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Dengue is an ongoing problem, especially in tropical countries. Like many other vector-
borne diseases, the spread of dengue is driven by a myriad of climate and socioeconomic
factors. Within developing countries, heterogeneities on socioeconomic factors are
expected to create variable conditions for dengue transmission. However, the relative
role of socioeconomic characteristics and their association with climate in determining
dengue prevalence are poorly understood. Here we assembled essential socioeconomic
factors over 5570 municipalities across Brazil and assessed their effect on dengue
prevalence jointly with a previously predicted temperature suitability for transmission.
Using a simultaneous autoregressive approach (SAR), we showed that the variability in the
prevalence of dengue cases across Brazil is primarily explained by the combined effect of
climate and socioeconomic factors. At some dengue seasons, the effect of temperature
on transmission potential showed to be a more significant proxy of dengue cases. Still,
socioeconomic factors explained the later increase in dengue prevalence over Brazil. In a
heterogeneous country such as Brazil, recognizing the transmission drivers by vectors is a
fundamental issue in effectively predicting and combating tropical diseases like dengue.
Ultimately, it indicates that not considering socioeconomic factors in disease transmission
predictions might compromise efficient surveillance strategies. Our study shows that
sanitation, urbanization, and GDP are regional indicators that should be considered along
with temperature suitability on dengue transmission, setting effective directions to
mosquito-borne disease control.

Keywords: dengue, temperature suitability, socioeconomic drivers, vector-borne disease, mosquito transmission
1 INTRODUCTION

The presence and prevalence ofmany infectious diseases have clear geographic structures. These health
threats vary from country to country and cause the loss of millions of lives annually (1, 2). Identifying
patterns and drivers of infectious diseases has become a fundamental concern (3). For example,
understanding why some regions have a higher richness of pathogens than others might help identify
hotspots for outbreaks (2).Amultitudeoffactors determines infectiousdiseasegeographicaldistribution
and potential outbreaks, spanning from socioeconomic (e.g., urbanization; population density) to
ersin.org November 2021 | Volume 2 | Article 7583931

https://www.frontiersin.org/articles/10.3389/fitd.2021.758393/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.758393/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.758393/full
https://www.frontiersin.org/articles/10.3389/fitd.2021.758393/full
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles
http://creativecommons.org/licenses/by/4.0/
mailto:loressimon@gmail.com
https://doi.org/10.3389/fitd.2021.758393
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://www.frontiersin.org/journals/tropical-diseases#editorial-board
https://doi.org/10.3389/fitd.2021.758393
https://www.frontiersin.org/journals/tropical-diseases
http://crossmark.crossref.org/dialog/?doi=10.3389/fitd.2021.758393&domain=pdf&date_stamp=2021-11-16


Simon and Rangel Temperature, Socioeconomic Factors, and Dengue
environmental (e.g., temperature; precipitation) and biotic (e.g.,
vectors competition) (1, 4). Acknowledgment of the variation of
these drivers over space and time may help identify regions of
potential transmission once the disease dynamic is as tightly linked
with exogenous factors as with endogenous mechanisms (5, 6).

Dengue, a mosquito-borne disease (MBD), is a global public
health concern (7). The incidence of dengue has increased thirty-
fold over the lastfive decades, and it is estimated that approximately
one hundred million new infections occur annually (8). In the
Americas, the disease is present in almost all countries, with a high
number of cases (hereafter referred to as prevalence) (9), where
rapid urban expansion led to favorable conditions for dengue
vectors (10). The geographic distribution of vectors and the
probability of virus transmission to humans are likewise driven
by climatic factors, given its influence on mosquito traits (10, 11).

