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Gene expression profiling in
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The acute rejection (AR) diagnosis depends on transbronchial biopsy, which is
semi-invasive and not easily performed. Our study used the Nanostring gene
expression technology on PBMCs obtained from lung transplant recipients
(LTRs) to search for biomarkers. We identified distinct differential gene profiles
between patients with stable status (STA) and AR. Subsequently, we
independently evaluated monocyte compositions in PBMCs using flow
cytometry and assessed the levels of 7 chemokines in serum using Luminex.
The 48 top differentially expressed genes (DEGs) were identified, utilizing a
criterion of at least a 1.5-fold change between two groups, with a false
discovery rate (FDR) p-Adj < 0.05. Of these 48 genes, the top 10 genes with
the highest fold changes and significant p-values were selected for qPCR
validation. CD68, ANXA1, ITGB, and IFI30 can be confirmed among the
validated genes. A significantly lower percentage of CD14 +CD16- classical
monocytes was observed in AR than in STA patients, which aligns with
downregulated DEGs. Many of the DEGs were related to monocytes-
macrophages and chemokines. Although these results still need to be
confirmed in larger cohorts, they suggest that gene profiling of PBMC can
help to identify markers related to AR in LTRs.
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Introduction

Lung transplantation (LTx) is a lifesaving option for patients with advanced lung

disease for whom therapies are exhausted. Acute rejection (AR) is a life-threatening

complication following graft transplantation, which is mainly caused by the cellular

responses to human leukocyte antigens (HLAs) on the allograft and leads to 3.6% of

deaths during the first month (1, 2). The incidence rate of AR varies around 50% in 5

years post-LTx, and approximately 28% of LTRs encountered at least one rejection

episode within the initial year (3, 4). Additionally, frequent AR episodes may lead to

chronic rejection, which is also one of the risk factors for developing chronic lung

allograft dysfunction (CLAD) (5, 6). CLAD has been regarded as the leading cause of
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/frtra.2024.1508419&domain=pdf&date_stamp=2020-03-12
mailto:n.a.bos@umcg.nl
https://doi.org/10.3389/frtra.2024.1508419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frtra.2024.1508419/full
https://www.frontiersin.org/articles/10.3389/frtra.2024.1508419/full
https://www.frontiersin.org/articles/10.3389/frtra.2024.1508419/full
https://www.frontiersin.org/articles/10.3389/frtra.2024.1508419/full
https://www.frontiersin.org/journals/transplantation
https://doi.org/10.3389/frtra.2024.1508419
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Liu et al. 10.3389/frtra.2024.1508419
poor survival post-LTx (7). Early detection and diagnosis of AR

could significantly influence the course of treatment and

ultimately improve the chances of a successful outcome.

AR may present asymptomatic but also with clinical

presentations such as fever, cough, dyspnea, and severe respiratory

syndrome (4, 8, 9). Infection is a common complication post-LTx.

Therefore, it may be challenging to distinguish AR from infection

because of the similarity of the symptoms (10). Diagnosing AR

is essential and depends on transbronchial biopsy in lung tissue

(11–13). However, this is a semi-invasive procedure that is not

easily performed and is accompanied by complications, such as

oversedation, pneumothorax, and bleeding (14). Therefore, a

noninvasive approach, measuring biomarkers in blood to diagnose

AR, could be helpful.

Gene expression profiling has been performed in lung

transplantation recipients (LTRs), mainly using bronchoalveolar

lavage (BAL) samples (15). Previous research on genetic

biomarkers was reported by Danger et al., who performed

microarray analysis in peripheral blood mononuclear cells

(PBMCs) and validated POU2AF1, TCL1A, and BLK as

predictors of bronchiolitis obliterans syndrome (BOS) more than

6 months before diagnosis (16). However, similar studies for

characterizing AR in LTRs have not been done so far.

In our current study, we used the NanoString® nCounter®

Analysis System (NanoString Technologies, Seattle, WA, USA)

with a human organ transplant Panel in PBMCs for gene

profiling in LTRs with which the expression of 770 genes can be

analyzed. With this technique, differential gene expression

profiles have been reported in kidney (17), heart (18), lung (19),

and pancreas (20) transplantation. In this study, we conducted a

comparative gene expression analysis between individuals

diagnosed with AR and those in stable status (STA) after LTx.

