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The future of islet transplantation
beyond the BLA approval:
challenges and opportunities
Yong Wang1,2,3*, James McGarrigle3, Jenny Cook3, Peter Rios3,
Giovanna La Monica3, Yingying Chen1,2, Wei Wei1,2 and
Jose Oberholzer1,2,3*
1Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland, 2Faculty of
Medicine, University of Zurich, Zürich, Switzerland, 3CellTrans, Inc., Chicago, IL, United States
This opinion paper explores the path forward for islet transplantation as a cell
therapy for type 1 diabetes, following the Biologics License Application (BLA)
approval. The authors review key challenges and opportunities that lie ahead.
After a brief overview of the history of human islet transplantation, the paper
examines the FDA’s regulatory stance on isolated islet cells and the
requirements for obtaining a BLA. The authors discuss the significance of this
approval and the critical steps necessary to broaden patient access, such as
scaling up production, clinical integration, reimbursement frameworks, post-
marketing surveillance, and patient education initiatives. The paper highlights
that the approval of LANTIDRA as an allogeneic cell transplant for
uncontrolled type 1 diabetes marks the beginning of new chapters in
improving islet transplantation. The authors emphasize essential areas for
development, including advancements in islet manufacturing, optimization of
transplant sites, islet encapsulation, exploration of unlimited cell sources, and
gene editing technologies. In conclusion, the future of islet transplantation
beyond the BLA approval presents challenges and opportunities. While
significant regulatory milestones have been reached, hurdles remain.
Innovations in stem cell-derived islets, cell encapsulation, and gene editing
show promise in enhancing graft survival, expanding the availability of
transplantable cells, and reducing the reliance on immunosuppressive drugs.
These advancements could pave the way for more accessible, durable, and
personalized diabetes treatments.
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Brief history of human islet transplant

The potential of islet transplantation as a treatment for Type 1 diabetes (T1D) was first

proposed over a century ago (Figure 1). Pioneers like Dr. Watson-Williams at the Bristol

Infirmary in England in 1894 and English surgeon Dr. Charles Pybus in 1924 explored this

concept in clinical practice. The initial attempts at islet transplantation were mainly

experimental, with minimal to no success.

The modern era of islet transplantation is largely credited to Dr. Paul Lacy, who

introduced a collagenase-based method for isolating rat islets and developed animal

transplant models in the 1960s (1, 2). Since then and up to the 1980s, further

improvements in human islet isolation were achieved, but translating these to clinical

practice remained challenging (3–6).
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FIGURE 1

Historical timeline of significant events in the process of human islet transplant and beyond BLA approval.
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A breakthrough occurred in the late 1990s with the development

of the Edmonton Protocol (7), which combined improved islet

isolation methods, advanced immunosuppressive therapies, and the

use of the portal vein as the specific transplant site. This protocol

significantly enhanced transplant outcomes and led to successful

cases of insulin independence in brittle T1D patients, characterized

by severe hypoglycemia and glycemic instability despite insulin

therapy (7, 8). Since then, human islet transplantation has

continued to advance with better techniques for the isolation of

islets, novel immunosuppressive drugs, and anti-inflammation

approaches to assist in the protection of transplanted islet grafts.

Worldwide clinical studies have demonstrated that islet

transplantation can significantly improve glycemic control and

achieve insulin independence for patients presenting with brittle

T1D (9–15). However, despite these clinical successes, islet

transplantation has remained a niche therapy due to a variety of

challenges, including limited donor supply, immune rejection, and

need for lifelong immunosuppressive therapy.
TABLE 1 The guidance of the biologics license application (BLA).

Key
regulatory
aspects

Guidance and considerations

Product
characterization

Source: islet cells from screened deceased donors Isolation:
validated, standardized methods and procedures Quality
Control: identity, purity, potency, safety, viability, functionality.

Manufacturing
controls

Consistency: reproducible product quality Islet Storage
Conditions: culture and transport Contamination Prevention:
avoid microbial contamination.

Preclinical
studies

Animal Models: utilized to test safety and efficacy.

Immunogenicity Assess immune response and risk of rejection.

Clinical studies Design: evaluate safety and efficacy while controlling key
variables Endpoints: insulin independence and glycemic control
Monitoring: adverse events, complications, and rejection.

