RSF),
Survival XGBoost, and
L2 regularised Cox
regession (CR)

RF achieved the highest
1-year survival
predictive power with
an AUC of 0.893
LR achieved the highest
90-day predictive
power with an AUC of
0.674

Retrospective nature of
the study
Data might be mislabeled
and some of them are
missing

United Network of
Organ Sharing
(UNOS) database

Nitski et al. (50) 2021 Predicting cause of
death at 1 or 5 years
post liver
transplantation

Deep learning models Logistic
regression

Deep learning methods
outperformed logistic
regression, with the
Transformer model
achieving the highest
AUC of 0.804 and 0.733
for 1-year and 5-year
prediction respectively

Registry based study with
a retrospective nature and
omission and missing
data biases issues with
coding of the primary
cause of death

all liver transplant
recipients in the
Scientific Registry of
Transplant Recipients
(SRTR) and University
Health Network
(UHN) databases.

Tian et al. (52) 2022 Monitoring allograft
rejection in lung
transplant recipient
rats

Machine learning
based radiomics

Logistic
regression

Machine learning
models performed
better than logistic
regression-based
models in detecting
allograft rejection with
a median AUC of
0.921. RF model
achieved the highest
predictive performance
with AUC of 0.982

Difficulty translating the
findings to human
research
PET is not disease
specific; the high uptake is
reflective of cellular
activity that can be due to
infection or cancer

Jen et al. (53) 2021 Predicting delayed
kidney graft
dysfunction

Machine learning
pipeline

Logistic
regression

Neural network
algorithm performed
the best at predicting
delayed graft
dysfunction with the
highest AUC of 0.7595

Single center small sample
size

All deceased donor
kidney transplants with
known recipient DGF
status at The University
of California from
January 1, 2010, to
December 31, 2018

Zhou et al. (54) 2017 Predicting renal
allograft survival
based on proteomic
biomarkers

LASSO KIM-1 and VEGF-R2
were identified as
predictors of graft loss

Small sample size
Selection basis due to
demographic skewness of
the data

Kidney transplantation
patients at theUniversity
of Michigan Hospital
from 1990 to 2010

Yoo et al. (55) 2017 Predicting renal
allograft survival

Survival decision tree,
bagging, random
forest, and ridge and
lasso

Decision tree and
Cox regression

Survival decision tree
has the highest
predictive power

Selection bias due to
underrepresentation of
various ethnicity
Missing data such as DSA
Absence of external
validation

Kidney transplant
patients at three
tertiary care hospitals
in Korea, between 1997
and 2012

Tong et al. (56) 2017 Assessing cardiac
allograft whole slide
image
histopathological for
rejection

Deep neural network DNN achieved 90%
accuracy in predicting
rejection. When
regularization and
dropout were
considered, the
performance of DNN
was improved to reach
an accuracy of 92%

Small sample size Whole-slide images
collected from patients
undergone heart
transplants at
Children’s Healthcare
of Atlanta (CHOA)

Lau et al. (57) 2017 Predicting graft
failure after LTx

Machine learning
models

Traditional
models: DRI,
SOFT Score, and
DRI ±MELD

ML model outperforms
traditional model with
an AUC of 0.818.

Small sample size
The model was developed
on an observational
database

Liver Transplant
Database from Austin
Health, Melbourne,
Australia, from January
1988 to October 2013
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Table 5 List of code or app availability when mentioned in reviewed
studies.

Authors Year Code/application availability
Korfiatis et al. (4) 2022 Code available at: https://github.com/potis/MedCorSeg

Ram et al. (5) 2023 Detailed code is available in the supplementary
materials of the paper

Yi et al. (7) 2022 Code is available in supplementary material

Yao et al. (8) 2022 Code is described in supplementary material

Yoon et al. (17) 2018 Code details are described in the Method section
and in supplementary materials

Garcia-Canadilla
et al. (21)

2022 Codes available in the supplementary material

Yoo et al. (23) 2023 Code is available at: https://github.com/AdeelK93/
collapsibleTree/

Yi et al. (24) 2022 Code available in Supplementary Methods

Vaulet et al. (25) 2022 RejectClass is available as an online application at:
https://rejectionclass.eu.pythonanywhere.com.

Fang et al. (28) 2023 Detailed code was described in supplementary
Materials

Baardwijk et al. (29) 2022 Codes are availableat: https://github.com/ErasmusMC-
Bioinformatics/KidneyRejectionClassifier

Azhie et al. (32) 2023 Code is available at: https://github.com/
divya031090/Fibrosis_LSTM

Halloran et al. (33) 2020 Code details are available in supplementary materials
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developing DNN models capable of real-time prediction, enabling

clinicians to make timely and informed treatment decisions.