The primary aim of this study was to identify potential

minimally invasive biomarkers of AR to improve the clinical

management of LTx patients.
Materials and methods

Patients and study design

PBMC samples of LTRs were selected from November 2016

until May 2022 at the University Medical Center Groningen

(UMCG), the Netherlands. The local ethical committee approved

the study (METc 2016/090), and all enrollments provided

written informed consent. Twenty-four LTRs were selected

and divided into 2 groups: (1) AR (n = 15), who had an

occurrence of AR 1–89 months after LTx, and (2) STA (n = 9)

were selected by age-matched and same follow-up time post-

transplantation with AR patients, who were in a stable status

after LTx until May 2022. On days 1 and 5 after LTx, LTRs

were treated with Basiliximab. Maintenance therapy includes

tacrolimus, mycophenolate mofetil (MMF), azathioprine (Aza),

and prednisolone. The local pathologist assigned the AR patients

following the International Society for Heart and Lung

Transplantation (ISHLT) guidelines.
Frontiers in Transplantation 02
Blood was drawn for AR and STA patients, and serum was

collected within 0–3, 3–6, 6–12, and more than 12 months after

LTx. The PBMCswere isolated and stored in liquid nitrogen until use.
RNA isolation
PBMCs were thawed and checked for viability above 85% by

trypan blue staining. Total RNA was extracted from PBMCs

using the RNeasy® Kit (QIAGEN, Hilden, Germany) with the

RNase-free DNase Set (QIAGEN, Hilden, Germany)

manufacturers’ protocols. RNA was collected in PCR tubes

(AmpliStar-II PCR Tubes, Westburg) and stored at −80 °C until

use. The quantity was measured with a Nanodrop 1000 system

(Thermo Scientific, USA), and the quality was evaluated with the

Agilent 4200 TapeStation system (Agilent Technologies,

Waldbronn, Germany). Only samples with an RNA integrity

number above 5.5 were used for the Nanostring analysis.
Nanostring nCounter gene expression
profiling

NanoString gene expression profiling (NanoString Technologies,

Seattle, WA, USA) was performed according to suppliers

instructions (21). In brief, 50 ng of RNA was incubated with

capture and reported probes (Human Organ Transplant Panel,

XT-CSO-HOT1-12) for 16–24 h at 65 °C. An aliquot was

loaded on a SPRINT cartridge for detection and analyzed on

a nCounter® SPRINT Profiler platform. The platform for

subsequent gene expression analyses generated reporter code count

(RCC) files.
Nanostring nSolver and ROSALIND®

differential expression gene analysis

Whole content normalization of the raw data was performed

using nSolver 4.0 Analysis Software, utilizing the Code

Set Content Normalization factors. Subsequently, differential

expression gene analysis were performed by using nSolver 4.0

software according to the instructions (NanoString Technologies,

MAN-C0019-08) and ROSALIND® (San Diego, CA)

(https://rosalind.onramp.bio/). Simultaneously, the normalized

data was exported in comma-separated value (CSV) format for

further analyses. Principal Component Analysis (PCA) and

heatmap visualization were conducted using R studio software

(version 4.0.2). PCA visualization was performed using the R

package ggplot2, and heatmap visualization was performed with

the package heatmap. Calculation of fold changes and p-values

for differential genes was using the fast method described in the

nCounter® Advanced Analysis 2.0 User Manual. The genes with

a false discovery rate (FDR) adjusted p-value <0.05 and fold

change (FC) ≥1.5 or ≤−1.5 were considered as differentially

expressed genes. The Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway was evaluated using DAVID Bioinformatics

Resources (NIAID/NIH, USA) by uploading the differential
frontiersin.org

https://rosalind.onramp.bio/
https://doi.org/10.3389/frtra.2024.1508419
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


Liu et al. 10.3389/frtra.2024.1508419
expressed genes. The regulated pathways were selected with an

adjusted p-value <0.05.
Quantitative real-time polymerase chain
reaction (qRT-PCR, or qPCR)

The remaining RNA from NanoString gene expression analysis

was used for qPCR validation. The reverse transcriptase (Invitrogen,

USA) was used for cDNA synthesis and Taqman qPCR system

(Applied Biosystems, USA) was used for the amplification

according to advanced universal SYBR green mastermix instruction.

