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The influence of environmental factors on the efficacy of the endosymbiont Wolbachia
used in mosquito and pathogen control are poorly characterized and may be critical for
disease control. We studied the vector mosquito Culex pipiens quinquefasciatus (Say)
to determine the effect of temperature on the composition of the relative abundance of
Wolbachia spp. and the microbiome, as well as key immune genes of interest in the Toll
and IMD pathways. 16S barcode sequencing was used to determine the microbiome
composition and qPCR was used to determine the relative abundance of Wolbachia
spp. based on the highly utilized marker Wolbachia surface protein (wsp) gene. We
found no effect of temperature within a single generation on the relative abundance of
Wolbachia or immune gene expression, nor on the alpha or beta diversity of the
microbiome. However, there was a significant difference in the abundance of
Wolbachia between generations at high temperatures (≥ 28°C), but not at lower
temperatures (≤ 23°C). These results support the idea that Wolbachia are reduced at
higher temperatures between generations, which has an influence on the establishment
of pathogens including West Nile Virus (WNV). Modulation of the Toll or IMD mosquito
immune pathways was not indicated. Wolbachia endosymbiosis and trans-generation
transmission appears especially sensitive to high temperatures, which may have
implications for Wolbachia-based vector control strategies under cl imate
change scenarios.
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INTRODUCTION

Culex mosquitoes are responsible for spreading numerous
arboviruses and parasites, such as West Nile Virus (WNV) and
lymphaticfilariasis, respectively (1–4).Culexpipiensquinquefasciatus
(Say) is part of the overall Culex pipiens complex, and can be found
broadly distributed across the world, typically in lower altitude areas
between latitudes of 30°N and 30°S (5, 6). In light of global climate
change and anticipated changes in temperature particularly, the
range of vector mosquitoes has been increasing into areas
previously uninhabitable by these insects. The expansion of
mosquito ranges globally is, in turn, likely to lead to an increase in
vector-borne disease transmission (5, 7–11).

In response to the growing threat of mosquito-borne disease
expansion due to climate change, there has been great interest in
using microbial methods to control mosquito populations, and
subsequently the spread of those vector-borne pathogens and
parasites (12–20). The use of Wolbachia has been particularly
attractive, as this Rickettsia-like bacterium spreads easily through
mosquito populations (due to selective advantage of hosts with
infections), induces cytoplasmic incompatibility, and effectively
blocks the establishment of some viruses (DENV and CHIKV) in
mosquito hosts (17, 18, 21–25). Wolbachia can either be
maternally inherited or can be artificially introduced, frequently
by transinfection, to insect populations. Wolbachia infection in
mosquitoes can lead to cytoplasmic incompatibility, male embryo
feminization, selective male killing, and parthenogenesis (26, 27).
Cytoplasmic incompatibility (CI) is of particular interest as an
incompatible insect technique (IIT) to reduce vector populations.
CI occurs when sperm and egg cannot successfully form a viable
zygote, which is bidirectional in many mosquitoes. Generally,
when male mosquitoes are infected and females are uninfected (or
infected with a dissimilar strain), no viable offspring are produced.
When Wolbachia-infected females mate with uninfected males,
they will produce hybrid offspring that carry and perpetuate the
spread of the bacterium (21, 23, 24, 28–30). Wolbachia also acts
competitively with and against members of the mosquito
microbiome to structure community assemblage and influence
pathogen invasion. This influence on pathogen and disease
dynamics has led to increased interest in the role of microbiome
community dynamics in mosquitoes (21, 18, 23–25, 30–35).

While after nearly a century of research onWolbachia it is clear
that Wolbachia could be immensely advantageous given the
correct conditions for disease control, in situ applications
remain complicated and require a better understanding of
factors influencing efficacy in application (19, 27). For instance,
Dodson et al. (36) found that Wolbachia infections in Culex
tarsalis did not impede, but actually enhanced, infection of
WNV in the mosquito host (37) also found that Wolbachia
infection in Culex tarsalis did not inhibit Rift Valley fever virus.
Hughes et al. (38) found that introduction of Wolbachia into
Anopheles mosquitoes induced higher mortality in hosts and was
inhibited by the native microbiome. Novakova et al. (39) found
that in situ mosquitoes of the Culex pipiens complex had lower
abundances of Wolbachia at higher temperatures, which
corresponded with higher infection rates with WNV. Additional
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studies have reported impacts of temperature on Wolbachia, with
several reporting similar reductions of Wolbachia abundances at
higher temperatures (40–44). It has become increasingly clear that
Wolbachia does not respond equally effectively in terms of control
across mosquito species or environmental conditions, indicating
that a better understanding of these factors is necessary to gain the
maximum benefit from the use of Wolbachia for vector-
borne control.