Post-approval Post-market Safety Reporting: adverse experience and lot
distribution reports.

Regulatory
pathways

Submission of detailed trial data and information regarding
manufacturing and product characterization.
The biologics license application (BLA)

Unlike the European Union, Canada, Australia, Japan, and

some other countries, a significant regulatory challenge exists in

the United States (US) to expand islet transplantation as a

standard therapy for T1D patients. Given the significant

manipulations needed to safely and reproducibly isolate islets

from a donor pancreas, allogeneic islets are considered a

biological drug in the US. Consequently, a Biologics License

from the Food and Drug Administration (FDA) is required for

its application outside clinical trials. The FDA’s “Considerations

for Allogeneic Pancreatic Islet Cell Products” in 2008 (Docket

Number: FDA-2008-D-0293) and “Guidance for Human

Somatic Cell Therapy and Gene Therapy” in 2009 (Docket

Number: FDA-2009-D-0132-0016) are two important

documents that guide allogeneic pancreatic islet cell products
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for the treatment of patients with T1D. The guidance covers

several key areas (Table 1):

Hereafter, several publications on the FDA regulatory policies have

indicated that although significant progress has been made in

standardizing donor organ acceptance, process controls, and product

release criteria, key issues of the safety, purity, efficacy, and potency of

islet productsmust be addressed before aBLAcanbe submitted (16–19).

The BLA process ensures the following (Table 2):

To summarize, Biologics License approval, consistent with

other biological therapies, ensures that islet transplants are safe,

effective, and adhere to rigorous regulatory standards.

On June 28, 2023, a significant milestone was achieved when

CellTrans Inc. received a biological license (Health and Human

Services License No. 2213) from the FDA for the manufacture of

LANTIDRA (donislecel-jujn) in the US (https://www.fda.gov/

news-events/press-announcements/fda-approves-first-cellular therapy-

treat-patients-type-1-diabetes). LANTIDRA is an allogeneic
frontiersin.org
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TABLE 2 The process of the biologics license application (BLA).

Evaluation
domains

Evaluation criteria and considerations

Safety and efficacy Verification of the safety and effectiveness of islet
transplants.

Manufacturing quality Assurance of consistent quality and purity of islet cells.

Immune response Assessment of potential immune reactions induced by
islet cells and necessary interventions.

Long-term benefits and
risks

Evaluation of long-term outcomes of islet transplants.

Scientific rigor Comprehensive clinical trials and strong evidence
supporting the procedure.
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pancreatic islet cellular therapy indicated for the treatment of adults

with T1D who are unable to approach target HbA1c because of

current repeated episodes of severe hypoglycemia despite intensive

diabetes management and education. LANTIDRA is used in

conjunction with concomitant immunosuppression.

In the FDA press release published on the day LANTIDRA was

approved, Peter Marks, M.D., Ph.D., Director of the FDA’s Center

for Biologics Evaluation and Research, stated: “Severe hypoglycemia

is a dangerous condition that can lead to injuries resulting from loss

of consciousness or seizures. Today’s approval, the first-ever cell

therapy to treat patients with Type 1 diabetes, provides individuals

living with Type 1 diabetes and recurrent severe hypoglycemia an

additional treatment option to help achieve target blood glucose levels”.

FDA approval marked a turning point for islet transplantation,

setting the stage for increased access to the therapy in the US. It

also introduced a standardized regulatory framework, to ensure

that future advancements in islet transplantation follow

established safety and quality guidelines.

The FDA’s decision to regulate islet transplants as a biologic

drug, requiring a Biological License, has sparked debate within

the medical and research communities. Points of contention

include the regulatory burden, patient access, the classification of

islets, and the impact on research and innovation (20). Despite

these concerns, the FDA’s classification of islets as a biologic

drug reflects its commitment to patient safety through rigorous

oversight. The agency remains firm that these measures are

necessary to ensure high standards of safety and efficacy, while

continuing to work with stakeholders to streamline the process.
Next steps for islet transplantation post
biologics license approval

To ensure islet transplantation can be a viable treatment option

for more T1D patients following FDA approval, challenges related

to islet supply, long-term efficacy, and cost must be addressed.
Production scale-up