We selected the following Taqman qPCR primers (Taqman, USA):

CD68 (Hs00154355_m1), ANXA1 (Hs00167549_m1), ITGB2

(Hs00164957_m1), IFI30 (Hs00173838_m1), LTBR

(Hs01101194_m1), CCR1 (Hs00174298_m1), FKBP1A

(Hs00356621_g1), MYD88 (Hs00182082_m1), TNFRSF1A

(Hs01042313_m1), TNFRSF1B (Hs00961750_m1). Besides, RPLP0

(Hs99999902_m1), GAPDH (Hs99999905_m1), and B2M

(Hs99999907_m1) were used as reference gene primers for

normalization (22). The household genes showed no significant

differences between the AR and STA samples. The data was

analyzed using QuantStudioTM Real-Time PCR System (USA).

The 2−ΔCt method was used to calculate the relative expression.
Luminex for chemokines measurements

Levels of the chemokines CCL2, CX3CL1, CXCL10, CXCL16,

CXCL6, CXCL8, and CXCL1 in serum were measured by using
FIGURE 1

Flow chart of participants enrolled for nanostring gene expression.
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the Luminex Discovery Assay (Biotechne, R&D systems, USA)

according to the manufacturer’s instructions. Subsequently, the

assay results were obtained using a Luminex Magpix instrument,

and the data were analyzed using Xponent 4.2 software (Bio-

Techne, R&D Systems, USA).
Flow cytometry

For the monocytes analysis, PBMCs were thawed and stained

with antibodies specific for HLA-DR (clone: TU36, BD), CD14

(clone: rmC5-3, BD), CD16 (clone: B73.1, BD). The cells were

measured, and data acquisition was performed using the

Symphony flow cytometer (BD). 500.000 events per sample were

recorded. The data was processed using the analysis software

Kaluza (Beckman Coulter, USA) with a gating strategy as

described (23) in the Supplementary Figure 1. To eliminate

potentially contaminating lymphocytes from the monocyte gate,

negative cells for both HLA-DR and CD14 were excluded.
Statistical analysis

Continuous data are presented as median and range.

Differences between the two groups were tested using Mann–

Whitney U test. Additionally, differences between the clinical

parameters among STA and AR groups were analyzed using a

Chi-square test. Data analysis was performed using IBM SPSS

statistics version 23.0, and figures were created with GraphPad
frontiersin.org
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Prism version 9.0. Statistical significance was defined as p-value

<0.05 (two-tailed).
Results

Baseline characteristics

Initially, RNA samples from 24 participants were selected

(Figure 1). Subsequently, 21 samples meeting the quality criteria

were categorized into AR (n = 13) and STA (n = 8) patients.

Table 1 provides an overview of the baseline characteristics of

these 21 participants, which are included for further analysis.

While age and sex differences between the two groups were not

statistically significant, it is noteworthy that the AR group had

slightly younger patients and a higher proportion of males than

the STA group.

AR manifested at a median of 14.6 months (1–89 months)

post-LTx, with PBMC sampling occurring at a median of 34 days

(ranging from 1 to 83 days) after AR onset. Of note, 2 of 13 AR

patients had AR more than one year after LTx, after they had

received a dose reduction of the medication due to toxicity.
TABLE 1 Biological characteristics of participants.

Characteristics AR
(n = 13)

STA
(n= 8)

p-value

Age at Tx (range) 53 (15–65) 64 (55–69) ns

Sex, N (%)
Male 9 (69.2) 4 (50) ns

Female 3 (30.8) 4 (50)

Time of AR after LTx, months (range) 14.6 (1–89) —

PBMC isolation after AR, days (range) 34 (1–83) —

PBMC isolation after LTx, months
(range)

15.7 (1–89) 4.0 (1.0–8.4) ns

Underlying disease N (%)
COPD/Emphysema 8 (61.5) 4 (50) ns

Alpha-1-Antitrypsin Deficiency 4 (30.8) 1 (12.5)

Cystic fibrosis/bronchiectasis 1 (7.7) 0 (0)

Pulmonary Fibrosis/Interstitial lung
disease (ILD)

0 (0) 3 (37.5)

Immunosuppression (%)
Tac-MMF-Pred 13 (100) 7 (87.5) ns

Tac-MMF-Pred change to Tac-Aza-
Pred

0 (0) 1 (12.5)

Donor(D)/Recipient(R) CMV serostatus, N (%)
D+/R+ 5 (38.5) 1 (12.5) ns

D+/R− 1 (7.7) 3 (37.5)

D−/R+ 3 (23.1) 3 (37.5)

D−/R− 4 (30.7) 1 (12.5)

Primary graft dysfunction (PGD) at 48 h
Level 0 8 (61.5) — —

Level 1 3 (23.1) — —

Level 2 0 (0) — —

Level 3 2 (15.4) — —

Tac, tacrolimus; MMF, mycophenolate-mofetil; pred, prednisolone; Aza, azathioprine.