One factor that also can aid in pathogen transmission
reduction is Wolbachia’s manipulation of the mosquito host’s
immune response. Wolbachia has the ability to alter mosquito
innate immune gene expression in response to pathogen invasion
of the host (45–50).While the effect ofWolbachia on the mosquito
immune system is well-documented in Aedes mosquitoes, less is
understood about these effects in Culex mosquitoes (48, 51). The
Toll, IMD (Immune Deficiency), and JAK-STAT pathways, in
addition to other pathways, play an essential role in pathogen
inhibition in mosquitoes (51–55). While gene expression may be
altered at many stages within these pathways, two particular genes
of interest that are altered with Wolbachia infection are Rel1
(homologue to Drosophila dorsal), an integral part of the Toll
pathway that aids in the transcription of innate immune factors
(like antimicrobial peptides), and Def1, a gene in both the Toll and
IMD pathways (48, 51). Interestingly, Ant et al. (30) analyzed
various Wolbachia strains for effective infection and cytoplasmic
incompatibility in Culex quinquefasciatus and found that immune
genes, including Rel1 andDef1 as well as others associated with the
Toll, IMD, and JAK-STAT pathways, were neither up- or down-
regulated in relation to any Wolbachia infection. Given the
importance of these pathways in mosquito immunity, this lack
of change to immune gene expression in Culex quinquefasciatus
with Wolbachia infection warrants further investigation.

Environmental conditions affect both mosquito hosts and
endosymbiotic bacteria likeWolbachia. Given the implications of
global climate change on global temperature and alterations of
localized climate patterns, understanding the impact of changing
environmental factors on vector control is of the utmost
importance (10, 56–58). Boukal et al. (59) found that insects
are particularly susceptible to the effects of prolonged increased
temperatures at the individual and community levels, due to
stress to insect physiological systems, behavior, body size, and,
importantly, spatiotemporal distribution. They also found that
these changes led to a restructuring of insect communities.
Harvey et al. (60) further elaborated on this in their discussion
of our current, and very limited, understanding of insect
tolerance of temperature extremes due to climate change.
Mordecai et al. (58) analyzed the thermal biology of numerous
vector mosquito species and found that Culex quinquefasciatus
had a thermal optimum for transmission of West Nile
Virus (WNV) at 25.2°C, with a range for transmission between
19.0°C to 31.8°C. Several recent studies have indicated
that WNV transmission tends to be greater under high
temperature field conditions, which may be due to a decrease
in naturally-occurring Wolbachia infection efficacy in
mosquitoes (39, 42). Indeed, Wolbachia transmission is
thermally sensitive in a number of systems including
April 2022 | Volume 3 | Article 762132
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mosquitoes and Drosophila (44, 61–63). In addition, Wolbachia
colonization can increase thermal sensitivity of host mosquitoes
and other insects (64, 65). To ensure that novel methods of
mosquito control will remain functional (or may be adapted to
maintain function) under new climate regimes, experiments
exploring the impacts of temperature on the survival and
efficacy of control microbes, like Wolbachia, are imperative.

To better understand the effects of environmental temperature
on host and Wolbachia endosymbionts, we analyzed the relative
abundance of native Wolbachia (presumed to be wPip) in Culex
quinquefasciatus across upper thermal optima for the transmission
of WNV in this species (39, 58). We hypothesized thatWolbachia
abundances would be reduced at higher temperatures in line with
climate change predictions, and that, similarly toAedesmosquitoes
and in-linewithcurrent thought in thefield,Wolbachiaabundances
in Culex quinquefasciatus would influence immune genes,
particularly in the Toll and IMD pathways (39, 46–48, 50, 51).
The overarching goal of this study was to understand if, across a
range of temperatures and across generations, Wolbachia
abundance would be altered and if the mosquito host’s immune
geneexpressionwouldbealtered in response topotential differences
inWolbachia abundance.
METHODS

Laboratory Mosquito Husbandry
Culex quinquefasciatus were ordered from Benzon Research
(Carlisle, PA, USA) as 1st instar larvae and were co-housed at
the same 25°C temperature in large 1L sterile glass containers in
sterile pond water until 2nd instar. Larvae were fed autoclaved
fish food mixed into sterile pond water and added at 2mL to each
large 1L larval container until used in the experiment. Second
instar larvae were then added along a temperature gradient beam
and were used in the transgenerational temperature experiment.