Scaling up production is critical to ensure a reliable supply of

human islets. This involves the establishment of cGMP (current

Good Manufacturing Practice) facilities for islet manufacture,

while strictly adhering to regulatory and safety standards. This
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ensures that the biological product is consistently produced with

the same quality, potency, and purity, reducing the risk of

contamination and minimizing variability between batches. The

implementation of automation and efficiency improvements in

the islet manufacture process could help reduce production costs

while maintaining high product quality.
Clinical implementation

It is important to establish qualified transplant centers where the

procedures can be performed, including training transplant surgeons

and medical staff on defined human islet transplant protocols and

procedures. In the participating transplant centers, screening

procedures and defined selection criteria have to be implemented to

identify patients who are the most suitable candidates, focusing on

individuals who present with brittle T1D that have been well-

established in the field of islet transplant (13, 21). To qualify, patients

must be 18 or older, have had T1D for at least five years, and have a

BMI below 27. They should also have experienced at least one severe

hypoglycemic episode in the past year and suffer from impaired

awareness of hypoglycemia despite ongoing insulin therapy, intensive

diabetes management, and education. Furthermore, patients must be

free from major cardiovascular, respiratory, liver, or brain conditions

and should not have any active infections.
Reimbursement and access

Negotiating reimbursement with health insurers is critical to

increase patient access. Given the high costs associated with islet

transplantation and post-transplant care (e.g., immunosuppressive

therapy), working with payors to secure coverage is essential for

the widespread adoption of islet transplantation. Coverage by both

government payors (e.g., Center for Medicare and Medicaid

Services) and private payors have to be secure to enable

unrestricted access to allogeneic islet cell therapy for the small

population of brittle T1D. At the time of writing, most private

payors in the US have included Lantidra under their covered

benefits for brittle T1D (https://www.uhcprovider.com/content/

dam/provider/docs/public/policies/clinical-guidelines/transplant-

review-guidelines-solid-organ-transplantation.pdf).
Post-Marketing surveillance

The FDA requires safety monitoring of LANTIDRA (i.e.,

pharmacovigilance) per 21 CFR 600.80 and the submission of lot

distribution reports per 21 CFR 600.81. Ongoing monitoring and

reporting of adverse events, complications related to the islet

transplant and the immunosuppressive therapies used to prevent

rejection is essential for patient safety.
Patient education and support

Comprehensive patient education programs should be

developed to inform potential recipients about the risks and
frontiersin.org
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benefits of the procedure, as well as the need for lifelong follow-up

and medication adherence. Support networks and programs can

help transplant recipients manage their health, including

guidance on managing immunosuppression and monitoring for

signs of rejection or complications.

The success of human islet transplantation will depend on

overcoming challenges related to supply, cost, long-term efficacy,

and patient access. These steps are part of a broader effort to

make islet transplantation more widely accepted and available as

a treatment option for T1D patients.
Challenges and opportunities beyond
the BLA

While the FDA approval represents a major regulatory

milestone, it does not address several critical challenges that

impede the widespread adoption, especially on how to avoid

immunosuppressant and solve limited islet sources (Figure 2).
Islet manufacturing

After the breakthrough of the Edmonton Protocol, significant

progress has been made in islet isolation techniques (22–26). The

advances have been largely driven by the need for more

consistent and higher-quality islet yields, improved enzyme

formulations, and enhanced organ preservation methods.

However, not every donated pancreas delivers sufficient amounts

of islets, defined by the minimal post-purification islet mass

needed for an islet transplant to achieve clinically relevant

benefits (in general a minimum of 5,000 IEQ/Kg patient body

weight is needed to confer improved metabolic control).
FIGURE 2

Future therapy of human islet transplant.
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Enzyme blends for pancreas tissue digestion during

manufacturing can significantly affect islet yield and quality (27,

28). While great progress has been achieved in the manufacturing

of those enzyme blends, batch to batch variabilities are still a

challenge in achieving product consistency in islet manufacturing.

Product characterization has been another area of contention

in the field. Product characterization aims to ensure proper

release criteria to reduce the risk of poor-functioning islet grafts.

