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Lymphatic filariasis (LF) remains a major health problem with severe economic
repercussions in endemic communities of Sub-saharan Africa, South-East Asia and
South America. The rodent-specific nematode Litomosoides sigmodontis (Ls) is used
to study the immunomodulatory potential of filariae and research has elucidated pathways
involving regulatory T cells (Tregs), IL-10 producing cells and alternatively activated
macrophages (AAMs) and that CD4+ T cells play a paramount role during infection.
Myeloid-derived suppressor cells (MDSCs) have been identified and characterised in man
in cancer and other pathologies. The hallmark of MDSC populations is the suppression of
T and B cell responses using various mechanisms, which are mostly specific to the
pathology or setting. However, until now, it remains unclear whether they play a role
in fi larial-specific responses. We report here that monocytic MDSCs (Mo-
MDSCs, CD11b+Ly6C+Ly6G-) and polymorphonuclear MDSCs (PMN-MDSCs,
CD11b+Ly6Cint/loLy6G+) expanded in the thoracic cavity (TC, the site of infection) and
correlated positively with filarial life-stages in Ls-infected BALB/c mice. In vitro, only
infection-derived Mo-MDSCs showed a suppressive nature by preventing IL-13 and IFN-g
secretion from filarial-specific CD4+ T cells upon co-culture with soluble worm extract.
This suppression was not mediated by IL-10, IL-6 or TNF-a, and did not require cell-
contact, nitric oxide (NO), IL-4/IL-5 signalling pathways or CCR2. Interestingly, neutralizing
TGF-b significantly rescued IFN-g but not IL-13 production by filarial-specific CD4+ T cells.
In comparison to naive cells, PCR array data showed an overall down-regulation of
inflammatory pathways in both infection-derived Mo-MDSCs and PMN-MDSCs. In
conclusion, these primary data sets show activity and expansion of MDSCs during Ls
infection adding this regulatory cell type to the complex milieu of host responses during
chronic helminth infections.
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INTRODUCTION

Approximately, 65 million people are infected with LF worldwide
(1). To understand mechanisms underlying immunity to filarial
infections in man, such as Wuchereria bancrofti which elicits
lymphatic filariasis (LF) (2, 3), researchers employ the
Litomosoides sigmodontis (L. sigmodontis, Ls) rodent model
since it reflects several aspects of LF infection. This includes
partial patency since only a portion of immunocompetent
BALB/c mice become patent (release microfilariae (MF) into the
periphery) when naturally infected with Ls (4–6). The
development of adult worms from larval stages in the host
provokes different immune reactions and encompasses both
innate (neutrophils, eosinophils and basophils) and adaptive
responses (T and B cells). Indeed, both filarial-specific CD4+ T
cells and Th2 responses have been found to be essential for Ls
development and host immunity (6–8). Moreover, lack of Th2
associated cytokines, such as IL-4, IL-13 and IL-5, disables the
effects of neutrophils and eosinophils on controlling worm burden
and leads to elevated MF loads (9–11). Interestingly, studies have
also shown that IFN-g supports neutrophil-mediated clearance of
Ls adult worms and suggested that Th1 and Th2 immune
responses act in a synergistic manner in order to control Ls
infection (12, 13). Furthermore, infection with Ls induces
regulatory cell populations including Tregs, IL-10 producing
cells and alternatively activated macrophages (AAMs) that can
affect CD4+ T cells by making them hyporesponsive to the
nematode (6, 14–17). In this study, we investigated the yet
unexplored role of another regulatory cell population: Myeloid-
Derived Suppressor Cells (MDSCs). Two subsets of MDSCs,
the monocytic MDSCs (Mo-MDSCs, CD11b+Ly6C+Ly6G-)
and the polymorphonuclear MDSCs (PMN-MDSCs,
CD11b+Ly6Cint/loLy6G+) have been identified in patients and
murine models of disease. These include cancer, systemic
inflammation and sepsis, autoimmune diseases as well as
bacterial, viral and parasitic infections (18–26). Mo-MDSCs and
PMN-MDSCs are reported to suppress T and B cell responses
through receptors, cytokines, or soluble factors as reviewed
(20, 27). It has been shown that in infections caused by
Heligmosomoides polygyrus bakeri, isolated CD11c-CD11b+Gr1+

cells, likely MDSCs, suppressed OVA-specific CD4+ T cell
proliferation in a nitric oxide (NO)-dependent manner and
nematode-specific IL-4 responses in vitro. Also, an adoptive
transfer of these cells induced higher parasite burden indicating
that these cells promoted chronic infection (28). This current work
explored the role of Mo- and PMN-MDSCs over the course of Ls
infection in BALB/c mice. Interestingly, both MDSC subsets were
present in the thoracic cavity (TC), the site of infection and levels
Abbreviations: BMDC, bone-marrow derived dendritic cells; GM-CSF,
granulocyte macrophage colony stimulating factor; L-NMMA, monomethyl-L-
arginine monoacetate salt; L. sigmodontis, Litomosoides sigmodontis; LsAg, L.
sigmodontis worm antigen preparation; MDSCs, myeloid-derived suppressor cells;
mLN, mediastinal lymph nodes; MF, microfilariae; Mo-MDSCs, monocytic
MDSCs; NO, nitric oxide; NOS, nitric oxide synthase; PMN-MDSCs,
polymorphonuclear MDSCs; ROS, reactive oxygen species; TC, thoracic cavity.
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positively correlated with worm load. Since cells were virtually
absent in naive mice, this indicates that MDSCs are part of the
immune repertoire that is specifically drawn to the TC during
infection. To test functional responses of infection-derived
MDSCs subsets, we designed an in vitro MDSC:T cell co-culture
assay and revealed that Mo-MDSCs but not PMN-MDSCs
showed high suppressive abilities on the production of IL-13
and IFN-g but not IL-5 by Ls-specific CD4+ T cells. This
suppression was independent of cell-contact, nitric oxide, IL-10,
IL-6, TNF-a and the receptors CCR2 and IL-4Ra. Further
analyses demonstrated that Mo-MDSCs used the TGF-b
pathway to impair the production of IFN-g but not IL-13.
Collectively, this study reveals that the expansion of MDSCs
subsets during Ls infection is a specific host response and Mo-
MDSCs have a defined role in controlling Ls-specific IL-13 and
IFN-g production from CD4+ T cells.
MATERIAL AND METHODS