Specifically in the transgenerational temperature experiment,
mosquitoes were reared through two generations (with adults
collected at generation 0 and 1) and were bloodfed using a
membrane-style feeder with pig intestine casing to encase single
donor human whole blood in sodium heparin purchased from
Innovative Research, Inc (Novi, MI, USA). Mosquitoes had 10%
sucrose withheld 24 hours prior to blood feeding. Second
generation eggs were hatched by bubbling nitrogen gas
through sterilized tubing into water containing eggs to reduce
oxygen levels through displacement and trigger hatching. Hatch
rate was estimated to be approximately 75%.

Experimental Design-Temperature
Gradient Beam
A temperature gradient was designed to house both individual
and groups of mosquito larvae along an insulated aluminum
beam using Peltier devices to control heating and cooling.
Automated temperature measurements along the beam were
recorded hourly for the duration of the experiment, and water
temperatures of vessels (without larvae) in the beam were
measured daily to verify similar temperature measurements.
The average temperature for each zone (A-E) was calculated by
Frontiers in Tropical Diseases | www.frontiersin.org 3
averaging all temperature measurements for that zone over the
duration of the experiment (Figure 1). Temperature range was
established based on the thermal optima of West Nile virus
transmission in Culex quinquefasciatus presented in Mordecai
et al. (58). Primary containment over the glass vessels consisted
of sterilized mesh enclosing the top of the vessel with a sterile tie
and secondary containment consisted of a mesh enclosure
around the aluminum temperature gradient beam.

Culex larvae were housed individually (5mL water) and in
groups of 5 (25mL water) in glass vessels filled with sterile pond
water and were fed sterile fish food in sterile pond water per
larvae. Water was replenished as needed and was replaced
simultaneously from all vessels to maintain relatively
consistent levels of oxygenation. The light cycle was 12:12 and
larvae were fed every 3-4 days. Larvae were added to the glass
vessels simultaneously with all larvae at the second instar stage.
Within eight hours of eclosion, mosquito adults were aspirated
for collection out of the glass vessels and frozen at -20°C.

Experimental Design-Transgenerational
Temperature Experiment
Incubators (Percival I-36VL incubator (Perry, Iowa, USA) and
Conviron Gen1000 incubator (Pembina, North Dakota, USA))
were set up in a biosecure insectary with 14:10 light/dark cycles,
65% relative humidity, and set temperatures of 23°C and 30°C,
with both incubators reduced 3°C during dark cycles (Figure 1).
Temperatures in the 30°C chamber were reduced to 28°C prior to
the hatching of generation 1 to reduce the potential for mortality,
though 28°C is still considered in the same high range, high
potential transmission of WNV for this mosquito species (58).

Mosquitoes were reared over two generations with adults
collected from generations 0 and 1. Larvae were co-housed in
large glass beakers with the non-sterile water in which they
arrived from Benzon Research (Carlisle, Pennsylvania, USA) and
had sterile pond water added to reduce density. Culex
quinquefasciatus second instar larvae were placed in large 1L glass
beakerswith sterile pondwater in three sterilizedmesh cages ineach
incubator. Larvae were fed sterile fish food ad libitum and upon
emergence were fed a 10% sucrose solution using soaked cotton
balls. Adultswere collected fromeachgeneration andwere frozen at
-20°C. Adult females in generation 0 were blood fed and eggs were
hatched as described above. Generation 1 larval housing was
covered by sterile mesh to prevent any remote potential for
escape into the parent generation prior to the removal of any
remaining parents.

