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Case Report: Lessons learned
from large animal implantation of
an all-natural tissue engineered
vascular graft
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'Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States, ?Division of
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Cardiovascular disease continues to be the number one cause of morbidity and
mortality across the world. Coronary artery bypass graft (CABG) procedures are
the most commonly performed major surgery in the U.S. Grafts are difficult to
source as patients do not have many sites from which to harvest donor tissues
as autografts. Plastic grafts have issues of infection and are only used as a last
resort. Tissue engineered vascular grafts have potential to solve the need for
all-natural vascular grafts in the clinic. In this study, we evaluate the feasibility
of a completely biological engineered vascular graft for implantation in a
large animal model of a rabbit. An all-biological tissue engineered graft was
grown in our laboratory, composed of a tunica adventitia derived from
human dermal fibroblasts and a tunica media made from human aortic
smooth muscle cells. The all-biological engineered graft exhibited the “look
and feel” of a natural vessel. The engineered graft was implanted into the
abdominal aorta of a New Zealand rabbit. The graft easily anastomosed to
the native abdominal aorta and showed no leakages. Once reperfused, the
graft was able to withstand blood flow briefly, prior to exhibiting dissection
between the media and adventitia. Color doppler ultrasound showed flow
through the abdominal aorta, however, not through the graft region due to
the dissected layers creating a blockage. These results support a shift from
the traditional paradigm of designing vascular grafts to mimic the multi-
layered native structure. The two-layer engineered graft tested here exhibited
dissection between the layers, a phenomenon that has yet to be reported in
the field to our knowledge. Based on these findings, we recommend a single
layer engineered graft to best prevent dissection.

KEYWORDS
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Cardiac disease continues to dominate the medical field in cases of morbidity
and mortality. Each year, approximately 400,000 coronary artery bypass graft (CABG)
surgeries are performed in the United States, making it the most common major surgical
procedure (1). During these procedures, veins are most often harvested from the patient as
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autograft material, since arteries are in extremely limited supply.
Of vein procedures, 40% fail within 10 years as they are not
built to withstand arterial pressures and biomechanics. To solve
this issue, tissue engineering of arteries has great potential to serve
this significant need.

In this present study, an all-biological engineered arterial graft was
explored as a viable option for arterial repair. Our tissue engineered
blood vessel was created using our laboratory’s unique method for
constructing blood vessels in vitro. Our methods incorporate cell
sheets formed into ring structures that are stacked to form a tubular
vessel (2-4). The engineered vessels are constructed completely of
cells and naturally degrading hydrogel, making them all-biological.
The vessels used in this study were composed of the tunica
adventitia and tunica media layers, using fibroblasts and smooth
muscle cells, respectively, to serve as the primary vasculature. These
two arterial layers were chosen in order to provide structural
integrity and strength to withstand suturing and blood pressures.
The engineered artery was tested for anastomosis, suturability and
hemodynamics in a large animal rabbit model. A surprising finding
in this work was that once subjected to blood flow, the bi-layered
engineered vessel delaminated between the two layers, causing the
vessel walls to create a flap which subsequently obstructed flow.
This study shows that a two-layered tissue engineered vessel,
although physiologically-accurate, may not be the optimal construct
to serve as a vascular graft. From here, our team will explore single-
layer engineered vessels as a better option. Our newly founded
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information is vital to the field to push towards a viable vascular
graft solution for patients.

Tissue engineered vessel protocol

The tissue engineered arteries were made using a previously
established protocol by our laboratory, termed all-biological
engineered blood vessels (BEBVs) (2-4). Briefly, vascular cells are
seeded in a plate around a central 3D printed plastic post. The cells
form a cell sheet which is engineered to detach from the bottom of
the plate from a layer of hydrophobic poly(methylsiloxane)
(PDMS). The cell sheet aggregates around the post, creating a tissue
ring. The vascular cell rings are subsequently stacked to form the
final tubular vessel. The engineered vessel prepared for implantation
was a bilayer vessel composed of a tunica media and adventitia. Our
methods can create vessels of any desired size, i.e., diameter and
length (5). The lumen of the engineered vessel created was 3 mm in
diameter, to match the rabbit abdominal aorta diameter of 3-4 mm
as closely as possible. The length of the vessel was approximately
2.2 cm long and composed of 66 rings of engineered vascular tissue.