Ethics Statement
Wildtype (WT) and IL-4Ra/IL-5dKO BALB/c mice were kept
under specific-pathogen-free (SPF) conditions at the Institute of
Medical Microbiology, Immunology and Parasitology (IMMIP),
University Hospital of Bonn (UKB), Bonn, Germany. Animals
were bred in accordance with German animal protection laws
and the EU guidelines 2010/63/E4. All in vivo experiments were
reviewed and approved by the appropriate committee
(Landesamt für Natur, Umwelt und Verbraucherschutz,
NRW, Germany).

Animal Maintenance and Infections
With L. sigmodontis
WT BALB/c mice were obtained from Janvier Labs (Le Genest-
Saint-Isle, France). IL-4Ra/IL-5 dKO BALB/c mice were
originally provided by Prof. Dr. Klaus Matthaei, Australia
National University College of Medicine, Biology and
Environment, Canberra, Australia. Natural infections with Ls
were performed as previously described (6, 9, 10, 29). Endotoxin-
free LsAg extracts were prepared from adult Ls worms and stored
at -80°C until required (6, 9, 29).

Parasite Recovery and Determination
of MF Load
Worms were recovered from the TC of individually infected
BALB/c female mice between day 70-72 post-infection (p.i.) as
previously described and gender and numbers were determined
microscopically (6, 8, 30). To determine MF load, 50 µl of blood
or TC fluid from individually infected mice were placed in 300 µl
Hinkelmann solution. After incubation at room temperature
(RT) for 20-30 min, the suspension was centrifuged (Multifuge
4KR, Heraeus Holding GmbH, Hanau, Germany) at 1800 rpm
for 5 minutes and the supernatant (SN) was discarded. MF were
counted in the pellet using a microscope (Leica Microsystems
GmbH, Wetzlar, Germany).
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BMDC Preparation
Following erythrocyte-depletion of RBCs from leg bones (hip to
ankle) of WT BALB/c mice, GM-CSF (20 ng/mL, Peprotech,
New Jersey, USA) derived dendritic cells were generated over 7
days using the previously described protocol (6).

CD4+ T Cell Isolation
An enriched T cell fraction from pooled spleen and mediastinal
lymph nodes (mLN) between 70-72 days Ls-infected BALB/c
mice were obtained after depletion of antigen presenting cells
(APCs) using MHC class II beads and MACS technology
(Miltenyi Biotech, Bergisch Gladbach, Germany). Resulting
cells were then stained with anti-CD4 (clone RM4-5) APC-
conjugated and anti-CD25 (clone PC61.5) PE-conjugated
antibodies (Thermo Fisher Scientific). CD4+CD25neg and
CD4+CD25hi T cells were then isolated using the FACS DIVA
cell sorter (BD Biosciences, Heidelberg, Germany). We purposely
removed the CD4+CD25hi T cells from the main CD4+ T cell
population based on the findings from our earlier studies (6, 31,
32) since this now removed potential regulatory T cells
(CD4+CD25hiFoxp3+) from the co-cultures allowing a more
accurate assessment of the MDSC suppressive ability on
effector CD4+ T cells fractions. Cells were isolated using BD
FACS Aria III Cell Sorter (BD Biosciences, Heidelberg,
Germany) at the Flow Cytometry Core Facility (FCCF), Bonn.

MDSC Isolation
Mo-MDSCs and PMN-MDSCs were isolated from the TC of
infected BALB/c mice via sorting. After blocking (anti-CD16/
CD32, clone 93) (Thermo Fisher Scientific) and staining cells
with anti-CD11b (clone M1/70) Alexa Fluor 488-, anti-CD45
(clone 30-F11) PerCP Cy5.5-, anti-Ly6C (clone HK1.4) APC
Cy7- and anti-Ly6G (clone 1A8) PE-conjugated antibodies (all
from Biolegend, Koblenz, Germany) MDSC populations were
identified using the gating strategy depicted in Figure 1A
adapted from (33). Cells were isolated using BD FACS Aria III
Cell Sorter (BD Biosciences, Heidelberg, Germany) at the Flow
Cytometry Core Facility (FCCF), Bonn. A purity rate of 94% and
100% was obtained after re-acquiring and analysis of Mo-
MDSCs and PMN-MDSCs, respectively (Figure S1A). To
determine the viability of the isolated cells, TC cells of infected
BALB/c mice were stained with anti-CD11b (clone M1/70)
BV510-, anti-CD45 (clone 30-F11) AF700-, anti-Ly6C (clone
HK1.4) APC Cy7-, anti-Ly6G (clone 1A8) PE-conjugated
antibodies and propidium iodide (PI) (all from Biolegend,
Koblenz, Germany) (Figure S1B). At least 87% of isolated cells
were alive prior to co-culture (Table S1).