Specimen Storage and Extraction
Culex quinquefasciatus samples from both experimental designs
were frozen at -20°C and had 100uL of 1X DNA RNA Shield
(Zymo Research, Irvine, CA, USA) added after being freeze-
killed. Samples were frozen at -20°C until extraction. Samples
had wings, legs, and heads removed and carcasses were
macerated in DNA RNA Shield. Samples were then extracted
using Quick DNA/RNA MagBead kits (Zymo Research, Irvine,
CA, USA) and frozen at -80°C. Sample total nucleic acid
concentration following extraction was 0.5ug/uL.
April 2022 | Volume 3 | Article 762132
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qPCR of Relative Wolbachia Abundance
(wsp gene) and ImmuneGenesRel1 andDef1
Quantitative PCRs were performed in duplicate on a CFX96
Touch Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA) to analyze the relative abundance of Wolbachia and
key immune genes. ForWolbachia qPCRs (n = all surviving adult
mosquitoes across groups), the wsp gene was targeted as a proxy
for relative abundance and using slightly modified primers
forward-5’-AGATAGTGTAACAGCRTTTTCAGGAT- 3’ and
reverse-5’-CACCATAAGAACCAAAATAACGAG- 3’ from (66).
The reaction mix for the qPCRs was: 5.1uL Milli-Q Ultrapure
water, 10uL 2X AzuraQuant Green Fast qPCR Mix LoRox (Azura
Genomics, Raynham, MA, USA), 0.8uL of 10uM forward primer,
0.8uL of 10uM reverse primer, 0.3uL 20mg/mL bovine serum
albumin, and 3uL template DNA per well. Cycling conditions
were: 1 cycle at 95°C, then 40 cycles of 5 seconds at 95°C and
31 seconds of 60°C. Transcript-free negative controls were used in
every qPCR run for Wolbachia, 18S, and immune genes.

DNase I (Zymo Research, Irvine, CA, USA) was used to degrade
genomicDNA froma subsample of the total nucleic acid extractions.
Frontiers in Tropical Diseases | www.frontiersin.org 4
Complementary DNA (cDNA) for use establishing active
transcription of immune genes was then created from extracted
RNA using SuperScript IV VILO Master Mix (Invitrogen,
Carlsbad, CA, USA). Concentrations of cDNA were measured
using a Nanodrop-2000 (Thermo Fisher Scientific, Waltham,
MA, USA) and were diluted to 2ng/uL in the final reaction mix.
For the qPCRs of immune genes and the 18S gene (used here as a
housekeeping gene, as done in 30), primers from (30) were used
(Table 1). The same PCR reactionmix (though with 8.1uLMilli-
Qwater and 1uL of template) and cycling conditions as described
above were used.

Microbiome Sequencing and Preparation
The microbiomes of Culex quinquefasciatus (n = 68; all surviving
adults) from the temperature gradient beam experiment were
analyzed using 16S V4 rRNA gene region barcoding following
the Earth Microbiome Protocol (EMP) (67–72). The 515F (with
barcode) and 806R primers were used for amplification, standard
25uL/well reaction PCR recipe and cycling conditions were
followed, but 5Prime HotMasterMix (Quantabio, Beverly, MA,
FIGURE 1 | The experimental design for temperature gradient beam and transgenerational temperature experiments in Culex quinquefasciatus. The temperature
gradient beam ran from 33.69-23.23°C with mosquitoes (n = 30 at setup) reared through eclosion at each of the five temperature groups (A-E) along the beam.
Adult mosquitoes were harvested within 8 hours of eclosion. The transgenerational experiment was run in two enclosed chambers with several replicate populations
(n = ~200) at each temperature (28/30 and 23°C) reared through generation 0 and the eclosion of generation 1 with adult mosquitoes (n=5 for each group for qPCR)
sampled from each generation.
April 2022 | Volume 3 | Article 762132
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USA) was used for PCR in place of the EMP recommended
master mix. Post-PCR samples were normalized using a Mag-
Bind Pure Library Normalization Kit (Omega Bio-Tek, Norcross,
GA, USA). Normalized samples were pooled into a library,
quantified using a Qubit 2 Fluorometer (Invitrogen, Carlsbad,
CA, USA), and appropriately diluted to follow EMP protocols
(73, 74). The library was sequenced using an Illumina MiSeq v2
300-cycle kit (Canton, MA, USA) with the EMP recommended
PhiX addition (Illumina, Canton, MA, USA).

Bioinformatic and Statistical Analyses
Mosquito survival across temperature groups in the
temperature beam experiment were analyzed using a Chi-
Square test in Microsoft Excel. Relative abundances of
Wolbachia, Rel1, and Def1 were calculated in Microsoft Excel
by standardizing the average qPCR Cq value for each
sample and each gene by its corresponding housekeeping 18S
Cq value (30). Average Cq values were then scaled by the
relative percent change between 18S housekeeping values to
adjust and further account for any variance in the starting
concentration of DNA or cDNA in each sample. These
corrected Cq values were then analyzed in SPSS (IBM SPSS
Statistics, v. 26) by testing for normality using Levene’s test and
subsequently analyzing the data using either one-way
ANOVAs or Kruskal-Wallis tests when data did not meet the
criteria for parametric statistics. We used linear regressions to
test for correlation ofWolbachia abundance, Rel1, or Def1 with
generation, temperature and sex.