In order to create the bilayer structure, first, vascular rings of human
smooth muscle cells (SMCs) were created, followed by formation
of human fibroblast rings around the SMC rings in situ ( ).
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was then implanted into a large animal rabbit model.
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Diagram of construction of the biological engineered blood vessel (BEBV) with a bilayer. Vascular rings were formed in a traditional culture plate by
seeding vascular cells into the plate around a central 3D printed post with a diameter determining the final vessel lumen size. The resultant cell sheet
detaches from the bottom of the plate, and subsequently aggregates toward the center of the plate around the post to form a tissue ring. First, a
single cell ring is formed, followed by formation of a second cell ring around the first ring in the plate, creating two-cell rings (i.e., bilayer rings).
The bilayer rings were stacked into a tubular vessel and allowed to culture for 14 months to allow ring-to-ring growth and integration. The BEBV
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The bilayers rings were stacked into a vessel and allowed to culture to
allow for ring-to-ring growth, integration and extracellular matrix
deposition. The final bilayer vessel was cultured for 14 months then
implanted into a rabbit model (Figure 2).

Human cell sources

The tunica adventitia was composed of human dermal fibroblasts
extracted from human skin donated from a local plastic surgery clinic.
All patient tissues were obtained with consent in accordance with the
guidelines set by the Institutional Review Boards of Wayne State
University and the Henry Ford Hospital System (IRB #
054514M1E). The tunica media was composed of human aortic
smooth muscle cells (HASMCs) purchased commercially (PCS-
100-012, ATCC, Manassas, VA). The intima was not included in
the vessel tested here as the grafts were designed to rely on
endogenous endothelization in the future after implantation into
patients. Here, an implantation time of 1 h was planned in order to
investigate anastomosis and hemodynamics of the engineered
vessel. Immunogenicity testing would entail longer implantation
times and is not a focus of this study, thus the use of human cells
in the rabbit model was not an issue as signs of immune rejection
would not be observed in the study time period of 1 h.

10.3389/frtra.2025.1676566

Surgical technique

The engineered graft was anastomosed to the abdominal aorta
(AA) of a female New Zealand white rabbit about 3.45 kg in weight
and of good health. All procedures were performed in accordance
with the Institutional Animal Care and Use Committee of Wayne
State University (protocol #23-08-6043). Implantation time was set
to 1h in a non-survival procedure. Briefly, animals were given
buprenorphine (0.01-0.05 mg/kg) subcutaneously, followed by
sedation with ketamine (10-40 mg/kg intramuscularly) and
xylazine (1-5 mg/kg intramuscularly) and then anesthetized with
isoflurane for the duration of the procedure. The abdomen was
shaved and disinfected with betadine for surgical prep. Lidocaine
(2 mg/kg) and bupivacaine (1 mg/kg) were injected equidistantly
approximately 0.5 cm apart in an ellipse around the incision sites
prior to making the surgical incision. Vascular access was obtained
by a vertical abdominal incision through the skin and linea alba at
the midline. Saline-moistened vessel loops were looped around the
artery at proximal and distal regions of the aorta cutdown. Vascular
clamps were applied proximally and distally.

The abdominal aorta was controlled proximally and distally with
atraumatic vascular clamps. A segment of the aorta between the
clamps approximately 2.4 cm in length was excised. The resected
portion of the aorta was replaced with an engineered graft, first

FIGURE 2

All-natural tissue engineered vascular graft implanted into a rabbit abdominal aorta model. (A) Engineered graft built in the laboratory composed of
human cells; total length was 2.2 cm. (B) Surgical site of the graft (blue arrow). (C) Anastomosed graft (white box) to the abdominal aorta. (D) Graft
dissected between its two layers following blood perfusion, marked by the outer vessel wall (black dashed line), inner lumen (white dashed line), and
the dissected region (yellow dashed line). (E) Ultrasound showed vessel dissection within the vessel lumen (yellow dashed line). Scale bars =1cm.
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performing the proximal anastomosis with running 7-0 prolene
suture in an end-to-end fashion and then performing the distal
anastomosis with running 7-0 prolene suture. Immediately prior to
completion of the distal anastomosis, the graft and artery were
vented to remove residual air. End-to-end anastomosis was
performed with consistent assurance of intimal eversion of the
native artery during suturing. The distal anastomosis was
completed and the vascular clamps removed to restore flow.

Color doppler ultrasound was taken of the implanted vessel.
The probe was gently placed on top the engineered vessel
directly for 30s at a time to minimize vascular damage. The
abdomen was periodically wetted with saline during the open
imaging procedure. Once imaging was completed, the animal
was immediately humanely euthanized with an overdose of
isoflurane and thoracotomy.

The all-biological engineered graft exhibited the “look and
feel” of a natural vessel ( ). The graft demonstrated
suture retention strength as shown by successful anastomosis to
,C). The graft

exhibited compliance similar to the native AA to create a

the AA without signs of leakage (

seamless transition once anastomosed. Blood loss was minimal
once un-clamped with no leaking from the sutured ends nor
along the length of the vessel. For a brief period, the vessel
pulsated under blood flow ( ) until dissection between
the adventitia and media layers of the graft was observed
( ). Under color doppler ultrasound, no thrombotic
occlusion was observed, although the dissection between the two
layers was seen at the distal end ( ) which blocked flow

through the graft.