Climate is an important ecological driver of most vector-borne
diseases (VBDs) (12–14), of which biological cycles are directly
affected (15). For instance, the temperature can either reduce the
transmission effectiveness by lowering the vector lifespan or
increase it by shortening the extrinsic incubation period (EIP) (5,
12). In VBDs, the geographical transmission range is thus outlined
by climate features due to its implication in reproduction, survival,
and EIP (2, 16, 17). Accordingly, the physiology of the vectors and
their interaction with pathogens are constrained by temperature,
generally fitting in a thermal optimum (i.e., between the maximum
and minimum tolerated) (18). On the other hand, socioeconomic
factors are likewise critical for VBDs (1, 4, 19). For example, studies
have shown an association between regional socioeconomic status
and vector infestation (20, 21). In this sense, socioeconomic status
correlateswith factors that include sanitation, education, andhealth
assistance, often associated with disease prevalence (1, 19). In
addition, demographic characteristics such as population size and
density affect transmission by facilitating the contact between
vectors and hosts (see Supplementary Material for a list of
detailed assumptions) (15, 22). Consequently, VBDs might
prevail where socioeconomic characteristics create favoring
conditions for transmission outcomes (19).

Distinct approaches have been used to address the presence and
prevalence of VBDs, such as mechanistic (i.e., process-based) and
statistical models (23, 24). Mechanistic models rely on empirical
information on disease transmission to estimate parameters in a
bottom-up procedure (24). For instance, Brady et al. (25) used a
mechanistic model to estimate the thermal limits of dengue through
the relationship between temperature and Aedes spp. fitness. Most
mechanistic approaches in MBDs have integrated the temperature
effect on transmission traits to predict global geographical patterns,
not considering lower-scale socioeconomic variations (26). Recently,
a multi-model climate-driven approach has been proposed to
forecast Aedes-borne diseases and support surveillance operations
(27). Albeit integrating many transmission-related socioeconomic
factors might turn intractable in a process-based procedure, the
absence of these critical drivers still brings uncertainty to
transmission potential estimation (26).

Although dengue is present in almost all tropical and subtropical
countries (8), Brazil has experienced a higher-than-expected number
of cases in the last century (9, 28). Since the ‘80s, the reintroduction of
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dengue in the country has led to its rampant geographic expansion
(29). Initially, the presence of the dengue virus was greater in large
urban centers, but since the ‘90s, it has spread to small towns and the
countryside. In the 2000s, the dengue vectors (i.e., Aedes aegypti and
Aedes albopictus) were already present in 72% of Brazilian
municipalities, dramatically increasing disease cases and
overloading the Brazilian health system (30). Even with dengue
being pervasive in Brazil, preparedness for dengue season is
difficult due to variations of its incidences across the country and
the burden of other infectious and chronic diseases (30, 31).

In this paper, we evaluate the relative impact of socioeconomic
conditions and temperature suitability on the spatial pattern of
dengue fever prevalenceoverBrazil.Weusedapreviously estimated
temperature suitability for dengue transmission (25) and 7
socioeconomic variables to understand drivers of variation on the
prevalence of dengue disease in 5570 municipalities across Brazil.
We also sought to understand the fit between estimated
temperature suitability for transmission and the effective
prevalence of dengue. We predict that in a highly heterogeneous
country, such as Brazil, socioeconomic factors are the primary
source of high levels of dengue prevalence. In Brazil, regions with
the highest dengue prevalence are not those with the highest
estimated temperature suitability for transmission, although
suitability is still a good indicator of the disease occurrence.
2 MATERIALS AND METHODS

2.1 Data
2.1.1 Dengue Cases
Notified dengue cases in all 5570 Brazilian municipalities from
2007 to 2016 were obtained from DATASUS through Notifiable
Diseases Information System, or SINAN, a database maintained
by Brazilian Health System with public access (32). Dengue cases
are reported based on clinical (e.g., vomiting, rash, myalgia,
headache, retroorbital pain) and epidemiological evidence and
are carried out by the local health surveillance team (33).