New developments in digital image analysis and microfluidic

Islet-On-Chip technology may better assist researchers in

developing real-time assessment methods for islet health and

functionality, ensuring only the most viable and functional islet

preparations are selected for transplantation to further improve

the chances of long-term success (29–35).

In our own experience, applying stringent cGMP principles

with standardization of the manufacturing process has led to

greater consistency in islet yield and quality. This should lead to

broader clinical application, though there is still room for further

improvements. Future work may focus on the automation of the

actual islet isolation process with better control over variables

such as enzyme temperature and digestion time.

Recent advances in organ perfusion techniques for islet

transplantation, including hypothermic and normothermic

machine perfusion, have shown promising results (36–38). These

methods are designed to improve organ preservation prior to its

use in islet manufacture, as well as increase islet viability

for transplantation. Hypothermic machine perfusion has

demonstrated benefits in preclinical studies, particularly in

extending preservation times, which is especially valuable when

using organs from donors with circulatory death (DCD).

Normothermic machine perfusion is gaining momentum as a

method to assess and enhance graft viability before

transplantation, allowing real-time evaluation of the pancreas and
frontiersin.org
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reducing tissue injury during the islet isolation process. These

organ perfusion techniques have great potential to improve islet

transplant outcomes by enhancing donor organ quality and

expanding the donor pool. Future studies are necessary to

validate these promising preclinical findings.

At present, transplants are only performed with freshly isolated

islets. The logistics involved in handling of fresh tissue with a

limited shelf life present a significant challenge for wider

geographical access to islet transplantation. Historically, the

recovery yield of cryopreserved islets had been frustrating low,

despite of decade of intense research. With recent progress in

islet cryopreservation this field may need to be revisited and

tested in the clinical context (39, 40). This would enable more

flexible use of available donor organs and better matching of islet

quality to recipient needs, potentially reducing waste and

improving transplant success rates.

Last, but not least, the main limiting factor in the manufacture

of islets is the availability of human donor pancreases. Increasing

awareness regarding the importance of organ donation through

public health campaigns have led in recent years to an increase

in organ donations. Continued public health efforts to encourage

individuals to become registered donors can help alleviate the

shortage of available organs for islet isolation.

Each of these strategies holds promise, and collectively, could

help mitigate the donor supply shortage that will become more

acutely once islet transplantation becomes more accessible post-

BLA approval of LANTIDRA.
Transplant site

At present islet grafts are delivered intrahepatically via portal

vein access. Intraportal islet transplantation is an established

technique that provides immediate blood supply and has shown

to be reasonably safe and with good clinical success in reversing

severe hypoglycemia and achieving insulin independence in the

majority of recipients. However, this site is also associated with

drawbacks, including significant, immediate islet loss via an

instant blood-mediated inflammatory reaction (IBMIR) (41, 42).

Other transplant sites have been explored such as the omentum,

gastric submucosa, and muscle tissues (43–48), though, they have

not yet shown superiority to the portal route. Despite promising

case series, further larger-scale clinical studies are needed to

validate new transplant sites and determine their efficacy in

improving transplant outcomes.
Islet encapsulation

Even with the use of immunosuppressive regimens, immune

rejection of transplanted islets remains a concern. The need for

lifelong immunosuppression to prevent rejection exposes patients

to significant side effects, including an increased risk of infection

and cancer. In the last four decades, enormous efforts have been

underway to protect isolated islets from immune responses

through islet encapsulation.
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The concept of islet microencapsulation originated in the

1970s, with early research focusing on alginate, a biocompatible

polymer, to form semi-permeable membrane that allows insulin

and nutrients to pass through while blocking immune cells and

antibodies (49). In the 1980s and 1990s, advancements in

alginate-based encapsulation techniques, such as the

microencapsulation of islets in alginate-poly-L-lysine shells,

demonstrated promise (50–52). However, fibrosis (formation of

scar tissue around the capsules) remained a significant challenge,

limiting long-term islet function.

By the 2000s, clinical trials using encapsulated islets began,

demonstrating short-term protection but often failing due to

capsule surface fibrotic overgrowth, which compromised the

islet’s oxygen and nutrient supply (53, 54). Despite challenges,

these early clinical efforts provided valuable insights that

continue to guide modern research.

