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A perspective on the expansion
of the genetic technologies to
support the control of
neglected vector-borne
diseases and conservation

Robyn Raban, William A. C. Gendron and Omar S. Akbari*

Department of Cell and Developmental Biology, School of Biological Sciences, University of
California, San Diego, San Diego, CA, United States
Genetic-based technologies are emerging as promising tools to support vector

population control. Vectors of human malaria and dengue have been the main

focus of these development efforts, but in recent years these technologies have

become more flexible and adaptable and may therefore have more wide-ranging

applications. Culex quinquefasciatus, for example, is the primary vector of avian

malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction

of numerous native bird species and many native bird species continue to be

threatened as climate change is expanding the range of this mosquito. Genetic-

based technologies would be ideal to support avian malaria control as they would

offer alternatives to interventions that are difficult to implement in natural areas,

such as larval source reduction, and limit the need for chemical insecticides, which

can harm beneficial species in these natural areas. This mosquito is also an

important vector of human diseases, such as West Nile and Saint Louis

encephalitis viruses, so genetic-based control efforts for this species could also

have a direct impact on human health. This commentary will discuss the current

state of development and future needs for genetic-based technologies in lesser

studied, but important disease vectors, such as C. quinquefasciatus, and make

comparisons to technologies available inmore studied vectors.Whilemost current

genetic control focuses on human disease, we will address the impact that these

technologies could have on both disease and conservation focused vector control

efforts andwhat is needed to prepare these technologies for evaluation in the field.

The versatility of genetic-based technologies may result in the development of

many important tools to control a variety of vectors that impact human, animal,

and ecosystem health.
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Introduction

Billions of people are at risk of contracting vector-borne

diseases. Approximately 3.4 billion people residing in 92

countries are presently at risk of malaria infection alone and

about a third of those are at high risk with a greater than 1 and

1000 chance of contracting malaria each year (https://www.who.

int/data/gho/data/themes/malaria, September 23, 2021). Recent

estimates of the costs of malaria prevention and treatment efforts

exceed 4 billion annually (1), but this does not account for the

economic impact on individuals to treat and prevent malaria as

well as time away from work, school and household activities for

the infected and their caretakers (2). Research and development

of new vector-borne disease prevention technologies have

resulted in the creation of a variety of novel vector control

tools. Many of these emerging technologies are specific to

malaria or dengue vectors or so broad that they negatively

impact non-target species, but some, particularly genetic-based

engineered technologies, have the potential to be adaptable to

potentially any species without negatively impacting non-

target species.

In addition to the impact of vector-borne disease on human

health, invasive insect species cause extensive agricultural and

environmental damage. They are one of the biggest threats to

forest ecology in the United States, with potentially high impact

species established every 2-3 years (3). The economic loss of

these introductions is billions of dollars annually (4, 5). Despite

the expansion of genetic tools and their applications in many

model organisms, most disease vectors and invasive species have

limited genetic tools to address basic biological questions and

even fewer tools necessary to develop genetic control

technologies. Numerous insect pests could benefit from the

recent expansion of genetic-based tools, which have

accelerated research in other fields. These tools include

targeted nucleases like CRISPR, advanced sequencing

methodologies, and improved genomics analysis, but again

most currently lack even the basic technologies to develop

these tools, such as insect husbandry or transgenesis

techniques for these species. More investment into tools and

other resources to advance the state of genetic and genomic

technologies in understudied disease vectors and invasive species

could foster advancements in genetic control capabilities that

could have an incredible impact on human health and the

global economy.
Overview of genetic
control strategies

Genetic control strategies have focused on two main

approaches to reduce the negative impacts of a species. One

approach termed population modification, or population
Frontiers in Tropical Diseases 02
replacement, aims to modify the target population with

desired traits. In the mosquito field, for example, many groups

have developed mosquitoes that are incapable of transmitting

one or more deadly human pathogens (6–13). If these disease-

resistant mosquitoes are robust enough to stably function in

diverse natural pathogen populations (14) and then released into

the environment such that they achieve a high enough frequency

in the population, then the population could have reduced or

eliminated disease transmission capacity [reviewed in (14–16)].