Microbiomes of the temperature gradient beam mosquitoes
were analyzed using QIIME2. Microbiome data were
demultiplexed, deblurred, quality filtered to q-scores of 20, and
rarefied to 2500 sequences per sample in QIIME2. Taxonomy
was matched using the 2019.7 SILVA pre-trained QIIME2
classifier (75, 76). ANOSIMs and Kruskal-Wallis tests were
performed to analyze differences in beta (Bray Curtis
dissimilarity matrices) and alpha (sOTU Richness, Shannon
Diversity Index) diversity between groups, respectively.
RESULTS

Larval Survival Across the Temperature
Gradient Beam
Percentage survival at emergence of Culex quinquefasciatus
larvae reared on the temperature gradient beam was
Frontiers in Tropical Diseases | www.frontiersin.org 5
determined for each temperature group, as represented by that
group’s average temperature over the length of the experiment
(Figure 2). Temperature groups with an average temperature
over 30°C had markedly lower survival (16.7%) through eclosion
when compared to the lower temperatures. The lowest
temperature group had the highest survival rate through
eclosion, at 83.3% survival. A Chi Square test indicated that
there was a significant difference in survival across the
temperature groups (X2 = 55.07; df =4; p<0.001).

Microbiome Diversity Across the
Temperature Gradient Beam: sOTU
Richness,Shannon Diversity, and Bray
Curtis Dissimilarity
Alpha diversity was analyzed using. Kruskal-Wallis tests. There
were no significant differences in sOTU richness when analyzed
using Kruskal-Wallis tests across temperature groups (n=66,
df=4, H=5.057, p= 0.410), sexes (n=65, df=1, H=0.810, p=
0.667), or whether larvae were reared solitary or in groups
(n=62, df=1, H= 0.018, p= 0.895). There were also no
significant differences in Shannon Diversity index values for
the microbiomes between temperature groups (n=66, df=4,
H=5.176, p=0.365), sexes (n=65, df=1, H=0.374, p=0.829), or
larval grouping conditions (n=62, df=1, H=1.351, p=0.245).

ANOSIMs were run to determine differences between
groups in terms of beta diversity. There were no significant
differences in Bray Curtis dissimilarity when analyzed using
ANOSIMs for temperature groups (n=66, df=4, Test Statistic=
0.067, p= 0.092), sexes (n=65, df=1, Test Statistic= 0.052, p=
0.095), or solitary or grouped larvae (n=62, df= 1, Test
Statistic=0.011, p= 0.364). Negative controls (extraction and
PCR blanks) were significantly different in pairwise comparisons
across all experimental groups and tests than experimental
samples, though negative controls were removed prior to
running Kruskal-Wallis tests within experimental groups.
Prominent genera across all samples, in order of relative
frequency, included: Wolbachia, unspecified Enterobacteriaceae,
Massilia, Pseudomonas, Bacteriodetes, Aeromonas, unspecified
Burkholderiaceae, Elizabethkingia, Pedobacter, and Flectobacillus
(Supplementary Figure 1).

Wolbachia and Immune Genes Across
Experiments: Temperature Gradient
Beam Experiment
Kruskal-Wallis tests were used to analyze differences between
Cq values across temperature groups and sexes independently
for Wolbachia relative abundance (in the form of the wsp gene),
Rel1, and Def1. Levene’s test for homogeneity indicated the
need for non-parametric test use. Kruskal-Wallis tests were run
in iterations both including Cq values of zero as well as with
zeros removed. Tests analyzing temperature groups including
the Cq zero values were non-significant overall for Wolbachia
(n=68, Test Statistic=1.525, df=4, p=0,822), Rel1 (n=68, Test
Statistic=0.283, df=3,p=0.991), and Def1 (n=68, Test
Statistic=0.330, df=4, p=0.988). Kruskal-Wallis test iterations
with zero values removed also indicated that there was no
TABLE 1 | Primers from (30) used in qPCRs to analyze the relative abundance
of immune genes Rel1 and Def1, as well as the 18S gene utilized for
housekeeping and standardization.