2.1.2 Temperature Suitability
Here we used simulated dengue transmission suitability maps by
Brady et al. (25) as a predictor of dengue presence and prevalence
in Brazil. We extracted the raster information regarding each
municipality. Brady et al. (25) estimated dengue transmission
suitability given the temperature influence on survivorship and
extrinsic incubation period (EIP) of Aedes aegypti and Aedes
albopictus. The EIP represents the viral incubation period
between the mosquito biting an infected host and becoming
infectious after processing the pathogen into the gut (34, 35).
Brady et al.’s (25) mechanistic model considered the dynamic
between EIP and adult vector survival - both temperature-
dependent - over the basic reproductive number (i.e., R0) (see
36, 37). The model outcome was then combined with spatially
explicit temperature data from WorldClim (38), producing
predictive maps of suitability for persistence and competence
of dengue transmission for both vectors (25). In our analyses, we
used the mean suitability between both vector species.
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2.1.3 Socioeconomic Drivers
For eachBrazilianmunicipality,we gathered critical socioeconomic
predictors to distribution and prevalence of MBDs, which were:
human population density, urbanization, population size, amount
of health facilities, gross domestic product (GDP), education, and
sanitation (see Supplementary Material). The referred
socioeconomic variables and the political-administrative division
map of Brazilian municipalities were obtained from the Brazilian
Institute ofGeography andStatistics (IBGE). This public institution
is the primary provider of geographic and census information in
Brazil (39, 40). Brazilian political-administrative extension
comprises 5570municipalities, which were all included in analyses.

We estimated population density as the ratio among population
size and area of eachmunicipality.We accounted for population size
as the census of the total number of people within each city, opposed
to estimation. To access the proportion of urbanization within
municipalities, we estimated the ratio between urbanized areas
[maps based on satellite images (39)] and each municipality’s
political-administrative extent. Also, to account for the effect of
medical diagnosis, notification, and local investments, we used the
number of people assisted by educational and health assistance in
each municipality (15, 30). Finally, to represent economic
development, we also considered GDP (log scale) and the presence
of the basic sanitation system (i.e., sewage treatment and rainfall
water management) (see Table A in Supplementary Material).

2.2 Analyses
We employed linear correlations among predictors to assess their
collinearity. In a stepwise procedure, we evaluated the non-
independence between predictors by measuring the Variance
Inflation Factor (VIF) among variables and set apart the most
inflated. We started with a full model and iterated the procedure
until all predictors had a VIF lower than 10, a threshold commonly
used to indicate excessive collinearity (41, 42). Following this
procedure, population size and education showed excessive
inflation and, therefore, were withdrawn from analyses. Albeit
relevant to infectious disease transmission overall, population size
as a predictor in our study exhibits a confounding association with
GDP in Brazil as a consequence of regional migration patterns to
economically developed areas (43).

Since our analysis is spatially explicit, we accounted for spatial
autocorrelation that inflates theType-I error in statistical inferences
(44). We used a simultaneous autoregressive model (SAR), which
comprises linear regressions with the addition of an autoregressive
term specifying the strength of dependence between each pair of
locations. Given its reliability and better performance, we used the
SARerror model (45). Also, we applied the standardized row coding
for the spatialweightmatrix, all using theRpackages spdep (46) and
spatialreg (47).We then examined theMoran’s I correlogram from
the model’s residuals to ensure the effective control of spatial
autocorrelation. To test for the dissimilarity between putative
drives of dengue prevalence, once the period of 2015-2016 had
higher disease prevalence than previous years (9), we implemented
two separate SARerror models using the log of dengue cases from
2007-2014 and 2015-2016.

Because our SARerror models are estimated by maximum
likelihood, the calculation of the coefficient of determination is
Frontiers in Tropical Diseases | www.frontiersin.org 3
different from standard Ordinary Least Square (OLS) regression
(48). We, therefore, estimated coefficients of determination (R2)
to appraise the amount of variation explained by each model
through the following formula:

R2 = 1 − exp
−2
n

(Lfull − Lnull)

� �

where, n = sample size, Lfull= likelihood of the fitted model,
Lnull = likelihood of the null model- the model containing no
autoregressive term -. All analyses and maps were performed
using R 3.5.0 (49).
3 RESULTS

Dengue cases are unevenly distributed across Brazil, both in
occurrence and prevalence (i.e., number of cases) (Figure 1).
Over the last years, most dengue cases showed to be concentrated
in the Southeast and Midwest regions of Brazil but were also less
frequently present in the North and Northeast. From 2007-2014
(Figure 1A), there were fewer reported dengue cases when
compared with a later epidemic period (2015-2016; Figure 1B),
albeit reaching theNorthern region with a higher prevalence. From
2015 to 2016, dengue prevalence was higher in Brazil’s Southeast,
Midwest, and Northeast regions. The number of cases almost
doubled proportionally to the previous seven years on which
dengue was predominant in the Southeast.