In Vitro Filarial-Specific MDSC:T Cell
Co-Culture Assays
To perform the standardMDSC:T cell co-culture assay, 1x105 CD4+

T cells fromWT Ls-infected BALB/c mice (between days 70-72 p.i.)
were co-cultured with 5x104 GM-CSF-derived BMDC from naive
WT BALB/c mice in the presence or absence of Ls-derived 1x105

Mo- or PMN- MDSCs and stimulated with 50 µg/mL Ls antigen
(LsAg) in 96-well plates (37°C, 5% CO2). In some assays MDSCs
Frontiers in Tropical Diseases | www.frontiersin.org 3
were derived from IL-4Ra/IL-5 dKO BALB/c mice. After 24 or 72
hours, supernatants were collected and analysed for cytokine levels.
In some assays, neutralizing antibodies: anti-CCR2 (20 µg/mL),
anti-IL-10 (2 µg/mL), anti-IL-6 (10 µg/mL) anti-TGF-b (10 µg/mL),
anti-TNF-a (0.5 µg/mL) or inhibitors (L-NMMA, 5 µM, at 0 hours
or 0, 24 and 48 hours) and their isotype controls (mAb mouse IgG1
isotype control, clone MOPC-21 from BioXcell for anti-TGF-b and
mAb rat IgG2B isotype control, clone 141945 from R&D systems
for anti-CCR2) were added at least 30 minutes before Ls
stimulation. Furthermore, the effect of the co-culture set-up on
MDSC function was assessed. For this, LsAg was added to the co-
culture after 60 minutes. Anti-CCR2 (clone MC-21) antibody was a
kind gift from Prof. Dr. Matthias Mack (University Hospital
Regensburg); anti-TGF-b (clone 1D11.16.8) was purchased from
BioXcell, West Lebanon, USA; anti-IL-10 (clone JES052A5), anti-
IL-6 (clone MP520F3) and anti-TNF-a (clone MP6-XT22) from
R&D systems, Wiesbaden-Nordenstadt, Germany and L-NMMA
was obtained from Abcam, Cambridge, UK. In transwell
experiments, culture conditions remained the same except that
MDSC subsets were cultured in an insert (0.4 µM pore size;
Corning GmbH Life Sciences, Wiesbaden, Germany), permeable
to soluble factors but not allowing physical cell-contact (34, 35).

Cytokine Determination
Cytokine concentrations in the culture supernatants of re-
stimulation assays were determined by ELISA according to the
manufacturer’s instructions (IFN-g and IL-13 Thermo Fisher
Scientific; IL-5 BD Biosciences). ELISA plates were read and
analysed at 450 and 570 nm using a Spectra Max 340pc384
photometer and SOFTmax Pro 3.0 software (Molecular Devices,
Sunnyvale, California, USA).

Flow Cytometry Staining of MDSCs
Frequencies of MDSC subsets in Ls-infected BALB/c mice were
determined using cells collected from the TC. After blocking
(anti-CD16/CD32, clone 93) (Thermo Fisher Scientific), cells
were stained with the antibodies used for MDSC isolation
(section 3.6 MDSC isolation). Expression levels were
determined using the FACS Canto flow cytometer (BD
Biosciences) and analysis was performed using the gating
strategy shown in Figure 1A, adapted from (33) with FlowJo
VX software (Tree Star, Inc, Ashland, Oregon, USA).

Gene Expression Analysis
In order to evaluate the differences in the expression of 84 genes
between isolated Mo- and PMN-MDSC populations (see MDSC
Isolation) from pooled Ls-infected BALB/c mice (n=10), PCR
Arrays using the RT2 SYBR Green Mastermix kit (Qiagen,
Hilden, Germany) and the RT2 Profiler PCR Array Mouse
Innate and Adaptive Immune Responses kit (Qiagen) were
performed. These two subsets of MDSCs were also isolated
from naive mice to serve as controls (n=30). 20 µl PCR
components mix were added to each well of the RT2 Profiler
PCR Array using Qiagility device (Qiagen), followed by cycling
using a Rotor Gene Q (Qiagen). Data were analysed using the
online RT2 Profiler PCR Array Data analysis 3.5 software at the
February 2022 | Volume 2 | Article 707100
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A

B

C
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FIGURE 1 | MDSC subsets accumulate at the site of infection following exposure to Litomosoides sigmodontis. (A) Monocytic (CD11b+Ly6C+Ly6G-, Mo-MDSCs or
Ly6C+) and polymorphonuclear (CD11b+Ly6Cint/loLy6G+, PMN-MDSCs or Ly6G+) MDSC populations were discriminated by gating on single CD45+ cells that co-
expressed CD11b. Further discrimination of CD45+CD11b+ cells using Ly6C and Ly6G markers revealed Mo-MDSCs and PMN-MDSCs respectively. (B) Percentage
of Mo-MDSCs and PMN-MDSCs within the CD11b+ population in naive and day 72 Ls-infected mice (Inf.). Symbols show individual values of n=13 naive and n=20
Ls-infected mice from two independent infection studies. Statistical significances between the indicated groups were obtained after a Mann-Whitney test. (C)
Comparison of MDSC subsets within the CD11b+ compartment on day 72 p.i. of Ls-infected mice as percentage or absolute (Abs) cell number. Symbols show
values from individual mice (n=20) from two independent infection studies. Statistical analysis was performed using the Mann-Whitney test. Correlation of numbers of
both MDSC subsets with the worm load (D) and MF numbers in the TC (E) and in blood (F). Data are from infected mice (n=27) pooled from three independent
infection studies. Statistical significances were tested using the Spearman correlation test.
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sabiociences.com website (Qiagen) and gene expression was
normalized to Beta-actin. The threshold cycle (Ct) cut-off was
set to 33 and the fold-change varied between 0.0001 and 15789.
Fold-change values greater than one indicate a positive- or an
up-regulation, and fold-change values less than one indicate a
negative or down-regulation.

Statistical Analysis
Statistical analyses were performed using SPSS (IBM SPSS
Statistics 25, Armonk, NY, USA) and graphs were generated
using the software PRISM 5.02 (GraphPad Software, Inc., La
Jolla, USA). After column statistics (D’Agostino & Pearson
normality test, Shapiro-Wilk normality test and Kolmogorov
Smirnov normality test), statistical differences between three or
more groups were observed using ANOVA with Tukey posthoc
test, for a parametric distribution. If data were non-parametric, a
Kruskal-Wallis with Dunn’s posthoc test was used. For
correlation analysis, statistical significances were tested using
the Spearman correlation test. P-values of 0.05 or less were
considered significant.
RESULTS

MDSC Populations Expand During
Litomosoides sigmodontis Infection
Commonly, MDSCs are classified as monocytic (Mo-MDSCs = Ly6C,
CD11b+Ly6C+Ly6G-, labelled as Ly6C+) or polymorphonuclear
(PMN-MDSCs = Ly6G, CD11b+Ly6Cint/loLy6G+, labelled as Ly6G+)
(18, 19). Earlier studies revealed that following infection with Ls
in BALB/c mice, the peak of MF (reflecting the transmission life-
stage) was between day 70-72 p.i (6). To determine whether
frequencies of MDSC populations are altered during Ls infection,
cells were monitored at the site of infection (TC) and subsets
were distinguished from one another via flow cytometry using
the scheme depicted in Figure 1A.