P-values results are based on chi-square and Mann–Whitney U test analysis between STA

and AR groups.
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PBMCs from AR and STA patients were isolated 15.7 (1–89)

months and 4.0 (1.0–8.4) months after LTx, respectively.

COPD/emphysema was the leading cause of LTx in 61.5% of

STA patients and 50% of AR patients. Seven of 8 STA and all AR

patients received immunosuppressive treatment consisting of

basiliximab induction (anti-CD25; 2 doses of 20 mg) followed by

Tacrolimus (Tac), MMF, and prednisolone (Pred) maintenance

therapy. MMF was switched to Azathioprine if side effects

happened. A single patient in the STA group was initially treated

with Tac-MMF-Pred and subsequently transitioned to a regimen

of Tac-Azathioprine (Aza)-Pred. Treatment of AR patients

consisted of pulse methylprednisolone (1 g intravenously for 3 days).
Identification of differential expression gene
signatures

NanoString analysis was performed to identify differentially

expressed genes between AR and STA patients. After normalization

of the data, PCA analysis of the 770 analyzed genes showed

significant differences in expression between the STA and AR groups

(Figure 2A, p-value = 0.009). A volcano plot (Figure 2B)

demonstrated increased expression for 7 genes and decreased

expression for 41 genes by at least a 1.5-fold change in the AR group

as compared to the STA group at an FDR-adjusted p-value < 0.05

(Table S.1). The normalized counts of these highly differentially

expressed genes were visualized in a heatmap (Figure 2C). Eleven

pathways with a significant adjusted p-value <0.05 in KEGG pathway

analysis were observed (Figure 2D). Of note was the NF-kappa B

signaling pathway (p < 0.001), which involved 11 out of 48

differential expression genes. Of the 11 genes, 9 were downregulated

(CXCL2, TNFSF14, NFIL13, BCL2A1, CD14, TNFRSF1A, TLR4,

LTBR, MYD88) and 2 were upregulated (CD40LG, LTA).
Validation of differentially expressed genes
by qPCR

The top 10 differentially expressed genes (highest fold changes

with significant p-values) between the STA and AR groups were

chosen for qPCR validation: CD68, ANXA1, ITGB, IFI30, LTBR,

CCR1, FKBP1A, MYD88, TNFRSF1A, TNFRSF1B were

downregulated in AR compared STA group. Expression of CD68

(p = 0.0017), ANXA1 (p = 0.0001), ITGB (p = 0.0063), and IFI30

(p = 0.0047) was significantly decreased in the AR patients

compared to the STA patients (Figure 3). Also, FKBP1A,

TNFRSF1A, and TNFRSF1B were decreased in AR, but no

significance was reached. In contrast, expression of CCR1 was

upregulated in AR compared to STA patients (p = 0.0017).
Independent evaluation of chemokines and
monocytes

As shown in Supplementary Table S1, we identified differential

expression of several chemokines, specifically CXCL16 and CXCL1.
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FIGURE 2

Differential expression genes. (A) Principal Component Analysis (PCA) comparing the expression profiles of 770 genes in the AR (green dots) and STA
(red dots) groups. (B) The volcano plot displays transcripts that are upregulated (green dots) and downregulated (pink dots) genes with a false discovery
rate (FDR) adjusted p-value ≤0.05 and a log2 fold change >1.5 in the AR group compared to the STA group (STA used as the baseline). (C) Heatmap
illustrating the 48 differential expression of genes distinguishing the AR (green) and STA (red) groups. The p-value was calculated by independent t-test
between PC1 and PC2 using R software. (D) KEGG pathway descriptors. The orange column represents the numeric -log10 p-value, blue column
represents the percentage of involved genes of all 48 differential expression genes. The pathways were selected by adjusted p-value <0.05 of
KEGG pathways evaluated in DAVID Bioinformatics Resources system.
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Subsequently, we performed an independent evaluation study with

30 serum samples from LTRs, comprising 15 STA and 15 AR

patients, matched for age and post-LTx time (as detailed in

Supplementary Table S2). We extended the analysis to include

other relevant chemokines: CCL2, CX3CL2, CXCL10, CXCL8,

and CXCL6. However, the lower expression of CXCL16 and

CXCL1 could not be confirmed at the protein level. Surprisingly,

CXCL6 levels were significantly higher in AR patients compared

to STA patients (Figure 4, p = 0.0292).