Conceivably, other desired traits such as insecticide

susceptibility, temperature sensitivity, or other characteristics

to control the size or spread of a target population could be

generated, given that tools are available to identify and build

transgenes with these effects. For conservation applications,

however, the desired trait, such as disease resistance, can be

spread into a protected or beneficial population to prevent the

spread of disease negatively impacting that population. While a

population modification approach may be appropriate in some

contexts (17), modifying protected or endangered populations,

which would likely be the goal of conservation efforts, may be

problematic. There are not only logistical and technical obstacles

to modifying and propagating most protected species but

modifying a sensitive species already at low population

numbers is inherently risky (17). There are some applications,

such as developing insecticide or pathogen-resistant honey bees

(18), that are still being researched, but this approach will not be

the focus of this manuscript.

The alternative approach, known as population suppression,

is ideal for many applications, including conservation,

particularly those that aim to eradicate problematic invasive

species. Population suppression aims to reduce the target

population by biasing the inheritance of gene modifications

that decrease fertility or survival. As these modifications

increase in frequency in a population, the population size

subsequently decreases. Local elimination or global eradication

of a target species may even be possible, but this is technology

specific and dependent on the efficacy, stability, and spread of

the suppression technologies and their release scheme. These

technologies can be used to reduce or prevent the spread of

invasive species that negatively impact the environment and

human, plant, or animal health.

There are many strategies for genetically controlling a target

population, either through suppression of the species or by

spreading genes of interest through the population. Some

traditional suppression methods, such as the sterile insect

technique (SIT), were developed prior to modern genome

engineering and use ionizing radiation to cause heritable

germline chromosomal breaks and, consequently, sterilization

(19–21) (Figure 1). These chromosomal aberrations, however,

are random, imprecise, and complete sterilization cannot always

be achieved. There are also typically radiation associated fitness

impacts, which significantly reduce field competitiveness of

released animals, thereby limiting the effectiveness and
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FIGURE 1 (Continued)

Select genetic and gene drive population suppression and modification technologies. Genetic control technologies can generally be divided
into three categories based on the capability of the drive to spread beyond the target site; self-limiting non-gene drive (top), localized gene
drive (middle), and non-localized gene drive (bottom). (Top) The self-limiting non-gene drives are population suppression technologies that
reduce populations through the release of large numbers of sterile male. Traditional sterilization techniques, such as sterile insect technique
(SIT) use radiation to cause DNA damage that sterilizes the insects. pgSIT utilizes CRISPR to target female essential and male fertility genes to
kill female offspring and sterilize the male offspring. Release of Insects carrying a Dominant Lethal (RIDL) suppresses population by relying on
tetracycline repressible dominant lethal phenotype. Female-specific RIDL (fsRIDL) uses the same method as RIDL, but with female specific
lethality which can allow for greater effect by males passing on lethal genes to offspring. (Middle) Localized gene drives are designed to be
locally and sometimes temporally confinable and require multiple releases to suppress a population. These technologies are not expected to
spread far beyond the release site. The split homing drive consists of Cas9 and gRNA transgenes that are unlinked, so when breeding, the
inherited transgenes do not necessarily concur and therefore the drive is limited to only offspring that inherit both drive components.
Translocation drives create chromosomal rearrangements or inversions to bias inheritance of the translocation homozygote, in a phenomenon
called underdominance. Translocation heterozygotes are inviable due to their inheritance of an unbalanced set of chromosomes. Additionally,
there are homing drives that are combined with a Toxin/Antidote system by disrupting a necessary gene via Cas9 (toxin), requiring a healthy,
Cas9-immune variant of the gene(antidote). This is accomplished by providing the Cas9-immune gene at the site of the target gene through a
process called Home-and-Replace (HomeR) or by supplying the antidote gene at another site in the genome through an approach called
Cleave-and-Rescue (ClvR). These approaches act as a selection mechanism for these gene drives to propagate themselves, selecting for the
inheritance of the Cas9-immune gene (antidote). This can lead to a robust gene drive with a high frequency of inheritance, ideal for non-
localized drives. To make these drive systems localized for better control, only half of the gene elements necessary for a gene drive are driven
in a super-Mendelian inheritance manner. In this depiction, Cas9 is the separated element and the antidote gene, and the gRNAs are inherited
in a super-Mendelian manner. This leads to a limited gene drive that will only propagate if the Cas9 element is co-inherited, causing the drive
to be incapable of spreading indefinitely. (Bottom) Non-localized gene drives are designed to link the primary components needed for super
Mendelian inheritance, so the entire drive is inherited and, therefore, rapidly spread into a population and beyond the initial release area. While
in practice, this system does not often result in complete inheritance due to resistance mutations, in principle, these drives could spread
without limit. Sex distorter drives utilize Cas9 to drive the disruption of necessary sex chromosomes or essential sex chromosome-linked
genes. Linked HomeR and ClvR drives are as previously described, but the drive elements are now all linked. These systems are more robust
than a simpler homing gene drive as they are built to address escape mutations and additionally allow for this system to be leveraged as a
replacement or extinction drive. Created with BioRender.com.
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increasing effort required to suppress populations. While SIT has

