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Cardiovascular disease continues to be the number one cause of morbidity and 

mortality across the world. Coronary artery bypass graft (CABG) procedures are 

the most commonly performed major surgery in the U.S. Grafts are difficult to 

source as patients do not have many sites from which to harvest donor tissues 

as autografts. Plastic grafts have issues of infection and are only used as a last 

resort. Tissue engineered vascular grafts have potential to solve the need for 

all-natural vascular grafts in the clinic. In this study, we evaluate the feasibility 

of a completely biological engineered vascular graft for implantation in a 

large animal model of a rabbit. An all-biological tissue engineered graft was 

grown in our laboratory, composed of a tunica adventitia derived from 

human dermal fibroblasts and a tunica media made from human aortic 

smooth muscle cells. The all-biological engineered graft exhibited the “look 

and feel” of a natural vessel. The engineered graft was implanted into the 

abdominal aorta of a New Zealand rabbit. The graft easily anastomosed to 

the native abdominal aorta and showed no leakages. Once reperfused, the 

graft was able to withstand blood flow briefly, prior to exhibiting dissection 

between the media and adventitia. Color doppler ultrasound showed flow 

through the abdominal aorta, however, not through the graft region due to 

the dissected layers creating a blockage. These results support a shift from 

the traditional paradigm of designing vascular grafts to mimic the multi- 

layered native structure. The two-layer engineered graft tested here exhibited 

dissection between the layers, a phenomenon that has yet to be reported in 

the field to our knowledge. Based on these findings, we recommend a single 

layer engineered graft to best prevent dissection.
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Introduction

Cardiac disease continues to dominate the medical field in cases of morbidity 

and mortality. Each year, approximately 400,000 coronary artery bypass graft (CABG) 

surgeries are performed in the United States, making it the most common major surgical 

procedure (1). During these procedures, veins are most often harvested from the patient as 
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autograft material, since arteries are in extremely limited supply. 

Of vein procedures, 40% fail within 10 years as they are not 

built to withstand arterial pressures and biomechanics. To solve 

this issue, tissue engineering of arteries has great potential to serve 

this significant need.

In this present study, an all-biological engineered arterial graft was 

explored as a viable option for arterial repair. Our tissue engineered 

blood vessel was created using our laboratory’s unique method for 

constructing blood vessels in vitro. Our methods incorporate cell 

sheets formed into ring structures that are stacked to form a tubular 

vessel (2–4). The engineered vessels are constructed completely of 

cells and naturally degrading hydrogel, making them all-biological. 

The vessels used in this study were composed of the tunica 

adventitia and tunica media layers, using fibroblasts and smooth 

muscle cells, respectively, to serve as the primary vasculature. These 

two arterial layers were chosen in order to provide structural 

integrity and strength to withstand suturing and blood pressures. 

The engineered artery was tested for anastomosis, suturability and 

hemodynamics in a large animal rabbit model. A surprising finding 

in this work was that once subjected to blood 3ow, the bi-layered 

engineered vessel delaminated between the two layers, causing the 

vessel walls to create a 3ap which subsequently obstructed 3ow. 

This study shows that a two-layered tissue engineered vessel, 

although physiologically-accurate, may not be the optimal construct 

to serve as a vascular graft. From here, our team will explore single- 

layer engineered vessels as a better option. Our newly founded 

information is vital to the field to push towards a viable vascular 

graft solution for patients.

Methods

Tissue engineered vessel protocol

The tissue engineered arteries were made using a previously 

established protocol by our laboratory, termed all-biological 

engineered blood vessels (BEBVs) (2–4). Brie3y, vascular cells are 

seeded in a plate around a central 3D printed plastic post. The cells 

form a cell sheet which is engineered to detach from the bottom of 

the plate from a layer of hydrophobic poly(methylsiloxane) 

(PDMS). The cell sheet aggregates around the post, creating a tissue 

ring. The vascular cell rings are subsequently stacked to form the 

final tubular vessel. The engineered vessel prepared for implantation 

was a bilayer vessel composed of a tunica media and adventitia. Our 

methods can create vessels of any desired size, i.e., diameter and 

length (5). The lumen of the engineered vessel created was 3 mm in 

diameter, to match the rabbit abdominal aorta diameter of 3–4 mm 

as closely as possible. The length of the vessel was approximately 

2.2 cm long and composed of 66 rings of engineered vascular tissue.

In order to create the bilayer structure, first, vascular rings of human 

smooth muscle cells (SMCs) were created, followed by formation 

of human fibroblast rings around the SMC rings in situ (Figure 1). 

FIGURE 1 

Diagram of construction of the biological engineered blood vessel (BEBV) with a bilayer. Vascular rings were formed in a traditional culture plate by 

seeding vascular cells into the plate around a central 3D printed post with a diameter determining the final vessel lumen size. The resultant cell sheet 

detaches from the bottom of the plate, and subsequently aggregates toward the center of the plate around the post to form a tissue ring. First, a 

single cell ring is formed, followed by formation of a second cell ring around the first ring in the plate, creating two-cell rings (i.e., bilayer rings). 