Primer name 5′–3′ sequence

Rel1‐F GCGACTTTGGCATCAAGCTC
Rel1‐R GTTCGACCGGAGCGTAGTAG
Def1‐F GGTCCAATACTTCGCCAATAC
Def1‐R GATTGGGCGTCAACGATAGT
18S rRNA‐F CGCGGTAATTCCAGCTCCACTA
18S rRNA‐R GCATCAAGCGCCACCATATAGG
April 2022 | Volume 3 | Article 762132
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significant difference between any temperature groups in regard
to Wolbachia abundance (n=64, Test Statistic=3.662, df=4,
p=0.454; Figure 3), the expression of Rel1 (n=62, Test
Statistic=3.496, df=4, p=0.478; Figure 4), or the expression of
Def1(n=62, Test Statistic=3.826, df=4, p=0.430; Figure 5). Test
iterations with zeros removed also indicated that there was no
significant difference between mosquito sex and Wolbachia
abundance (n=64, Test Statistic=0.451, df=1, p=0.502), Rel1
expression (n=62, Test Statistic=1.075, df=1, p=0.3), or Def1
expression (n=62, Test Statistic=1.018, df=1, p=0.313). These
collectively indicated that there were no differences between
temperature groups or sexes for relative Wolbachia abundance,
or the relative expression of Rel1 and Def1.

Wolbachia and Immune Genes Across
Experiments: Transgenerational
Temperature Experiment
One-way ANOVAs were run with post-hoc Tukey’s HSD tests
for pairwise comparisons (where appropriate) to analyze
differences in Wolbachia and immune genes Rel1 and Def1
within and between generations at 23 and 30/28°C (n = 5
randomly and blindly sampled per group). Zero values were
removed from analyses, which only removed one sample from
Generation 0 at 23 degrees. The ANOVA for Wolbachia
abundance (in the form of the wsp gene) was significantly
different across temperature groups (n=19, df=2, F=5.110,
p=0.019), which the Tukey’s HSD pairwise comparison
indicated was driven by the only pairwise significant difference,
which was between the 28- and 30-degree temperature groups
(n=19, St. Error=0.928, p=0.017, 95% CI=0.5003-5.2877).
Frontiers in Tropical Diseases | www.frontiersin.org 6
There was no significant difference between temperature
groups for either Rel1 gene expression (n=19, df=2, F=1.022,
p=0.382) or Def1 gene expression (n=19, df=2, F=1.072,
p=0.366). There was also no significant difference between
generations 0 and 1 for Rel1 (n=19, df=18, F=0.525, p=0.479)
or Def1 (n=19, df=18, F=0.492, p=0.493), but there was a
significant difference in Wolbachia between generations
(n=19, df=18, F=5.738, p=0.028).

Additional one-way ANOVAs were run to determine
differences between joint temperature groups across generations.
Tests indicated that there was no difference between temperature
groups and generations for Rel1 expression (n=19, df=3, F=0.680,
p=0.578) or Def1 expression (n=19, df=18, F=0.734, p=0.548), but
that there was a significant difference across the groups in regard to
Wolbachia abundance (n=19, df=18, F=3.326, p=0.048).
Interestingly, the Tukey’s HSD Post-Hoc multiple comparisons
indicated that there was a significant reduction in Wolbachia wsp
gene expression betweenGeneration 0 andGeneration 1 at 30/28°C
(n=19, St. Error=0.95, p=0.037). There were no significant
differences in Wolbachia within generation 0 between
temperatures. Linear regression analysis also indicated that
Wolbachia abundance is significantly correlated with generation
(n=19, R2 = 0.273, F=6.371, p=0.022). However, Rel1 expression
(n=19, R2 = 0.048, F=0.401, p=0.676) and Def1 expression (n=19,
R2 = 0.044, F=0.372, p=0.695) was not correlated with generation,
temperature, or sex.