From the 2010s onward, new encapsulation strategies have

emerged, focusing on reducing fibrosis and improving islet

survival. These include advanced biocompatible materials (55–58),

nanotechnologies such as ultra-thin coatings designed to be more

biocompatible/durable (59, 60), and new transplant sites (61, 62).

Macrodevices are implantable devices that house clusters of

islets. One notable example is the TheraCyte device, which uses a

semi-permeable membrane to encase the islets. It has shown

some success in both preclinical and clinical trials, particularly in

improving long-term islet survival and function (63–66). Another

promising macrodevice is the Beta-O2 device, which features an

oxygen reservoir that sustains islet function by providing a steady

oxygen supply. This method has demonstrated superior

outcomes in maintaining islet viability and function over longer

periods compared to standard encapsulation methods (67–69).

Implantable scaffolds, made from biocompatible materials,

encourage vascularization around the islets, enhancing their

survival and insulin production. Alginate fiber for islet

encapsulation is an innovative approach that utilizes modified

alginate formulations and combination materials to improve

biocompatibility and reduce immune responses (70). These

advancements have shown promising preclinical results,

indicating potential benefits for islet transplant outcomes.

After the FDA approval of LANTIDRA, interest in islet

encapsulation technology has intensified as a complementary

solution to eliminate the need for immunosuppression, particularly

with the development of more biocompatible and durable polymers

like modified alginates and advanced hydrogels, focusing on

optimized capsule size, shape, and mechanical properties, as well as

addressing issues like fibrotic overgrowth. One novel approach is

nanotechnology, where ultra-thin coatings provide more precise

control over permeability and help evade immune detection.

For macrodevices, integrating oxygen-releasing agents and

nanostructured membranes into encapsulation materials

enhances oxygen delivery, which is crucial for long-term islet

function (67, 71). Newer methods also co-encapsulate islets with

anti-inflammatory or pro-regenerative factors, creating a localized

immunomodulatory environment that protects against immune

attack and promotes better tissue integration (72). More recently,

3D printing technology has allowed for precise control over
frontiersin.org
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scaffold architecture, including features such as pore size and

connectivity, which are critical for nutrient and oxygen diffusion,

as well as device strength (73–75).

Ongoing clinical trials are exploring advanced polymers,

oxygenating agents, bioengineered scaffolds, and xenogeneic

tissues, which could significantly improve the availability and

effectiveness of islet transplantation without the need for

lifelong immunosuppression.
Limited islet cell sources

Islet transplantation remains dependent on a limited supply of

deceased donor organs, making it inaccessible for many patients.

The shortage of viable donor pancreas has led to a significant

gap between the number of patients that can benefit from the

therapy and the availability of islets. The shortage of suitable

pancreas donors remains as a significant obstacle to

islet transplantation.

Use of Extended Criteria Donors (ECDs) and Donors after

Cardiac Death (DCD) who do not meet standard criteria due to

age, BMI, or medical history are now being considered. Advances

in enzyme digestion protocols and preservation techniques, such

as organ perfusion, have made it possible to recover viable islets

from previously unsuitable organs.

Pig islets can be used for human transplantation due to their

physiological similarity with human islets. Using them addresses

the shortage of human donor organs by providing a more

abundant and scalable source, offering potentially shorter wait

times for administration through consistent availability.

Genetically modified pigs are being developed to reduce

immune rejection of islet transplants (76–79), including

expressing human HLA molecules to lower immune recognition,

deleting the alpha-galactosidase enzyme to avoid immune

responses triggered by alpha-gal epitopes, and inserting genes

that produce immunomodulatory proteins like CTLA4-Ig or PD-

L1. Additionally, pigs can be engineered to express human

complement regulators, such as CD46 or CD55, to protect islet

cells from complement-mediated damage (80). Gene editing

techniques like CRISPR/Cas9 are also used to knock out

inflammatory genes or introduce genes that promote immune

tolerance (81). Initial preclinical trials using naïve pig islets and

genetically modified pig islets have shown encouraging results,

particularly in non-human primates. These studies have

demonstrated that pig islets can survive and function in primates

for extended periods, especially when combined with

immunosuppressive therapy or encapsulation (82–84).