The bilayer rings were stacked into a tubular vessel and allowed to culture for 14 months to allow ring-to-ring growth and integration. The BEBV 

was then implanted into a large animal rabbit model.
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The bilayers rings were stacked into a vessel and allowed to culture to 

allow for ring-to-ring growth, integration and extracellular matrix 

deposition. The final bilayer vessel was cultured for 14 months then 

implanted into a rabbit model (Figure 2).

Human cell sources

The tunica adventitia was composed of human dermal fibroblasts 

extracted from human skin donated from a local plastic surgery clinic. 

All patient tissues were obtained with consent in accordance with the 

guidelines set by the Institutional Review Boards of Wayne State 

University and the Henry Ford Hospital System (IRB # 

054514M1E). The tunica media was composed of human aortic 

smooth muscle cells (HASMCs) purchased commercially (PCS- 

100-012, ATCC, Manassas, VA). The intima was not included in 

the vessel tested here as the grafts were designed to rely on 

endogenous endothelization in the future after implantation into 

patients. Here, an implantation time of 1 h was planned in order to 

investigate anastomosis and hemodynamics of the engineered 

vessel. Immunogenicity testing would entail longer implantation 

times and is not a focus of this study, thus the use of human cells 

in the rabbit model was not an issue as signs of immune rejection 

would not be observed in the study time period of 1 h.

Surgical technique

The engineered graft was anastomosed to the abdominal aorta 

(AA) of a female New Zealand white rabbit about 3.45 kg in weight 

and of good health. All procedures were performed in accordance 

with the Institutional Animal Care and Use Committee of Wayne 

State University (protocol #23-08-6043). Implantation time was set 

to 1 h in a non-survival procedure. Brie3y, animals were given 

buprenorphine (0.01–0.05 mg/kg) subcutaneously, followed by 

sedation with ketamine (10–40 mg/kg intramuscularly) and 

xylazine (1–5 mg/kg intramuscularly) and then anesthetized with 

iso3urane for the duration of the procedure. The abdomen was 

shaved and disinfected with betadine for surgical prep. Lidocaine 

(2 mg/kg) and bupivacaine (1 mg/kg) were injected equidistantly 

approximately 0.5 cm apart in an ellipse around the incision sites 

prior to making the surgical incision. Vascular access was obtained 

by a vertical abdominal incision through the skin and linea alba at 

the midline. Saline-moistened vessel loops were looped around the 

artery at proximal and distal regions of the aorta cutdown. Vascular 

clamps were applied proximally and distally.

The abdominal aorta was controlled proximally and distally with 

atraumatic vascular clamps. A segment of the aorta between the 

clamps approximately 2.4 cm in length was excised. The resected 

portion of the aorta was replaced with an engineered graft, first 

FIGURE 2 

All-natural tissue engineered vascular graft implanted into a rabbit abdominal aorta model. (A) Engineered graft built in the laboratory composed of 

human cells; total length was 2.2 cm. (B) Surgical site of the graft (blue arrow). (C) Anastomosed graft (white box) to the abdominal aorta. (D) Graft 

dissected between its two layers following blood perfusion, marked by the outer vessel wall (black dashed line), inner lumen (white dashed line), and 

the dissected region (yellow dashed line). (E) Ultrasound showed vessel dissection within the vessel lumen (yellow dashed line). Scale bars = 1 cm.
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performing the proximal anastomosis with running 7–0 prolene 

suture in an end-to-end fashion and then performing the distal 

anastomosis with running 7–0 prolene suture. Immediately prior to 

completion of the distal anastomosis, the graft and artery were 

vented to remove residual air. End-to-end anastomosis was 

performed with consistent assurance of intimal eversion of the 

native artery during suturing. The distal anastomosis was 

completed and the vascular clamps removed to restore 3ow.

Color doppler ultrasound was taken of the implanted vessel. 

The probe was gently placed on top the engineered vessel 

directly for 30 s at a time to minimize vascular damage. The 

abdomen was periodically wetted with saline during the open 

imaging procedure. Once imaging was completed, the animal 

was immediately humanely euthanized with an overdose of 

iso3urane and thoracotomy.

Results

The all-biological engineered graft exhibited the “look and 

feel” of a natural vessel (Figure 2A). The graft demonstrated 

suture retention strength as shown by successful anastomosis to 

the AA without signs of leakage (Figures 2B,C). The graft 

exhibited compliance similar to the native AA to create a 

seamless transition once anastomosed. Blood loss was minimal 

once un-clamped with no leaking from the sutured ends nor 

along the length of the vessel. For a brief period, the vessel 

pulsated under blood 3ow (Figure 2C) until dissection between 

the adventitia and media layers of the graft was observed 

(Figure 2D). Under color doppler ultrasound, no thrombotic 

occlusion was observed, although the dissection between the two 

layers was seen at the distal end (Figure 2E) which blocked 3ow 

through the graft.