Moreover, when mosquito sex was analyzed by ANOVA, there
was no significant difference for Rel1 (n=19, df=18, F=0.555,
p=0.467) or Def1 (n=19, df=18, F=0.538, p=0.473), but there was
a significant difference inWolbachia abundanceby sex, with greater
FIGURE 2 | The percentage survival of Culex larvae from second instar through emergence along the various temperature groups on the temperature gradient
beam. Temperatures ranged from 33.69 to 23.23°C across sections along the temperature gradient beam. Temperatures over 30°C showed a marked
reduction in survival (16.7% survival) through emergence compared to the other groups (83.3% in lowest temperature group). Original experimental setups
began with n = 30 and error bars indicate standard error. A Chi Square test indicated that there was a significant difference in survival across the temperature
groups (X2 = 55.07; df =4; p<0.001).
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abundance occurring in males (n=19, df=18, F=6.017, p=0.025). A
linear regression further indicated that there was a correlation
between mosquito sex and Wolbachia abundance (n=19, df=18,
F=4.170, p=0.035). Additionally, there were no significant
Frontiers in Tropical Diseases | www.frontiersin.org 7
differences in Wolbachia abundance (n=14, df=13, F=0.415,
p=0.826), Rel1 expression (n=14, df=13, F=0.659, p=0.665), or
Def1 expression (n=14, df=13, F= 0.741, p=0.614) among
mosquito rearing cage positions in the incubators.
FIGURE 4 | Box and whisker plot of the Rel1 Cq values across temperature groups on the temperature gradient beam. Rel1 expression technical replicates were
averaged and all biological replicates that amplified during qPCR are shown across the temperature groups. There was no significant difference in Rel1 Cq values
across the temperature beam groups as analyzed by Kruskal-Wallis test (n=62, Test Statistic=3.496, df=4, p=0.478). Mean Cq values for each temperature group
are indicated on the plots with an “X”.
FIGURE 3 | Box and whisker plot of the Wolbachia Cq values from qPCR across temperature groups on the temperature gradient beam. Wolbachia (wsp gene)
technical replicates were averaged and all biological replicates that amplified during qPCR are shown across the temperature groups. There was no significant
difference in Wolbachia Cq values, which are representative of the Wolbachia abundance, across the temperature beam groups as analyzed by Kruskal-Wallis test
(n=64, Test Statistic=3.662, df=4, p=0.454). Mean Cq values for each temperature group are indicated on the plots with an “X”.
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DISCUSSION

Across both the temperature gradient beam and transgenerational
experiments in Culex quinquefasciatus, our results indicated
that Wolbachia and immune genes Rel1 and Def1 did not
differ with temperature within a single generation.
Interestingly, Wolbachia relative abundances differed
significantly between generations, but only at high
temperatures above 28°C, and with no significant change in
immune gene expression. Rel1 and Def1 expression did not
differ between any experimental groups, but Wolbachia
abundance differed by generation and by sex. Differences in
Wolbachia abundance by sex were likely due to cytoplasmic
compatibility (21, 23, 28, 30). Female mosquitoes and
mosquitoes in generation 0 had higher average abundance
of Wolbachia. Furthermore, there was no difference in
microbiome diversity across mosquitoes in the temperature
beam experiment.

Reductions in Wolbachia abundance at high temperatures
are fairly well documented in Aedes species (41, 42, 44),
particularly in Aedes albopictus where Wolbachia was
markedly reduced at 37°C (40). Novakova et al. (39) found
that in situmosquitoes of the Culex pipiens complex had lower
abundances of Wolbachia at higher temperatures, and that a
reduction in Wolbachia also negatively correlated with West
Nile virus (WNV), which is also supported by other works (40,
77, 78). Our results further support both of these findings in
Culex pipiens complex mosquitoes, indicating that Wolbachia
abundance is generally reduced at high temperatures, similar
Frontiers in Tropical Diseases | www.frontiersin.org 8
to findings in a meta-analysis of insect microbiomes (79).
Novakova et al. also hypothesized that this reduction of
Wolbachia in the Culex pipiens complex differed across
generations and may have been influenced mosquito
immune function, which is consistent with findings in Aedes
mosquitoes (22, 47, 51, 80). Our findings support the
reduction of Wolbachia abundance at high temperatures
across generations (Figure 6), but do not provide support
that Wolbachia influenced immune function in Culex pipiens
quinquefasciatus, as we observed no differences in key Toll
and IMD pathway genes at varied temperatures.

Rel1 (homologue to Drosophila dorsal) is an integral part of
the Toll pathway that aids in the transcription of innate
immune factors (like antimicrobial peptides) and Def1 is
part of both the Toll and IMD pathways (48, 51). While no
genes of the JAK-STAT pathway were analyzed here, based
on the findings of Ant et al. (30), we would not expect to see
any changes in this pathway either. They found that immune
genes across multiple pathways were neither up- nor down-
regulated in relation to Wolbachia infection in Culex
quinquefasciatus (30). Their results, taken together with our
results and Novakova et al. (39), indicate that temperature has
an impact on the abundance of Wolbachia in Culex pipiens
quinquefasciatus (Say) over generations but Wolbachia
appears unlikely to be altering immune gene expression
in turn.