Very few Mo-MDSCs or PMN-MDSCs were present in the
TC of naive mice (Figure 1B) whereas substantial numbers of
these cells comprised the cellular milieu in Ls-infected mice 72
days p.i. (Figure 1B). Moreover, frequencies and cell numbers of
PMN-MDSCs were significantly higher than Mo-MDSCs
(Figure 1C). Correlation analysis of worm burden or MF
counts with MDSC numbers also indicated that levels of both
Mo-MDSCs and PMN-MDSCs positively correlated with worm
burden (Figure 1D) and MF in the TC (Figure 1E). However, no
correlation was displayed between MDSC levels in the TC and
released MF numbers in blood (Figure 1F). These data show that
Mo-MDSCs and PMN-MDSCs infiltrate the TC of Ls-infected
mice and positively correlate with parasite load at the site
of infection.

Mo-MDSCs But Not PMN-MDSCs
Suppress Ls-Specific CD4+

T Cell Responses
To test the suppressive properties of Mo-MDSCs and PMN-
MDSCs that arose during Ls infection, an in vitro MDSC:T cell
Frontiers in Tropical Diseases | www.frontiersin.org 5
co-culture assay was designed (Figure 2A). Earlier studies have
shown that CD4+ T cells from Ls-infected but not naïve BALB/c
mice can be re-stimulated ex vivo with LsAg (a soluble extract
prepared from adult Ls worms) (6) (Figure S2A). Thus, CD4+ T
cells (without the Treg compartment) from Ls-infected WT
BALB/c mice (70-72 days p.i.) were co-cultured with GM-CSF-
derived BMDC from WT BALB/c naive mice and stimulated
with LsAg in the presence or absence of Mo- or PMN- MDSCs
from Ls-infected mice in a 1:1 ratio (MDSCs:T cells). This assay
revealed that Mo-MDSCs were able to significantly suppress the
production of IL-13 and IFN-g but not IL-5 by filarial-specific
CD4+ T cells (Figure 2B c.f. white and black bars). Surprisingly,
PMN-MDSCs were not able to suppress the production of any of
those measured cytokines (Figure 2B c.f. white and grey bars). Of
note, when compared to the main read-out parameter
DC+CD4++LsAg, other controls had negligible levels of IL-13
and IFN-g (Figure S2B) when stimulated with LsAg. Similarly,
co-culture of Mo-MDSCs with GM-CSF-derived DC (without
CD4+ T cells) had very low cytokine levels (Figure S3) Moreover,
the observed suppression shown by Mo-MDSCs was not caused
by cell death (or whether antigen stimulation occurred before or
after Mo-MDSCs were added to co-culture), since discrimination
of dying (or adding Mo-MDSCs after antigen stimulation) still
resulted in suppression of IL-13 and IFN-g (Figures S1B, C). To
determine whether the suppressive ability of Mo-MDSCs was
connected to the infection state of the mouse (patent or latent),
further assays were performed using Mo-MDSCs isolated from
either MF+ or MF- mice. Figure S4 shows that the suppressive
capacity of Mo-MDSCs on the production of IL-13 (Figure S4A)
or IFN-g (Figure S4B) by Ls-specific CD4+ T cells is independent
on the infection state of the mouse.

Receptor-Dependent Pathways Are Not
Crucial for Mo-MDSC Function
Research has indicated that MDSCs suppress T cell responses
through the IL-4Ra. For example, cancer patients have been
shown to have higher levels of MDSCs expressing IL-4Ra (36,
37). Moreover, studies have reported that suppression through
IL-4Ra is only attributed to the Mo-MDSC subset (38).
Therefore, in order to decipher the mechanism(s) by which
Mo-MDSCs suppress Ls-specific CD4+ T cell responses, we
investigated the outcome of the suppressive ability of infection-
derived Mo-MDSCs from IL-4Ra/IL-5 dKO BALB/c mice since
earlier studies showed that these mice present high worm burden
and MF load in the absence of these Th2 cytokines (9, 11).
Surprisingly, Mo-MDSCs derived from Ls-infected IL-4Ra/IL-5
dKO BALB/c mice were able to suppress IL-13 and IFN-g
production by Ls-specific CD4+ T cell responses in a similar
manner to those derived fromWT BALB/c (Figures 3A, B). This
indicates that neither the IL-4Ra nor IL-5 was involved in the
observed suppression. In regards to MDSC numbers in the TC,
levels of Mo-MDSCs in either percentage or absolute cell number
were significantly higher in Ls-infected IL-4Ra/IL-5 dKO BALB/
c (Figures S5A, C) when compared to those inWTmice whereas
populations of PMN-MDSCs remained comparable (Figures
S5B, D). There was no difference in MDSC amounts in naïve
February 2022 | Volume 2 | Article 707100
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IL-4Ra/IL-5 dKO BALB/c when compared WT mice (3.103% ±
0.345 vs 3.66% ± 1.149, respectively). CCR2 is a receptor present
on the surface of Mo-MDSCs but not PMN-MDSCs (39) and
reports have suggested that this receptor influences the
suppressive activity of Mo-MDSCs (40–42). However, in assays
blocking the CCR2 receptor, Mo-MDSCs were still capable of
suppressing IL-13 and IFN-g production by Ls-specific CD4+ T
cells, (Figures 3C, D and S6A, B for data including
isotype controls).