Clinical trials testing pig islets in humans began as early as

2009 in New Zealand by Living Cell Technology. The results

demonstrated some positive outcomes, including improved blood

sugar control and reduced insulin requirements. However, these

trials did not achieve long-term islet graft function or complete

insulin independence (85, 86). Several other studies have similar

clinical outcomes (87, 88).

In the US, an Investigational New Drug (IND) must be filed

with the FDA, including detailed information about the source of
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the animal tissue, the genetic modifications made to reduce

immune rejection, preclinical safety and efficacy data, and the

design of the proposed clinical trial. Recently, an encapsulated

pig islet IND has been filed and approved for islet

transplantation (ClinicalTrials.gov NCT06575426). Clinical results

are expected to be released in the course of 2025.

Xenotransplantation faces significant regulatory challenges,

particularly related to biosafety concerns. One major issue is the

risk of transmitting porcine endogenous retroviruses (PERVs)

from pigs to humans, although studies suggest minimal risk with

genetically modified pigs. Regulatory agencies, such as the FDA,

mandate rigorous safety protocols and continuous monitoring for

xenotransplantation trials. The future of xenotransplantation will

depend on advancements in genetic modifications, improved

immune protection strategies, and addressing ethical and safety

concerns. If these challenges are met, xenotransplantation may

provide a scalable and reliable source of islets for treating

patients with T1D.

Since the 1970s, researchers have been investigating

regenerative approaches by differentiating human pluripotent

stem cells (hPSCs) and induced pluripotent stem cells (iPSCs)

into functional insulin-producing beta cells by mimicking

developmental cues from embryogenesis.

In the 1990s, early research focused on differentiating

embryonic stem cells (ESCs) into insulin-producing beta cells

(69, 89). Progress accelerated with the introduction of induced

pluripotent stem cells (iPSCs) in 2007 (90), allowing for the

generation of beta- cells from adult cells. Throughout the 2010s,

advancements in differentiation protocols improved the

functionality of these cells, closely mimicking natural insulin-

producing beta -cells that could normalize blood sugar levels in

diabetic mice (91–95). Future research will focus on enhancing

cell survival, glucose responsiveness, and long-term integration,

aiming to create a reliable and scalable source of insulin-

producing cells for diabetes treatment.

Non-human primates (NHPs) are frequently utilized in

preclinical models due to their close physiological resemblance to

humans, providing a valuable system for studying diabetes

treatments. Successful studies have shown that human

pluripotent stem cell (hPSC)-derived islets can enhance glycemic

control and alleviate diabetes symptoms in NHPs (62, 96), which

bolsters the potential of hPSC-derived islets as a promising

therapy for diabetes. Future research will focus on refining

transplantation protocols, addressing immunological concerns,

and further optimizing these therapies before advancing to

human clinical trials, as well as assessing potential teratoma risk.

Regarding clinical studies with stem cell-derived islets, several

companies are leading the way in advancing toward clinical

trials. ViaCyte, a California biotech firm, is testing PEC-Direct

(Pancreatic Endocrine Cells Direct), a therapy that implants stem

cell-derived pancreatic progenitors in a semi-permeable device

under the skin (ClinicalTrials.gov NCT03163511). These cells

mature into insulin-producing beta-cells, potentially reducing or

eliminating the need for external insulin (97, 98). In February

2022, ViaCyte and CRISPR Therapeutics announced phase

I clinical trials of VCTX210, a hESC-based therapy for T1D
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without the need for immunosuppression. The CyT49 human

embryonic stem cell (hESC) line is genetically engineered to lack

the beta-2 microglobulin (B2M) gene, preventing the expression

of major histocompatibility complex (MHC) class I molecules,

and to express a transgene encoding programmed death ligand 1

(PD-L1) for protection against CD8+ cytotoxic T-cell attack.

These modifications enhance immune evasion, making CyT49 a

promising candidate for cell-based therapies such as islet

transplantation, potentially reducing the need for long-term

immunosuppression and improving graft survival (99, 100).