We propose further study of the tripartite interactions
between mosquito host, microbiome, and pathogens to help
elucidate the mechanism by which high temperatures alter the
FIGURE 5 | Box and whisker plot of the Def1 Cq values across temperature groups on the temperature gradient beam. Def1 expression technical replicates were
averaged and all biological replicates that amplified during qPCR are shown across the temperature groups. There was no significant difference in Def1 Cq values
across the temperature beam groups as analyzed by Kruskal-Wallis test (n=62, Test Statistic=3.826, df=4, p=0.430). Mean Cq values for each temperature group
are indicated on the plots with an “X”.
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abundance of Wolbachia (and subsequently, infection with
pathogens like WNV). We also propose further investigation
into the potential impacts of temperature variations (i.e.
seasonal, daily) on the abundance of Wolbachia in Culex
mosquitoes. Additionally, we anticipate that there would be
interactions between other host factors that have not been
accounted for in this study, including competition within the
microbiome at varied temperatures, influence of other
immune pathways, and potential changes in other signal
pathways due to changes in environmental factors (13, 38,
39, 81). Furthermore, we recommend that temperature,
weather, and climate conditions be considered when timing
the deployment of Wolbachia-based control methods in
the field.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA809017.
Frontiers in Tropical Diseases | www.frontiersin.org 9
AUTHOR CONTRIBUTIONS

AT-P and DCW conceived, planned, and acquired funding for
this study. AT-P, JJ, MF, and SL carried out the experiments.
AT-P and JP analyzed the data. AT-P wrote the manuscript with
input from the other authors. All authors contributed to the
article and approved the submitted version.
FUNDING

We would like to thank our funders for supporting this work:
National Science Foundation grant DGE 1249946, Integrative
Graduate Education and Research Traineeship (IGERT): Coasts
and Communities – Natural and Human Systems in Urbanizing
Environments, a generous donation from Dr. Charles Robertson
and Patricia Robertson, the University of Massachusetts Sanofi-
Genzyme Doctoral Fellowship, Craig R. Bollinger Memorial
Research Grant, National Science Foundation Research
Experiences for Undergraduates: Research Experiences in
Integrative and Evolutionary Biology Award Number 1950051,
FIGURE 6 | Significant differences across generations between relative abundances of Wolbachia (wsp gene) in Culex quinquefasciatus measured using qPCR and
standardized with 18S as a housekeeping gene (n = 5 mosquito adults per group). Culex were reared over two generations at a low (23°C) and high (30/28°C)
temperature, but Wolbachia was only significantly different between generations at the high temperature treatment based on an ANOVA comparing the Wolbachia
abundances and a subsequent Tukey’s HSD multiple comparisons test (n=19, St. Error=0.95, p=0.037).
April 2022 | Volume 3 | Article 762132

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA809017
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA809017
https://www.frontiersin.org/journals/tropical-diseases
http://www.frontiersin.org/
https://www.frontiersin.org/journals/tropical-diseases#articles


Tokash-Peters et al. Wolbachia Transmission Reduced High Temperatures
US Department of Education Ronald E. McNair Postbaccalaureate
Achievement Scholars Program at University of Massachusetts
Boston, and the Nancy Goranson Endowment Fund. No funders
had a role in the planning, execution, or conclusions of this study.
ACKNOWLEDGMENTS

We would like to thank our collaborators Michael Pollard and Dr.
Rob Stevenson for building the temperature gradient beam and
training us on operating the beam for this study. Content of this
manuscript was previously included in AT-P’s dissertation.
Frontiers in Tropical Diseases | www.frontiersin.org 10
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fitd.2022.
762132/full#supplementary-material

Supplementary Figure 1 | Taxa plot of adult Culex quinquefasciatusmicrobiomes
following emergence across the temperature gradient beam temperature groups.
GroupA is33.69°C,GroupB is31.42°C,GroupC is28.43°C,GroupD is24.80°C, and
Group E is 23.23°C. The taxa legend includes the twenty highest relative frequency
sOTUs at the Genus level. There were no significant differences in sOTU richness by
Kruskal-Wallis test (n=66, df=4, H=5.057, p= 0.410), in Shannon diversity by Kruskal-
Wallis test (n=66, df=4, H=5.176, p=0.365), or in beta diversity based on Bray-Curtis
dissimilarity testedusingANOSIM(n=62,df=4,p=0.092)between temperaturegroups.
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