Next, we assessed the requirement of cell-contact for Mo-
MDSCs to suppress IL-13 and IFN-g production by filarial-
specific CD4+ T cells using a transwell assay (Figures S7A, B).
To avoid cell-contact, Mo-MDSCs were placed in an insert.
Again, suppression of T cell cytokine production remained
unaltered between MDSC co-cultures with or without the
insert indicating that cell-contact was not required. These data
tallied with the findings on the IL-4Ra receptor and emphasised
that suppression was not receptor mediated.

MDSC-Related Cytokines and Nitric Oxide
Pathways Are Not Essential for Mo-MDSC
Suppression of LsAg-Specific CD4+

T Cell Responses
Evidence has been provided that MDSCs function through either
soluble factors (43, 44) or receptors (41, 45) and since we found
that suppression of CD4+ T cell responses by infection-derived
Frontiers in Tropical Diseases | www.frontiersin.org 6
Mo-MDSCs was not cell-contact dependent, we explored the
requirement of cytokines using neutralizing antibodies.
Increased levels of IL-10 and IL-6 levels have been associated
with the augmentation of Mo-MDSC levels in patients or models
of cancer and other diseases (46–49). Additionally, studies have
demonstrated that TNFR2 expression is required for the
generation and function of Mo-MDSCs (45, 50, 51). Here, we
found that the Mo-MDSC-mediated suppression of IL-13
(Figures 4A-C) or IFN-g (Figures 4D-F) by Ls-specific CD4+ T
cells was sustained after neutralizing IL-10 (Figures 4A, D), IL-6
(Figures 4B, E) or TNF-a (Figures 4C, F), indicating that these
cytokines were not relevant for Mo-MDSC suppressive activity.

NO and ROS are factors associated with MDSC function and
a study has reported that Mo-MDSCs limited autologous B cell
proliferation and antibody production in a NO and PGE2-
dependent manner (43, 52) and recent findings showed that
tumor-derived MDSCs regulated NO production in asthma
pathogenesis (53). Interestingly, using a single application of L-
NMMA (an inhibitor of nitric oxide synthase (NOS), an enzyme
which catalyses NO production), we observed a trend of
suppression of IFN-g production by Ls-specific CD4+ T cells
in presence of Mo-MDSCs 24 hours after stimulation
(Figures 5A, B). Upon 72 hours stimulation, both IL-13 and
IFN-g production were dampened by Mo-MDSCs and this was
not affected by blocking NO pathways (Figures 5C, D).
Moreover, this did not alter when multiple doses (at 0, 24 and
A

B

FIGURE 2 | Infection-derived Mo-MDSCs suppress filarial-specific CD4+ T cell recall responses. (A) CD4+ T cells (1x105) from day 72 p.i. Ls-infected BALB/c mice
were cultured with GM-CSF-derived BMDCs (5x104) and LsAg (50 µg/mL) in the presence or absence of Mo-MDSCs (1x105) or PMN-MDSCs (1x105) for 72 hours.
(B) Resulting supernatants were screened for IL-13, IFN-g and IL-5 by ELISA. Graphs show mean ± SEM of combined co-culture assays using cells from 4-6 pooled
mice from four independent infections. Statistical significances between the indicated groups were obtained after Kruskal-Wallis followed by Dunn’s multiple
comparison test.
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48 hours) of the inhibitor were added (Figures 5E, F). This
suggests that Mo-MDSCs do not use NO pathways to suppress
filarial-specific IL-13 and IFN-g production by Ls-specific CD4+

T cells.

TGF-b Is Critical for Filarial-Specific
Mo-MDSC Suppression of IFN-g
TGF-b is a cytokine which is usually associated with regulatory
networks (54). Therefore, MDSC suppression assays were
performed whilst blocking TGF-b. Interestingly, the presence
of anti-TGF-b neutralizing antibody in the culture did not
impair the ability of Mo-MDSCs to suppress IL-13 production
(Figures 6A and S6C) but the suppression of IFN-g production
by filarial-specific CD4+ T cells was significantly abrogated
(Figures 6B and S6D). When compared to the main read-out
parameter the secretion of TGF-b is diminished in the presence
of Mo-MDSCs (Figure S6E, c.f. white and bars). Collectively,
these data show that TGF-b is essential for the suppression of
Frontiers in Tropical Diseases | www.frontiersin.org 7
IFN-g production by filarial-specific CD4+ T cells. Figure 7
displays schematically the role of TGF-b in the suppression of
IFN-g production by filarial-specific CD4+ T cells.

Inflammatory Pathways Are Shut-Down in
Infection-Derived MDSC Subsets
Since gene profiling can inform on MDSC features and has been
associated with MDSC function (55, 56), we assessed the
regulation of innate and adaptive genes comparing isolated Mo-
MDSCs and PMN-MDSCs from the TC of infected WT BALB/c
mice on day 72 p.i. to those of naive mice which served as controls.
Interestingly, data from the PCR array (84 genes) showed that
PMN-MDSCs and especially Mo-MDSCs isolated from infected
mice displayed an up-regulation of FOXP3 (Forkhead box P3), a
transcription factor for regulatory T cells (Tregs) and NF-kB1
(Nuclear factor of kappa light polypeptide gene enhancer in B-cells
1, p105) (Tables 1, 2). However, a down-regulation of genes
including C3 (Complement component 3), CCR6 (Chemokine
A B

C D

FIGURE 3 | Suppression by filarial-specific Mo-MDSCs is independent of CCR2 and IL-4/IL-5 signalling pathway. Days 72 p.i.-derived CD4+ T (1x105) cells from Ls-
infected BALB/c mice were cultured with GM-CSF-derived BMDCs (5x104) and LsAg (50 µg/mL) in the presence or absence of isolated Mo-MDSCs (1x105) from
WT or IL-4Ra/IL-5 dKO BALB/c mice (A, B) or with or without anti-CCR2 (20 µg/mL) (C, D) for 72 hours. Supernatants were then screened for IL-13 (A, C) and
IFN-g (B, D) by ELISA. Each graph shows mean ± SEM of combined co-culture assays using cells from 5-10 pooled mice from two independent infections.
Statistical significances between the indicated groups were obtained after Kruskal-Wallis followed by Dunn’s multiple comparison test.
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(C-Cmotif) receptor 6) and IL-18 (Interleukin 18) was observed in
the two subsets (Tables 3, 4). Mo-MDSCs alone showed negative
fold-changes in the expression of the genes IL-1a and NOD1
(Nucleotide-binding oligomerization domain containing 1)
(Table 3) but displayed up-regulated expression of IFN-g and
IL-13 when compared to those from naive controls (Table 1).
These results give a primary indication that gene expression within
the two MDSC subsets present high regulatory and rather low
inflammatory properties.
DISCUSSION