The graphical comparison between the distribution of actual
dengue cases (Figure 1, red circles) and estimated temperature
suitability for potential dengue transmission (Figure 1, purple
shades) showed a lack of correspondence in both periods.
Although the model by Brady et al. predicts high suitability for
dengue transmission in the North and Northeast regions of Brazil,
fewer dengue cases indeed occurred within this extensive area.
Conversely, most dengue cases were reported in the Southeast and
Midwest regions, where the model estimated lower temperature
suitability. Notably, most dengue cases are concentrated in areas
where the model did not predict environmental suitability for
dengue transmission. However, the temperature suitability model
accurately points to the decreased potential for dengue outbreaks in
the south of Brazil, where autochthonous dengue cases were lower
from 2007 to 2016.

The autoregressive model revealed the relative importance of
socioeconomic factors and estimated temperature suitability for
dengue transmission in Brazil (Table 1). From 2007 to 2014,
urbanization (and its association with temperature suitability),
health facilities, and GDP were the socioeconomic features that
best explained thenumberofdengue cases acrossBrazil. In contrast,
GDP and sanitation were the unique socioeconomic aspects that
accounted for the disease distribution and prevalence from 2015 to
2016. However, in 2007-2014 (z = 67.423) and 2015-2016 (z =
58.691), GDP was the predictor that best explained the reported
dengue cases across the country. Albeit in less magnitude,
temperature suitability for dengue transmission also showed
higher explanatory power for distribution of dengue cases in
2007-2014 (z = 14.825) relative to 2015-2016 (z = 7.145).
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The human population density was not a significant
explanatory factor for the number of reported dengue cases in
both periods. Neither was its interaction with estimated
temperature suitability for dengue transmission. However,
urbanization, a proxy for expanding human-modified areas,
was a significant predictor of dengue cases from 2007 to 2014
(Table 1). Urbanization and its interaction with temperature
suitability for transmission were crucial from 2007 to 2014 but
not significant between 2015 and 2016. The coefficients of
determination (R2) of the SARerror models varied between
periods, suggesting that the same socioeconomic variables and
Frontiers in Tropical Diseases | www.frontiersin.org 4
the temperature suitability for dengue transmission have higher
explanatory power during years of lower transmission (R2 =
0.53) than in periods of an increased outbreak (R2 = 0.49). The
SAR model had lower AICs than its Ordinary Least Squares
(OLS) counterpart (Table 1).

The spatial autocorrelation was successfully controlled by the
SAR model (Figure A in Supplementary Material). Patterns of
residualsof themodels across cities revealed aminorvariation in the
range of values, and there were no marked spatial patterns of
residuals across Brazil (Figure 2). In the southern region,
residuals are minimal in many municipalities, indicating that
A B

FIGURE 1 | Brazilian dengue cases distribution of (A) 2007 to 2014 and (B) 2015 to 2016. The size of the red circles corresponds to the magnitude of dengue
prevalence (i.e., the mean number of cases). The intensity of purple indicates the mean temperature suitability for the dengue transmission by Aedes spp. vectors
(i.e., Ae. aegypti and Ae. albopictus), increasing values represent higher suitability for transmission (25).
TABLE 1 | SARerror results for distinct periods of dengue prevalence magnitude, 2007 to 2014 and 2015 to 2016.

Dependent variable: Dengue cases from the period of 2007 to 2014 (ln) Dependent variable: Dengue cases from the epidemic period of 2015 to 2016 (ln)

Independent variables Parameter estimate
(Standard error)

z value Independent variables Parameter estimate
(Standard error)