Because CD14 and CD68 are in the list of differentially

expressed genes highly expressed by monocyte lineage cells

(24, 25), we further assessed frequencies of monocytes in PBMCs

of AR and STA groups by flow cytometry. Among the patients

selected for chemokine analysis, 10 STA and 10 AR patients had

PBMC samples available for monocyte analysis using flow

cytometry. Monocytes were categorized as classical (CD14+,

CD16-), intermediate (CD14+, CD16+), and non-classical (CD14

−, CD16+) monocytes. As demonstrated in Figure 5, there was a
Frontiers in Transplantation 05
significantly reduced frequency of CD14 + CD16− classical

monocytes (p = 0.0232) in the AR group compared to STA.
Discussion

In our study, we profiled PBMCs to identify AR-associated

genes in LTRs. We validated four genes (CD68, ANXA1, ITGB,

IFI30) statistically differentiating AR and STA patients with

qPCR. Additionally, our cellular analysis of monocytes

highlighted significant distinctions of reduced classical monocyte

CD14 + CD16- frequencies in AR patients and the upregulation

of CXCL6 levels compared to STA patients.

We observed a significantly reduced expression of CD68 in AR

patients in gene expression analysis. CD68, the human homolog of

macrosialin, is commonly regarded as a lineage marker for human

monocytes and macrophages (24). In PBMCs, CD68 is not

expressed on monocytes except when they differentiate towards
frontiersin.org

https://doi.org/10.3389/frtra.2024.1508419
https://www.frontiersin.org/journals/transplantation
https://www.frontiersin.org/


FIGURE 3

Validation of differential expressed genes. Validation of differential expression genes of CD68, ANXA1, ITGB, IFI30, LTBR, CCR1, FKBP1A, MYD88,
TNFRSF1A, TNFRSF1B by quantitative PCR in the same patients set for Nanostring gene expression. Differences between the two groups were
tested using the Mann–Whitney U test.
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macrophages. Classification of monocytes in PBMCs can be further

analyzed by expression of CD14 (LPS co-receptor) and CD16 (Fcγ

receptor III) that define three phenotypically and functionally

distinct human monocyte subsets: CD14 + CD16− (classical),

CD14 + CD16+ (intermediate), and CD14-CD16+ (non-classical)

monocytes. Until now, no studies have reported the relation

between monocyte compositions and AR after LTx. Our results

indicate that the CD14 + CD16− classical monocytes percentage

was lower in AR than in STA patients. In previous studies, the

experimental depletion of monocytes in murine heart and kidney

transplantation models demonstrated a reduction in T cell-mediated

rejection (26). Additionally, in a study of murine LTx, CD4 T cells

from recipients lacking circulating classical monocytes were shielded

from allorecognition, but AR in the allografts persisted (27). This

evidence suggests a potential inter-connection between lower levels

of monocytes and AR post-transplantation.

Furthermore, the classical monocytes can differentiate into

macrophages in tissue (28), which can occur during

inflammatory conditions (29). The reduced classical monocyte

percentage in PBMCs of AR patients implies there may be more

monocyte-to-macrophage differentiation in AR development,

resulting in enhanced migration of these monocytes to the tissue

and thereby reduced levels of these monocytes. This suggests that

AR patients may have a heightened capacity for monocyte

transformation into tissue-resident macrophages, emphasizing the

importance of inflammation in rejection. Due to the lack of lung
Frontiers in Transplantation 06
tissues from AR patients, we could not further validate

macrophages in tissue. Nevertheless, it has been demonstrated

that by employing immunohistochemical double staining of

CD68 and CD31, the accuracy of diagnosing antibody-mediated

rejection in heart transplantation can be enhanced (30). Also, a

study using a rat model of LTx found that CD68 +macrophages

were the predominant cell type observed during AR through

immunohistochemistry (31).

What’s more, a study utilizing PROMAD identifies myeloid cells

as the origin of acute rejection markers, emphasizing their critical

role and immunologic memory in modulating transplant rejection,

supported by evidence of CD16 +monocyte/macrophage

prevalence in rejecting heart transplants and resident macrophages

shaping lung allograft immune responses (32).

Macrophages are crucial in acute antibody-mediated rejection

(AMR) and cellular rejection (ACR). Their presence in rejected

allograft tissue is related to poorer graft function and survival

(33). Notably, corticosteroids in immunosuppressive treatments

may alter monocyte subpopulation distribution. Still, therapies

involving MMF, calcineurin inhibitors, and mammalian target of

rapamycin inhibitors (mTOR) have not shown significant effects

in this regard (34).