In this study, we show that MDSCs are induced and expanded at
the site of infection following exposure to L. sigmodontis
(Figure 1) and moreover that the monocytic subset displays
distinct suppressive activities on filarial-specific CD4+ T cell
responses (Figure 2). Furthermore, the suppression was
tailored since not all cytokine responses were suppressed e.g.
IL-5 (Figure 2B), adding credence to the overall findings.
Frontiers in Tropical Diseases | www.frontiersin.org 8
In cancer, MDSC frequencies have been associated with both
the state and progression of pathology (46, 57). Using the
laboratory BALB/c mouse strain, which allows the complete Ls
life-cycle, we found that in the absence of infection, very few Mo-
MDSCs and PMN-MDSCs were within the TC fluid whereas
large numbers of these cells were identified after infection
(Figure 1B). This supports earlier studies that revealed that
levels of MDSC populations increase under inflammatory
conditions (20, 58). Interestingly, there was a higher number of
PMN-MDSCs when compared to Mo-MDSCs (Figure 1C)
which reflects observations in tumour models (19) but different
compositions were found in Trypanosoma congolense-infected
mice (59). In our model, MDSC infiltration positively correlated
with adult worm burden (Figure 1D). Therefore, we suggest that
while adult worms develop, the host offers a favourable milieu for
MDSC infiltration or vice versa, promoting chronic infection.
This is in line with recent findings that demonstrated that after
adoptive transfer of MDSCs, there was a persistent chronic phase
of infection with the nematode Heligmosomoides polygyrus
bakeri (28).
A B C

D E F

FIGURE 4 | Mo-MDSCs do not require IL-10, IL-6 or TNF-a to suppress filarial-specific CD4+ T cell responses. Day 72 p.i.-derived CD4+ T (1x105) cells from
Ls-infected BALB/c mice were cultured with GM-CSF-derived BMDCs (5x104) and LsAg (50 µg/mL) in the presence or absence of isolated Mo-MDSCs (1x105) and
with or without anti-IL-10 (2 µg/mL) (A, D), anti-IL-6 (10 µg/mL) (B, E) or anti-TNF-a (0.5 µg/mL) (C, F) for 72 hours. Supernatants were then screened for IL-13
(A-C) and IFN-g (D-F) by ELISA. Each graph shows mean ± SEM of combined co-culture assays using cells from 5-10 pooled mice from two independent
infections. Statistical significances between the indicated groups were either obtained after Kruskal-Wallis followed by Dunn’s multiple comparison test (A–E) or after
ANOVA followed by Tukey multiple comparison test (F).
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A B

C D

E F

FIGURE 5 | Filarial-derived Mo-MDSCs do not suppress CD4+ T cell responses via NO pathways. Day 72 p.i.-derived CD4+ T (1x105) cells from Ls-infected BALB/c
mice were cultured with GM-CSF-derived BMDCs (5x104) and LsAg (50 µg/mL) in the presence or absence of isolated Mo-MDSCs (5x104) and with or without L-NMMA
(5 µM). In (A–D), L-NMMA was added at 0 hours whereas in (E, F) the inhibitor was added at 0, 24 and 48 hours - multiple neutralization. Supernatants were then
screened for IL-13 (A, C, E) and IFN-g (B, D, F) by ELISA after 24 hours (A, B) or 72 hours (C-F). Graphs (A, B, E, F) show mean ± SEM of two co-culture assays
using isolated MDSCs from 10 pooled mice. Graphs C and D show mean ± SEM of one co-culture assay using isolated MDSCs from 10 pooled mice. Statistical
significances between the indicated groups were obtained after ANOVA (B–D) or Kruskal-Wallis followed by Dunn’s multiple comparison test (E, F).
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Upon re-stimulation of CD4+ T cells from infected mice with
LsAg, infection-derived Mo-MDSCs but not PMN-MDSCs were
able to impair the release of IFN-g, and IL-13 but not IL-5
(Figure 2B). This suppression was revealed not to be dependent
on patency since Mo-MDSCs derived from both MF- and MF+
Ls-infected mice groups were similarly capable of suppression
(Figure S4). Studies in cancer patients have demonstrated the
suppressive function of MDSCs on CD4+ T cell responses even
though the effect of Mo-MDSCs was not specifically ascertained
(60). In contrast, data from primary glioblastoma patients have
indicated that Mo-MDSCs were not able to suppress T cell
responses, confining the suppressive function in that scenario
to PMN-MDSCs. Indeed, these authors have observed diverse
MDSC subsets including monocytic, granulocytic, neutrophilic,
Frontiers in Tropical Diseases | www.frontiersin.org 10
eosinophilic and immature MDSCs (61). In regards to murine
settings, Zhu and colleagues found that in a murine model of
hepatitis, SSChighCD11bhighLy-6ChighLy-6GlowMDSCs,
corresponding to Mo-MDSCs, were the only subset capable of
suppressing CD4+ T cell responses while the other MDSC-like
compartment was not capable of doing so (62). Elsewhere,
studies in C57BL/6 mice have noted the inhibition of not only
T cell responses but also of B cell responses by Mo-MDSCs in
murine LP-BM5 retroviral infections (63, 64). PMN-MDSC
numbers in the TC were higher when compared to Mo-
MDSCs (Figure 1C) but only Mo-MDSCs displayed a
suppressive function on LsAg specific CD4+ T cell responses
(Figure 2B), suggesting that the Mo-MDSC-mediated
suppressive function was not associated with elevated Mo-
A B