z value

Temperature suitability 3.858 (0.26)*** 14.82 Temperature suitability 2.145 (0.30)*** 7.14
Urbanization -0.108 (0.27)*** -2.34 Urbanization 0.061 (0.31) 0.19
Population density 1.016e-04 (4.97e-05)* 2.04 Population density 7.875e-05 (5.81e-05)* 1.35
Health facilities 1.483e-04 (3.25e-05)*** 4.56 Health facilities 7.824e-05 (3.81e-05)* 2.05
GDP (ln) 0.796 (0.01)*** 67.42 GDP (ln) 0.811 (0.01)*** 58.69
Sanitation 0.047 (0.03)* 1.56 Sanitation 0.142 (0.03)*** 4.05
Temperature suitability vs. Density -1.115e-04 (1.829e-04) -0.61 Temperature suitability vs. Density -1.766e-04 (2.14e-04) -0.83
Temperature suitability vs. Urbanization 4.448 (1.12)*** 3.98 Temperature suitability vs. Urbanization 1.723 (1.30)* 1.32
R2 0.53 R2 0.49
AIC (lm) 19917 AIC (lm) 21264
AIC (SARerror) 15744 AIC (SARerror) 17475
Moran’s I (p-value) (0.99) Moran’s I (p-value) (0.99)
Novem
ber 2021 | Volume 2 | Arti
*p ≤ 0.10.
***p ≤ 0.01.
(ln) Natural log.
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model predictions were accurate in these areas. In contrast, some
cities in the Amazon region had negative residuals (overestimated
numberofdengue cases),whereas somecentral andsoutheastBrazil
municipalities showed positive residuals (underestimated number
of dengue cases) (Figure 2).
4 DISCUSSION

The higher prevalence of dengue in Brazil compared to other
countries has intrigued researchers for decades, revealing that
distinctive factors might regulate the transmission of this arboviral
disease within particular countries (30). Constant reemergence and
maintenance of a high number of dengue cases in Brazil remains
unclear, which is justified due to the complex nature of biological
features of virus (e.g., circulating serotypes, viral lineages), host (e.g.,
immune system), and vectors (e.g., vector competence, reproduction
rates) (50). In addition, broad-scale patterns of the magnitude of
arboviral disease incidence fluctuate according to a myriad of
exogenous factors such as climate and socioeconomic status.
Accordingly, our results showed that, although temperature
suitability for transmission is a good indicator of dengue
occurrence, regional socioeconomic characteristics are fundamental
determinants of spatial patterns in dengue prevalence in Brazil.

Similar to other tropical nations, Brazil is a heterogeneous
country that has undergone substantial urban growth in recent
decades. This urban expansion, along with favorable climatic
conditions, creates an ideal scenario for the spread of infectious
diseases, especially those carried by mosquitoes (24). However,
denguepresence and thenumberof cases differ substantially among
regions within Brazil. Dengue vectors are pervasive over Brazil, but
mosquito surveillance data are lacking, highly skewed by region,
Frontiers in Tropical Diseases | www.frontiersin.org 5
and subject to variations depending on the local surveillance
infrastructure. Thus, predicting the geographical potential of
MBDs transmission requires incorporating environmental and
socioeconomic heterogeneities delimiting its capacity to transmit
thedisease, especially incountrieswhere anendemic scenario iswell
established (30). Temperature is a physical factor known to affect
the physiology of mosquitoes (e.g., vector competence) and is a
suitable proxy for an MBD occurrence (17). However, here we
demonstrated that the predicted environmental suitability for
dengue transmission, based solely on the temperature influence
on the competence of vectors, does not account for most dengue
cases in Brazil. In contrast, socioeconomic heterogeneity across
cities proved fundamental in determining dengue occurrence and
prevalence patterns.

Because temperature is a critical exogenous driver for disease
transmission by vectors (27), global climate changemay substantially
alter the spatial pattern in distribution and prevalence of dengue (11,
51). In countries where the autochthonous transmission of dengue is
established, increasing temperatures may intensify transmission by
favoring vectors’ survival, reproduction, and biting rates (6).
Estimates of dengue transmission suitability under global
temperature trends are made in an attempt to anticipate VBD
spread and plan mitigation strategies (24, 25, 52). Frequently, such
forecastspoint toapotential increaseofdengueburdenunder current
and future temperature scenarios. Under lower spatial and temporal
scales, the relationship between temperature and other exogenous
drivers, such as urbanization, GDP, and sanitation, should be more
appropriate to describe potential transmission patterns (15, 17). For
instance, we showed that Brady’s et al. model points to a high dengue
transmission potential in the north of Brazil (e.g., Amazon region),
although few cases were reported there. This mismatch reveals that,
under the temperature perspective, theirmodelmay correctly predict
A B

FIGURE 2 | SARerror models’ resulting residuals. (A) 2007 to 2014 and (B) 2015 to 2016, spatially distributed by municipalities. The model’s residuals represent the
dengue prevalence that was not fully explained by the model covariates, ranging between ~0.8 and ~ -3.8.
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the potential of dengue transmission in this area. Still, observed
transmission depends on other factors, such as the interactions
between viruses and hosts. Moreover, thermal optima for
transmission are limited considering the unimodal effect of
temperature on vectors (6, 11). Therefore, increasing temperature
over the tolerance of vectors (e.g., through urban heat island effect)
might alsodecreaseMBDtransmission (31),whichwouldexplain the
overestimated dengue suitability in some cities.