Discussion

Overall, the all-natural engineered graft construction proved 

viable as a vascular substitute and was able to achieve timely 

hemostasis once implanted into a large animal model. The 

traditional paradigm that vascular grafts should replicate the 

native multilayer structure (1, 6) is challenged by the results of 

this study. Here, we find that a multilayer graft resulted in issues 

with dissection, a phenomenon that has yet to be reported in 

the field. Hence, this study supports a paradigm shift towards 

single-layer grafts. This study provides pertinent information for 

vascular graft development to optimize translatability.

A rabbit model was chosen as the first level of large animal 

model (7) with the subsequent goal of progressing up animal 

models (e.g., pig). Rabbit models have been used in cardiac 

research for some time, due to the larger size of arteries 

available for implantation compared to commonly used rodent 

models (7, 8). Rabbit myocardium is more similar to humans 

compared to rodents (9).

The structure of the engineered vessel chosen for this study 

was based on replicating the main structural components of a 

blood vessel- the tunica adventitia and media. The mechanical 

aspects of the vascular graft were focused on to address 

immediate issues of providing a structural conduit for blood 

3ow. A version of our vessels does implement the intima layer. 

However, in the current acute study with a 1 h implantation, the 

mechanics of the vessel and anastomosis were the main testing 

parameters. Hence, the adventitia and media layers constituting 

the primary strength components were focused on without 

interference from the added variable of the intima. Previously, 

we have reported mechanical data on multiple versions of our 

engineered vessels, demonstrating necessary strength 

requirements to serve as an arterial graft. We have previously 

reported a maximum tensile strength of 1,500 ± 334 kPa and 

maximum burst pressure of 229 ± 23.8 mmHg (10).

Longer culture periods promote extracellular matrix deposition, a 

method often used to strengthen engineered tissues (11, 12). Hence, 

we tested a long 14 month culture period to create a stronger tissue. 

The primary purpose of a longer culture period was to promote ring- 

to-ring integration via extracellular matrix deposition and cell 

proliferation within the layers. Cross layer integration is not desired 

as that scenario constitutes a disease state, that is of cells 

intermixing across layers. Interlayer cell mixing has not been 

observed in our bilayer engineered vessels (3, 4). The mechanics of 

the vessel were not fully tested due to the almost immediate layer 

dissection, showing that in this situation graft structure outweighed 

mechanical factors.

Pre-endothelialization of the graft was not an aspect of this 

study as the focus was to test the form that would be used 

directly as a patient graft in the future. In order to create a graft 

compatible to human implantation, our lab has been able to 

source human fibroblasts and human cardiac smooth muscle 

cells for creating the adventitia and media, respectively. There 

does not currently exist an autologous human source of arterial 

endothelial cells available for a graft. Advantageously, the body 

naturally endothelializes implanted conduits, providing an 

endogenous intima within about 4 weeks as shown in in vivo 

studies (13, 14). This natural phenomenon provides endogenous, 

autologous endothelialization needed for a graft, hence 

minimizing the need for pre-endothelialization.

Based on this study’s results, the bilayered engineered vessel 

showed issues of delamination between the layers once blood 3ow 

was reestablished. The evident acute failure of the graft was due to 

the boundary between the adventitia and media layers separating 

under 3ow pressure. The graft’s failure occurred well before the 

mechanics of the vessel could be tested. Hence, ultimately the 

failure can be attributed to the layer delamination. Additionally, 

surgical technique was not the source of failure since delamination 

occurred distal to the locations of anastomosis and in a region 

untouched by the surgeons. These results support a single layer 

graft as a more effective conduit. In the literature, several multi- 

layered engineered vascular grafts have been created. One study did 

not witness delamination between layers in an in vitro setting (15). 

This stresses the importance of reporting our delamination findings 

following animal implantation.

Typically, in an animal implantation study, immunogenicity is 

a consideration when implanting a human construct into an 
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animal for concerns of tissue rejection. Immunogenicity issues 

arise after sufficient implantation times. In this study, the short 

implantation time and non-survival surgery negated possible 

study of and issues of immunogenicity.

Post-implantation retrieval and analysis of the BEBV was not 

possible due to delamination and subsequent tissue breakdown 

under pressure. With future implantations, vessels will be 

retrieved after the study conclusion and histological and genetic 

analysis performed.

In conclusion, the main message of our study is that a multi- 

layered vascular graft has the probability of exhibiting issues of 

tissue delamination and vessel occlusion from tissue breakdown, 

which has not yet been reported to our knowledge. Single 

layered vascular grafts would circumvent this issue and is the 

basis of our current work.
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