FIGURE 6 | Neutralizing TGF-b abrogates the suppression of IFN-g production. Day 72 p.i.-derived CD4+ T (1x105) cells from Ls-infected BALB/c mice were
cultured with GM-CSF-derived BMDCs (5x104) and LsAg (50 µg/mL) in the presence or absence of isolated Mo-MDSCs (1x105) and with or without anti-TGF-b (10
µg/mL) for 72 hours. Supernatants were then screened for IL-13 (A) and IFN-g (B) by ELISA. Each graph shows mean ± SEM of combined co-culture assays using
cells from 5-10 pooled mice from three independent infections. Statistical significances between the indicated groups were obtained after Kruskal-Wallis followed by
Dunn’s multiple comparison test.
FIGURE 7 | Mo-MDSCs suppress the production of IL-13 and IFN-g via Ls-specific CD4+ T cells. The Mo-MDSC suppressive function of IFN-g occurs through TGF-b.
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MDSC numbers at the site of infection. Given the fact that Mo-
MDSCs had a purity rate of 94% after re-analysis (Figure S1A), it
could be that non Mo-MDSC cells might have contributed to in
vitro suppression as well. Although PMN-MDSCs did not
suppress filarial-specific CD4+ T cell responses, this does not
rule out that these cells have a suppressive capacity in another
setting. Moreover, in order to confirm these results, a more
sophisticated intracellular FACS staining of the co-cultured cells
should be performed in further studies in order to assess clearly
the source of the cytokines. To gain further insight into the
interaction of these three immune cell types (T cells:Mo-MDSCs
: APC) both in vitro and in vivo, future studies should include
immune phenotyping of the T cells and APC. A further future
line of investigation in this suppressive scenario would be to
study the interaction or direct effect of Mo-MDSCs on the APC
in the in vitro assay (BM-DC). Since the results from the
transwell assays showed that suppression by Mo-MDSCs on
the cytokine release from CD4+ T cells was not altered we
consider that any effects on the APC by Mo-MDSC would be
mediated though soluble factors as well. Although Mo-MDSCs
were very scarce in the thoracic cavity, the site of infection, of
uninfected mice, further studies should explore the function of
Mo-MDSCs from other sites (blood for example) on CD4+ T
cells to serve as control and substantiate the specific ability of L.
sigmodonts infection-derived Mo-MDSCs to suppress IFN-g and
IL-13 production.

In earlier studies we showed that Ls-infected IL-4Ra/IL-5
dKO BALB/c mice had higher worm burden and full patency
when compared to the WT group (9). Since studies have
suggested that the presence of the IL-4Ra is associated with
the suppressive activity of Mo-MDSCs in melanoma and colon
carcinomas (38), we investigated the role of this receptor too.
Frontiers in Tropical Diseases | www.frontiersin.org 11
However, our results clearly show that the lack of IL-4/IL-5
signalling does not impair the suppression of CD4+ T cell
responses by Mo-MDSCs (Figures 3A, B) but does seem to
facilitate Mo-MDSC infiltration into the TC of Ls-infected IL-
4Ra/IL-5 dKO BALB/c mice (Figure S5). These findings support
previous studies which showed that in tumour-harbouring IL-
4Ra KO mice, the IL-4Ra receptor was not required for MDSC
function (65). Furthermore, our infection-derived Mo-MDSCs
kept their suppressive ability even after CCR2 blockade
(Figures 3C, D). In contrast to that and using MDSCs
generated from CCR2-/- C57BL/6 mice, Qin and colleagues
showed that these cells failed to migrate to islet allografts and
to suppress CD8+ T cells under in vivo conditions which resulted
in enhanced Tregs activity. However, they were able to exert in
vitro inhibition (66). Further studies are required to ascertain
whether blocking CCR2 truly affects the suppressive nature of
filarial-specific Mo-MDSCs.

CCR2 is mainly involved in the migration of cells, which
occurs during the course of infection. There remains a debate as
to whether the anti-CCR2 neutralizing Ab used in this study, was
suitable to block the activity of the receptor in vitro although a
study reported that anti-CCR2 treatment had minimal influence
on tumour regression (67). Perhaps Mo-MDSCs require CCR2
to influence only CD8+ T cell but not CD4+ T cell responses. In
addition, the fact that these authors used generated MDSCs
could explain the conflicting results observed here. Furthermore,
data from Schmid et al. indicated that the CCR2 receptor was
impaired in Mo-MDSCs derived from Leishmania major
infected BALB/c mice when compared to those from C57BL/6
mice (68), suggesting that the presence and thus the activity of
this receptor in mice may be strain-dependent. Therefore, more
experiments using CCR2-/- BALB/c mice and especially, using
TABLE 1 | Up-regulated genes in Ls-infected Mo-MDSCs compared to naïve Mo-MDSCs.

Gene Full name Fold change p-value

Cxcr3 Chemokine (C-X-C motif) receptor 3 1002.9264 0.005499
Fasl Fas ligand (TNF superfamily, member 6) 5454.886 0.000814
Foxp3 Forkhead box P3 185.2505 0.00323
Ifng Interferon gamma 15789.3774 0.002364
Il13 Interleukin 13 2923.201 0.027058
Ly96 Lymphocyte antigen 96 10.6295 0.03942
Mpo Myeloperoxidase 263.1971 0.017737
Myd88 Myeloid differentiation primary response gene 88 3.0035 0.005016
Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105 3.8548 0.045602
Tbx21 T-box 21 645.0796 0.012174
Tlr8 Toll-like receptor 8 13155.0885 0.015218
February 2022 | Volume 2 | Artic
TABLE 2 | Up-regulated genes in Ls-infected PMN-MDSCs compared to naïve PMN-MDSCs.