Overall, the all-natural engineered graft construction proved
viable as a vascular substitute and was able to achieve timely
hemostasis once implanted into a large animal model. The
traditional paradigm that vascular grafts should replicate the
native multilayer structure (1, 6) is challenged by the results of
this study. Here, we find that a multilayer graft resulted in issues
with dissection, a phenomenon that has yet to be reported in
the field. Hence, this study supports a paradigm shift towards
single-layer grafts. This study provides pertinent information for
vascular graft development to optimize translatability.

A rabbit model was chosen as the first level of large animal
model (7) with the subsequent goal of progressing up animal
models (e.g., pig). Rabbit models have been used in cardiac
research for some time, due to the larger size of arteries
available for implantation compared to commonly used rodent
models (7, 8). Rabbit myocardium is more similar to humans
compared to rodents (9).

The structure of the engineered vessel chosen for this study
was based on replicating the main structural components of a
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blood vessel- the tunica adventitia and media. The mechanical
aspects of the vascular graft were focused on to address
immediate issues of providing a structural conduit for blood
flow. A version of our vessels does implement the intima layer.
However, in the current acute study with a 1 h implantation, the
mechanics of the vessel and anastomosis were the main testing
parameters. Hence, the adventitia and media layers constituting
the primary strength components were focused on without
interference from the added variable of the intima. Previously,
we have reported mechanical data on multiple versions of our
engineered  vessels, demonstrating  necessary  strength
requirements to serve as an arterial graft. We have previously
reported a maximum tensile strength of 1,500 + 334 kPa and
maximum burst pressure of 229 +23.8 mmHg (10).

Longer culture periods promote extracellular matrix deposition, a
method often used to strengthen engineered tissues (11, 12). Hence,
we tested a long 14 month culture period to create a stronger tissue.
The primary purpose of a longer culture period was to promote ring-
to-ring integration via extracellular matrix deposition and cell
proliferation within the layers. Cross layer integration is not desired
as that scenario constitutes a disease state, that is of cells
intermixing across layers. Interlayer cell mixing has not been
observed in our bilayer engineered vessels (3, 4). The mechanics of
the vessel were not fully tested due to the almost immediate layer
dissection, showing that in this situation graft structure outweighed
mechanical factors.

Pre-endothelialization of the graft was not an aspect of this
study as the focus was to test the form that would be used
directly as a patient graft in the future. In order to create a graft
compatible to human implantation, our lab has been able to
source human fibroblasts and human cardiac smooth muscle
cells for creating the adventitia and media, respectively. There
does not currently exist an autologous human source of arterial
endothelial cells available for a graft. Advantageously, the body
naturally endothelializes implanted conduits, providing an
endogenous intima within about 4 weeks as shown in in vivo
studies (13, 14). This natural phenomenon provides endogenous,

autologous endothelialization needed for a graft, hence
minimizing the need for pre-endothelialization.

Based on this study’s results, the bilayered engineered vessel
showed issues of delamination between the layers once blood flow
was reestablished. The evident acute failure of the graft was due to
the boundary between the adventitia and media layers separating
under flow pressure. The graft’s failure occurred well before the
mechanics of the vessel could be tested. Hence, ultimately the
failure can be attributed to the layer delamination. Additionally,
surgical technique was not the source of failure since delamination
occurred distal to the locations of anastomosis and in a region
untouched by the surgeons. These results support a single layer
graft as a more effective conduit. In the literature, several multi-
layered engineered vascular grafts have been created. One study did
not witness delamination between layers in an in vitro setting (15).
This stresses the importance of reporting our delamination findings
following animal implantation.

Typically, in an animal implantation study, immunogenicity is
a consideration when implanting a human construct into an
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animal for concerns of tissue rejection. Immunogenicity issues
arise after sufficient implantation times. In this study, the short
implantation time and non-survival surgery negated possible
study of and issues of immunogenicity.

Post-implantation retrieval and analysis of the BEBV was not
possible due to delamination and subsequent tissue breakdown
under pressure. With future implantations, vessels will be
retrieved after the study conclusion and histological and genetic
analysis performed.

In conclusion, the main message of our study is that a multi-
layered vascular graft has the probability of exhibiting issues of
tissue delamination and vessel occlusion from tissue breakdown,
which has not yet been reported to our knowledge. Single
layered vascular grafts would circumvent this issue and is the
basis of our current work.
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