successfully controlled many insects (19, 20, 22–25), particularly

agricultural pests, SIT has shown limited success in wide-scale

management of mosquito populations. SIT requires inundative

releases of the sterile individuals to ensure frequent matings with

the target wild individuals. There are also large fitness costs

associated with irradiating pupae (26–29). Often, SIT simply

cannot be cost-effectively scaled to support the suppression and

halt the spread of many invasive species due to the high numbers

of individuals required for release and the frequency of releases.

Even minimal occurrences of incomplete sterilization and

radiation associated fitness costs can further increase the

number of individuals needed for release. There are also many

insect pests where the detrimental effects of releasing large

numbers of pest species would preclude frequent releases. This

may include insects that are voracious eaters or inhabit already

stressed or sensitive environments where the frequent influx of

high numbers of the target species could cause additional issues.

Certainly, irradiation based SIT is a proven technology for

controlling multiple insect agricultural pests, but its many

disadvantages make this approach difficult to implement for

all insects.

Precision guided SIT (pgSIT) is a genetic based suppression

technology that also produces sterile males but uses CRISPR

genome editing to precisely target female essential genes and

genes associated with male fertility during development

(Figure 1). CRISPR genome editing is a proven technology in a

variety of species and the ease with which these systems can be

programmed to specifically target endogenous genes, together
Frontiers in Tropical Diseases 04
makes a CRISPR-based approach to generating sterile males

advantageous for many applications. Furthermore, this

programming flexibility also makes it possible to engineer these

systems to target earlier stages of development. The pgSIT systems

built to date (30–32) simultaneously target female essential and

male fertility genes during development. Eggs, or any other life

stage, can therefore be released to maximize any life stage-specific

release benefits (e.g. density dependence) and eliminate the need to

manually handle and release the fragile adults, which can also

reduce fitness. Most other male sterility and female killing

technologies developed to date, including conventional SIT, act in

later developmental stages and require the release of adults,making

them increasingly difficult to distribute and scale. Many insect

species also have somedegree of embryonic dormancy (diapause or

quiescence) that would allow long-term storage and stocking of

pgSIT eggs for some species (e.g. Aedes species), which would be

propitious for scaling and distribution.

Other genetic suppression technologies, including Release of

Insects carrying a Dominant Lethal (RIDL) (Figure 1) and female-

specificflightless (fsRIDL),use adominant lethal transactivator and

operon systemwith a tetracycline repressor (Tet-off). In the absence

of tetracycline in the RIDL system, the transactivator binds the

operon system to generate a toxin expressed in early developmental

stages (33). In fsRIDL, this toxin is femaleflight-specific, generating

females that die shortly after emergence due to their inability to fly

(34, 35). The RIDL technology field assessments are ongoing but

have been shown to successfully suppress vector populations in the

field (36–39) and are being developed for other invasive species that

impact agricultural commodities, such as the diamondback moth
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(40) and theMediterranean fruit fly (41).While these technologies

are promising for other conservation applications, the technical

requirements to develop a Tet-off system may be prohibitive for

some species as compared to the more flexible CRISPR based

systems. In addition, the use of the broad-spectrum antibiotic

tetracycline can alter the insect microbiome and cause potential

fitness issues that may be unsuitable for some applications.