In 2021, Vertex Pharmaceuticals began a clinical trial using

VX-880, beta cells differentiated from human pluripotent stem

cells., with immunosuppression. These cells are engineered to

function similarly to natural beta cells, responding to blood

glucose levels by secreting insulin. At the ADA’s 84th Scientific

Session (2024), Vertex presented that after a single VX-880

infusion, all twelve patients showed islet engraftment and

glucose-responsive insulin production by day 90. All had

improved glycemic control, reducing or eliminating insulin use.

The three patients with over a year of follow-up met the primary

endpoint of severe hypoglycemic episode (SHE) elimination with

HbA1c<7.0% and the secondary endpoint of insulin

independence. VX-880 was well tolerated with mostly mild to

moderate adverse events, and no serious events related to the

treatment; two deaths occurred but were unrelated to VX-880.

VX-880 represents a significant advancement in diabetes

research, with the potential to profoundly affect the management

of T1D. Ongoing and future trials will be essential to assess the

therapy’s viability and its potential for long-term benefits to

patients. Currently, Vertex is conducting a Phase 1 clinical trial

to evaluate the safety, tolerability, and preliminary efficacy of the

encapsulated stem cells in a small group of participants.

A recent study reported 1-year outcomes for a patient with

T1D who underwent autologous transplantation of chemically

induced pluripotent stem-cell-derived islets (CiPSC islets)

beneath the abdominal anterior rectus sheath with standard

immunosuppression (101). The patient achieved sustained insulin

independence within 75 days. By month 4, the patient’s time-in-

target glycemic range had increased from a baseline of 43.18%–

96.21%, stabilizing at over 98% with an HbA1c of approximately

5%. Two additional patients have also been transplanted, with

results expected in 2025. This study marks significant progress

toward personalized cell therapy for T1D using CiPSCs.

Additionally, several ongoing national and international

clinical trials are listed on ClinicalTrials.gov, although no

transplant outcomes have been reported to date.

Some research efforts combine stem cell-derived islet

transplantation with novel immunotherapies designed to retrain

the immune system to tolerate beta cells, which has been well-

reviewed elsewhere (102). This approach could enhance the

durability of the grafts while minimizing the need for

immunosuppression. Immune modulation strategies aim to create

a more favorable environment for the transplanted beta cells,

preventing autoimmune destruction.

While stem cell studies have demonstrated significant benefits

for glycemic control, several challenges persist, including immune
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rejection, long-term graft function, in vivo cell maturation,

efficacy, and safety concerns, and high manufacturing costs.

Despite promising results in ongoing research, these hurdles need

to be addressed before this approach can become a standard

diabetes treatment.
Gene editing and CRISPR technology

Gene editing tools, such as CRISPR-Cas9 (Clustered regularly

interspaced short palindromic repeats and CRISPR-associated

protein 9) are being utilized to enhance the safety and efficacy of

islet biologics and stem cell-derived islets. CRISPR-Cas9 targets

specific DNA sequences, creating double-strand breaks to allow

precise genetic modifications. Its precision, efficiency, and

versatility have revolutionized genetics, research, and medical

practice. The genetic makeup of these cells aims to reduce

immune responses (immune evasion), improve their

functionality, and increase the efficiency of differentiating them

into functional beta cells.

Traditional immune-evasion strategies are designed to improve

graft survival and function. These include immunoisolation

devices, immunosuppressive drugs, and tolerance

induction techniques.

More recently, there has been growing interest in using gene

editing for immune evasion, as it offers new potential for

improving transplant outcomes. Deleting genes responsible for

expressing MHC class I molecules and co-stimulatory signals

made islets less recognizable to the immune system. For example,

one hPSC study in which the majority of the polymorphic

human leukocyte antigens (HLAs), the main drivers of allogeneic

rejection, are deleted and tested in in vivo humanized mouse

models, showing that these gene manipulations significantly

reduce NK cell activity and T-cell-mediated alloimmune response

against hPSC-derived islet cells (103).

One study engineered hypoimmune (B2M/, CIITA/, CD47+)

primary rhesus macaque pseudo-islets and transplanted them

into a fully allogeneic, immunocompetent, diabetic cynomolgus

monkey without immunosuppression, showing that the islet

grafts quickly normalized c-peptide and glucose. The recipient

monkey became insulin-independent long-term without showing

any side effects (104). Another study from the same group

demonstrated that rhesus macaque hypoimmune pluripotent

(HIP) stem cells survived for 16 weeks without

immunosuppression by depleting HLA class I and II molecules

and overexpressing CD47 (B2M−/−CIITA−/−CD47+) in a fully

immunocompetent allogeneic rhesus macaques recipient, whereas

allogeneic wild-type cells were vigorously rejected (105).