After controlling for the role of temperature for dengue
transmission suitability, our findings highlight that socioeconomic
conditions contribute substantially to dengue prevalence. Jointly,
GDP and urbanization surpassed the importance of temperature
suitability from 2007 to 2014, whereas GDP and sanitation were
determinants of an increase in dengue cases between 2015 and 2016.
Although temperature constrains the vectorial capacity ofAe. aegypti
and Ae. albopictus (53), we show that socioeconomic aspects
ultimately determine dengue burden.

Urban centers with higher socioeconomic status are usually
equipped with more health facilities, which might bias dengue
diagnosis and reports; however, health facilities had a low
explanation weight overall. Nevertheless, some studies suggested
that socioeconomic developed areas might reduceMBD burden by
expanding the sanitation system and the vector combating
strategies (19, 54). Conversely, here we found a positive
relationship between the sanitation system and GDP with the
prevalence of dengue, indicating that the presence of these factors
by itself may not attest to the benefits of socioeconomic
development in reducing dengue disease cases in Brazil.

The demography in urban environments is thought to be an
important driver of dengue prevalence (55). For instance, a temporal
analysis of the dengue outbreak in Singapore found that the
population demography is the main driver for dengue increase in
last years (56). This finding is usually accurate given the expected
mixed contact between hosts and vectors. The increase in individual
density is expected to increase contact ratesbetweenhosts andvectors
(36). However, after controlling for other covariates, our model did
not find a substantial effect of demography on the prevalence of
dengue acrossBrazil.Althoughdemographymaybe a goodproxy for
the number of susceptible individuals, natural immunization likely
reduces this proportion in dengue-endemic countries such as Brazil
(57). Still, population density may have significant importance at the
local scale (e.g., among neighborhoods) once it increases the
probability of vector contact with hosts when the virus is
established (58). The more significant relation of GDP with dengue
prevalence could also indicate the interchange between larger
populations, herd immunity, and different serotypes circulating,
once Brazilian cities with higher income grew faster by historically
being attractive for migration (59).

There is no doubt that the burden of dengue is heavier in some
regions than in others. In Brazil, where dengue cases significantly
vary across space and time, we highlight that the combined effect of
climate and socioeconomic factors are strong drivers of dengue
occurrence and prevalence patterns. Albeit not the focus of our
study, on a local scale, factors related to population immunization,
virus serotype, and vector density are also important drivers of
dengue transmission. They should be considered when tracking
Frontiers in Tropical Diseases | www.frontiersin.org 6
real-time spread. Still, due to the lack of reliable reports on
serological data, most predictive models emphasize the role of
temperature on dengue transmission on large scales (24). Indeed,
dengue reports assessed in our study might be influenced by the
outbreaks of Zika and Chikungunya virus during 2013-2014, once
these diseases were then unknown but were already circulating in
Brazil, and symptoms are similar to those related to dengue (60).

By accounting for the effect of socioeconomic drivers in a
highly heterogeneous country, we showed that the spatial and
temporal patterns of dengue prevalence are determined not only
by the temperature suitability on the vectorial capacity for
transmission but also by social and economic factors. Highly
urbanized centers - with high income - were epicenters of dengue
transmission in Brazil, aligned with other infectious diseases
(61). Consequently, dengue risk projections under current or
future climatic conditions should include socioeconomic
covariates for reliable predictions on the disease burden,
especially when considering that dengue season might come
when other infectious (e.g., SARS-CoV-2) or chronic diseases are
already overloading the health system. Here we emphasize the
need to consider social, economic, and cultural differences
between Brazilian regions along with ecological variations for
effective decision making for MBDs control.
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