Furthermore, we cross-referenced our differentially expressed

genes (DEG) data with related organ transplantation studies.

CD14, IFI30, TNFRSF1B, CD27, and ITGB2 emerged as

significant DEG associated with AR, aligning with our findings
frontiersin.org
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FIGURE 4

Analysis of chemokines in serum. An independent validation of extended Chemokines (CXCL1, CXCL6, CXCL8, CXCL10, CXCL16, CX3CL1, and CCL2)
using Luminex for Comparing AR and STA Patients.

FIGURE 5

An independent validation of monocytes in PBMCs. Validation of CD14 +CD16− classical monocytes, CD14 + CD16 + intermediate monocytes, and
CD14 +CD16− classical monocytes by flow cytometry comparing AR and STA patients.
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(35). To our knowledge, no subsequent validation studies have

been conducted on these genes related to AR. Of note, ANXA1, a

member of the Annexins (ANXs) family, known for its calcium

and phospholipid binding properties, has been related to lung

injury and inflammation (36). The lower expression of ANXA1
Frontiers in Transplantation 07
in AR patients compared to STA patients may be attributed to

its anti-inflammatory role. IFI30 (GILT), a lysosomal thiol

reductase, plays a role in catalyzing the reduction of disulfide

bonds within protein antigens. This process aids antigen-

presenting cells (APCs) in effectively presenting antigens to T
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cells while downregulating regulatory T cells (Tregs) (37, 38).

Our findings of lower expression of IFI30 in AR patients

might signify a potential reduction in immune tolerance. In a

differential gene expression study involving mucosal biopsies

of rejection and stable patients in LTx, ITGB2 was identified

as a hub gene with theoretical significance in the inhibition of

rejection, as revealed in drug-gene interaction analysis (39).

Our findings align with this, suggesting that ITGB2 could also

be a potential biomarker.

We also noticed the potential involvement of chemokines,

particularly CXCL6, in AR. This corresponds with findings in

kidney transplantation, where CXCL6 levels were higher in the

AR group compared to the non-AR group (40). In a liver

transplantation study, increased secretion of CXCL1 and

CXCL2 was observed, which can boost the functional activity

of the mononuclear phagocyte system and possibly contribute

to processes associated with liver rejection (41).

Our KEGG analysis implied the significant involvement of the

NF-kappa B signaling pathway during AR. Several organ

transplantation studies have shown that NF-kappa B signaling

activation can lead to rejection, and inhibiting NF-kappa B in

specific cell types may enhance graft survival in solid organ

allograft rejection (42–44). After transplantation, NF-kappa B

activation occurs shortly after ischemia/reperfusion and is later

reactivated within infiltrating cells during AR. The literature

underscores the role of NF-kappa B activation in the detrimental

effects of ischemia/reperfusion, the survival of activated T cells,

differentiation of various effector T cell types, memory T cell

formation, and dendritic cell maturation. Notably, NF-kappa B

activation may counteract the peripheral development of Tregs,

which can suppress the immune response against allografts and

prolong graft survival (44, 45). Furthermore, the activation of

NF-kappa B signaling plays a pivotal role in generating natural

Tregs, underscoring its significance in the context of solid organ

allograft rejection (46).

In a kidney transplantation study, the effects of sample timing

and treatment on gene expression were shown in early AR (47).

This emphasizes the importance of moment when assessing gene

expression during AR. Future research should study biomarkers

at different time points post-LTx to identify essential genes in

the process of AR.

The main limitation of our study is the relatively small

cohort size. Additionally, not all samples, especially from AR

patients, were available at every time point due to patient no-

shows and participation in other clinical studies, contributing

to the unavailability of some samples at specific time points.

Further studies were recommended to validate these with

simplified samples.

In summary, by using minimally invasive samples, we

identified significant differentially expressed genes. CD68,

ANXA1, ITGB, and IFI30 were successfully validated,

suggesting involvement in AR-related immune response and

inflammation. Further research should reveal their precise

roles as potential diagnostic or prognostic markers for AR.

Additionally, our results shed light on the possible role of

monocyte compositions and the NF-kappa B signaling
Frontiers in Transplantation 08
pathway in AR development. These findings hold promise for

aiding clinicians in identifying novel biomarkers to enhance

the accuracy of diagnosing AR.
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