Gene Full name Fold change p-value

Cd86 CD86 antigen 63.7049 0.014497
Cxcl10 Chemokine (C-X-C motif) ligand 10 47.9458 0.024228
Foxp3 Forkhead box P3 83.8652 0.003258
Ifnar1 Interferon (alpha and beta) receptor 1 71.8376 0.040521
Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105 85.8254 0.01314
Nod2 Nucleotide-binding oligomerization domain containing 2 9.2749 0.01544
Stat3 Signal transducer and activator of transcription 3 186.9705 0.009197
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MDSCs that lack the CCR2 receptor, are needed to clarify the
role that is played within MDSC function. Our data also show
that blocking TNF-a did not impair Mo-MDSC function either.
These findings contrast with the observations reported by
Atretkhany and colleagues who used TNF humanized (hTNF)
knock-in mice, to show that blockade of TNF activity
ameliorated fibroblastic sarcoma growth and led to a decreased
MDSC accumulation (69). Although the findings generated in
this study do not indicate a role of apoptosis, for example the lack
of effect on IL-5 release, further studies would be needed to
substantiate that parameter. Likewise, it would be interesting to
decipher the effect of Mo-MDSCs on T cell proliferation in Ls
infection setting.

To gain further insight into the Mo-MDSC profiles, we
additionally performed a PCR-array on isolated subsets and
elucidated several genes that were up- and down-regulated when
compared to naïve MDSC populations. These included the gene
responsible for IL-1a expression which was shut down in Mo-
MDSCs during Ls infection (Table 3). Interestingly, MDSCs have
been shown to phagocytose Mycobacterium tuberculosis and
produce high levels of IL-1a (70). Additionally, IL-18, a cytokine
released upon activation of the inflammasomes, was found to be
down-regulated in both Mo-MDSC and PMN-MDSC subsets
isolated from Ls-infected mice, when compared to those of naive
mice (Tables 3, 4). The expression of NLRP3 (NOD-like receptor
family, pyrin domain containing 3) inflammasome was also down-
regulated in PMN-MDSCs (Tables 4). Interestingly, studies in
patients with cryopyrin-associated periodic syndromes under anti-
IL-1 therapy have displayed elevated MDSC numbers with
suppressive activity (71). Recent data have indicated a positive
Frontiers in Tropical Diseases | www.frontiersin.org 12
correlation between the NLRP3 inflammasome expression and
the MDSC markers CD11b and CD33 in a human head and neck
squamous cell carcinoma (HNSCC) tissue microarray (72).
Whether the inflammasome-signalling pathway plays a role in the
suppressive capacity offilarial-induced Mo-MDSCs requires further
studies. Interestingly, preliminary in vivo data from Ls-infected
ASC-/- BALB/c mice showed no differences in Mo-MDSC numbers
on day 72 post-infection (data not shown).

With regards to gene expression profilling, the data-sets here
revealed that there was a down-regulation of the complement
component C3 gene in both Ls-infected Mo-MDSC and PMN-
MDSC subsets. Consistent with these results, an earlier report
indicated that a complement component C3 deficiency in a
diabetes model, was associated with favourable conditions for
MDSC induction and associated disease outcome (73). In
contrast, hepatic stellate cells derived from mice lacking
complement component C3, have been shown to display an
impaired MDSC induction and in doing so, exhibited no
protection on co-transplanted islet allografts (74). This
indicates that the regulation of the complement component C3
by MDSCs is linked to inflammation scenarios. We found that
the FOXP3 gene is up-regulated in Mo-MDSCs and PMN-
MDSCs during Ls infection, suggesting that both subsets might
share the expression of the transcription factor Foxp3 together
with Tregs, which could support their role as regulator of
immune responses. Further studies should confirm these data
and investigate the role of FOXP3 in MDSCs and how this
marker could possibly influence MDSC function.

In summary, our study shows that MDSC subsets accumulate
during chronic Ls infection at the site of infection. Moreover,
TABLE 3 | Down-regulated genes in Ls-infected Mo-MDSCs compared to naïve Mo-MDSCs.

Gene Full name Fold change p-value

C3 Complement component 3 0 0
Ccr5 Chemokine (C-C motif) receptor 5 0 0.015038
Ccr6 Chemokine (C-C motif) receptor 6 0.0302 0.00881
H2-T23 Histocompatibility 2, T region locus 23 0 0.000019
Ifngr1 Interferon gamma receptor 1 0 0.002929
Il18 Interleukin 18 0.0001 0.041412
Il1a Interleukin 1 alpha 0.1381 0.014621
Irf3 Interferon regulatory factor 3 0 0.000229
Irf7 Interferon regulatory factor 7 0 0.004402
Itgam Integrin alpha M 0 0.000007
Mapk1 Mitogen-activated protein kinase 1 0 0.000283
Nod1 Nucleotide-binding oligomerization domain containing 1 0.0073 0.045602
Rorc RAR-related orphan receptor gamma 0.2161 0.00539
Traf6 Tnf receptor-associated factor 6 0 0.000131
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TABLE 4 | Down-regulated genes in Ls-infected PMN-MDSCs compared to naïve PMN-MDSCs.

Gene Full name Fold change p-value

C3 Complement component 3 0 0
Ccr6 Chemokine (C-C motif) receptor 6 0.0274 0.022937
Il18 Interleukin 18 0.0808 0.020914
Nfkbia Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,

alpha
0 0

Nlrp3 NLR family, pyrin domain containing 3 0.2295 0.006923
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infection-derived Mo-MDSCs exhibit a suppressive function on
the production of IL-13 and IFN-g by Ls-specific CD4+ T cell
responses. Strikingly, IFN-g production was rescued after
blocking TGF-b and reveals that Mo-MDSCs are a relevant
cell-type involved in filarial immunomodulation. Future studies
should incorporate in vivo experiments which block Mo-MDSC
development during infection or analyze the outcome of
infection in the absence of TGF-b. Both scenarios hold
difficulties since the long-term administration of neutralizing
antibodies could not only alter the outcome of infection per se
but also the development of host:helminth interactions which
could lead to skewed helminth-specific immune responses. Thus,
to evaluate the functional role of these subsets in vivo, preclinical
models need to be established which allow tracking and
depletion on-demand capabilities such as the DEREG model
(75, 76).
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