One study found that targeting human leukocyte antigens

(HLAs) and PD-L1 alone does not provide adequate protection

against xenograft or allograft rejection of SC islets (stem cell-

derived islet cells). To enhance protection, the researchers

genetically engineered SC-islet cells to secrete IL-10, TGF-β, and

a modified form of IL-2, which promote a tolerogenic local

microenvironment by recruiting regulatory T cells to the islet

grafts. These cytokine-secreting human SC-β cells demonstrated
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resistance to rejection and successfully reversed diabetes for up to 8

weeks in non-obese diabetic (NOD) mice (106).

In summary, gene editing and immune evasion represent a new

horizon for islet transplantation, improving graft acceptance,

reducing reliance on immunosuppressive drugs, and addressing

donor shortages. This approach marks a significant advance

toward personalized and regenerative medicine for diabetes, with

the potential to transform future treatment options.
Regulatory T cells (Tregs) in
islet transplant

Administering regulatory T cells (Tregs), capable of

suppressing immune responses, or expanding these cells ex-vivo

and reintroducing them to the patient, is a promising approach.

Current researchers are actively exploring methods to enhance

the efficacy and stability of Tregs in managing immune

responses, which has been systemically well- reviewed (107).
Conclusions

The future of islet transplantation beyond the Biologics License

presents significant challenges and promising opportunities. The

path toward the widespread clinical adoption of LANTIDRA

remains complex and lengthy. As of this writing, LANTIDRA

has been covered by most private insurers in the U.S. for patients

with brittle T1D. Additionally, the FDA has recently approved

LANTIDRA’s shipping protocols for the shelf life of LANTIDRA

up to 48 h, facilitating broader distribution. On November 25,

2024, the University of Illinois Health in Chicago initiated

LANTIDRA therapy in partnership with CellTrans. Throughout

2024, CellTrans engaged in extensive discussions with regional

and national islet transplant programs, aiming to launch a

multicenter implementation by 2025.

Despite these advancements, other key challenges remain,

including but not limited to (1) Pancreas Allocation & UNOS

Compliance: Ensuring organ availability and adherence to United

Network for Organ Sharing (UNOS) guidelines. (2) Islet Isolation

Facilities: Expanding the number of qualified centers to meet the

growing demand for islet isolation. At this writing, Celltrans only

receives pancreas organs from local OPO and allocates for T1D

patients at the University of Illinois Health in Chicago. it is an

urgent task to establish additional isolation facilities nationwide to

prevent potential pancreatic ischemia-reperfusion injuries and

efficiently utilize pancreas organs, which is expected between 2025

and 2026. (3) Islet transplant after kidney transplant is a

promising therapy, it addresses two critical issues: restoring

glycemic control and protecting the transplanted kidney from the

damaging effects of uncontrolled diabetes. LANTIDRA, however,

is not labeled by the FDA for islet transplant after kidney

transplant in the US. Future evidence has to be provided to FDA

approval for indication and usage (https://www.fda.gov/media/

169920/download). (4) Patient-Specific Needs & Access: Refining

eligibility criteria, accommodating individual patient needs, and
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ensuring equitable access across diverse populations. Addressing

these challenges will require years of collaboration among

clinicians and healthcare systems to refine protocols and establish

the necessary infrastructure. This long and demanding process will

be filled with obstacles before LANTIDRA can fully transform

clinical practice.

Furthermore, while regulatory milestones have been met, critical

issues persist, such as limited donor availability, immune rejection,

the need for lifelong immunosuppression, and inconsistent

transplant outcomes. However, emerging innovations in stem cell-

derived islets, cell encapsulation, and gene editing offer hope for

overcoming these barriers. These advancements have the potential

to improve graft survival, increase the availability of transplantable

cells, and reduce dependence on immunosuppressive therapies,

ultimately paving the way for more accessible, durable, and

personalized diabetes treatments in the future.
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