Lau et al. used ML algorithms to predict graft failure after liver

transplantation (57). They developed an algorithm using donor,

recipient, and transplant factors and found that it had high

accuracy in predicting graft failure. The study also compared the

predictive ability of ML algorithms with traditional methods and

highlighted the advantages of using RF classifiers. The ML

algorithm, particularly the RF classifier, showed significant

improvements in predicting transplant outcomes compared to

traditional methods. The average AUC of the RF algorithm was

0.818, and 0.835 with artificial neural networks, indicating high

predictive accuracy. In contrast, using the variables used to

calculate the Donor Risk Index plus MELD score resulted in an

AUC of 0.764, suggesting that the ML algorithm outperformed

the traditional risk assessment methods. This demonstrates the

potential of ML algorithms to provide more accurate predictions

of transplant outcomes compared to conventional risk

assessment tools. Table 4 summarizes all studies reviewed in this

section. Code availability for all reviewed studies is listed in

Table 5 when applicable.

Chen et al. (36) 1999 Code details available in the Method section of the

paper

Woillard et al. (38) 2021 Immunosuppressant Bayesian Dose Adjustment
expert system: www.pharmaco.chu-limoges.fr/

Mulugeta et al. (40) 2023 No application
Code is not available

Chen et al. (42) 2023 Code: https://github.com/scikit-learn/scikit-learn
Application: ML-Base Calculator to Estimate Sepsis
after Liver Transplantation (http://wb.aidcloud.cn/
zssy/sepsis_web.html)

Trouchot et al. (45) 2023 Code is includedwith details in supplementarymaterial
No application is available

Thongprayoon et al.
(51)

2022 Code is available in eMEthods in the supplementary
material of this paper.
No application is available

Gupta et al. (48) 2022 Code is available through: https://github.com/
bcjaeger/length-of-stay

Miller et al. (49) 2022 Code is available on: https://github.com/HCVE/
unos-ml

Nitski et al. (50) 2021 Code is available at https://github.com/bowang-lab/
Transplant_Time_Series.

Zhou et al. (54) 2017 Code is available in the Method section of the paper
and details are provided in the supplementary
material.

Tong et al. (56) 2017 Code available in Method section
Trends and future directions

The application of AI in solid organ transplantation has been

gaining traction in recent years. In particular, the experimentation

with the use of ML and its subfield of deep learning has generated

promising results. As evident in this review, the reported studies

show that AI can outperform and at worst perform as well as

classical statistical approaches or humans in executing the tasks it’s

trained on. This is a very promising step forward in the

integration of AI tools into the decision-making process in the

assessment, diagnosis, and treatment of transplant patients. Since

we have only begun to witness the first attempts of leveraging AI

in improving transplant outcomes, it is expected that studies will

train AI models on more tasks. In addition, AI scientists will be

scaling up the training and deployment of these AI tools by

collecting more data from transplant centers around the world.

Prospective studies with concurrent external validation should

follow suit which will test the reliability of the trained AI models.

If good performance is still exhibited in a prospective setting, that

would pave the way for adoption of these models in clinical

practice. However, to fully adopt the transplant AI models, what

will remain to be achieved is robustness (58). We simply define

robustness here as the ability of the AI model to tackle or adjust

to incoming data affected by an arising factor or intervention.

Attaining this attribute will likely require a breakthrough in

machine learning theory. Robustness is a major issue since in a

real-world setting and in clinical practice -through time-

unexpected factors can shift the distribution of the patient

population characteristics. So far, there is no consensus on how to

address this issue. Nevertheless, promising work in causal

representation learning (59) is encouraging and raises hope that

robustness will soon be achieved by AI models.
Frontiers in Transplantation 15
Concluding remarks

With all the computational power it employs, AI can provide

the best risk assessment tool for transplant candidates and an

efficient pipeline for organ allocation. Its use in transplantation is

not limited to the pre-operative period, as it can be used to

develop models for graft outcome assessment. Histologic

evaluation is the gold standard for a diagnosis of rejection.

However, it suffers from inconsistency and non-generalizability

due to the complexity of the Banff Score and the operator-

dependent nature of the biopsy procedure and biopsy reading. AI

might provide a more consistent model to assess graft pathology
frontiersin.org
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that uses histological findings and complements them with more

stable molecular signatures. In addition, AI showed promising

results when used to predict graft function, morbidities, and

mortality post-transplantation. Harnessing the power of AI and

integrating those computational models will help guide clinicians

make more personalized decisions in taking care of

transplantation patients.
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