In each of the above examples, the genetic suppression

systems require frequent inundative releases of large numbers

of individuals to achieve suppression. For many species, scaling

and releasing large numbers of individuals may be impractical,

so for many years, there has been a focus on the development of

gene drive technologies to rapidly spread desired traits into

populations (42–45). When linked to genetic cargo, gene drives

bias the inheritance of the cargo at a higher frequency than

expected by Mendelian inheritance. This “selfish” transmission

facilitates the rapid spread of the gene drive and any linked cargo

to a high frequency in a population and, therefore, can

accomplish population suppression or modification with

limited releases. There are many different categories of gene

drives (reviewed here (46–48) and elsewhere) that differ by

mechanism, per formance , and predic ted behavior

in populations.

Some notable gene drive systems developed to date include

underdominance systems, which spread into a population by

conferring a disadvantage to heterozygotes and an advantage to

homozygotes (49–54). Translocation drives are a type of stable

underdominance drive and can be engineered to generate

chromosomal rearrangements unique to the drive population.

When scaled and released above a critical threshold into a wild

population, individuals heterozygous for the translocation drive

are inviable due to their inheritance of an unbalanced set of

chromosomes. Over time, this advantage conferred by the drive

homozygotes supports the gradual increase of the drive in the

population. Additional underdominance drives have been

developed and reviewed elsewhere (46, 47). Given that these

drives only facilitate local population modification or

replacement, they may prove valuable to modify local

populations with beneficial traits, such as disease resistance,

without imposing the risk of invasive spread.

There have been multiple toxin antidote gene drives

developed to date. Inspired by a system found in nature (55),

the maternal-effect dominant embryonic arrest (Medea) drive

was the first example of a reverse engineered maternal toxin and

zygotic antidote drive system (56–58). The Medea drive biases

the drive inheritance by killing offspring that fail to inherit the

antidote, which is linked to the toxin. The Medea drive has only

been designed for population replacement to date but could be

configured for population suppression (47, 57). Medea drives

may be difficult to develop in many species, however, as they

require the identification of maternal and zygotic promoters and

the identification or design of appropriate toxins, which will

likely be difficult for some species. Cleave and Rescue (ClvR),
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simplifies the development of toxin antidote systems by utilizing

CRISPR. This CRISPR-based toxin antidote drive, is designed to

cleave an essential gene (toxin) in trans but also encodes a

cleavage-resistant copy of the target gene (antidote) (59). Other

related CRISPR-based toxin antidote systems, such as toxin-

antidote dominant embryo (TADE) and toxin-antidote

dominant sperm (TADS) drives, target haplosufficient essential

genes, however, they can conceivably be designed for population

suppression (60), but this remains to be demonstrated.

Homing endonuclease gene (HEG) drives and X-shredders

are two primary approaches that have been taken to generate

population suppression gene drives. X-shredders are engineered

to express an endonuclease on the Y chromosome and to target

genes specific to the X-chromosome resulting in male-only

progeny (61). X-shredders are only useful in species with

genetically distinct sex chromosomes, so this drive system is

not suitable for many insects, including grasshoppers,

cockroaches, and some mosquitoes, which do not have a Y

chromosome (62–65). As the name suggests, HEGs utilize a

genome integrated endonuclease to cleave and copy itself into a

corresponding locus on the homologous chromosome, thereby

converting a drive heterozygote to a homozygote. When this

conversion occurs in the germline, the drive can be inherited by

subsequent generations at a rate higher than expected by

Mendelian inheritance. Homing endonuclease drives were first

described as a means to support population control nearly two

decades ago (66). Only a few years later, the first demonstration

of HEGs in Drosophila melanogaster used the I-SceI and I-OnuI

nucleases to achieve only modest drive inheritance rates (67, 68).

The zinc-finger nucleases (ZFNs) and transcription activator-

like effector nucleases (TALENs) were then used to generate

nuclease homing-based drives systems in D. melanogaster, but

again, the homing efficiencies were only modest (69). Around

the same time, multiple CRISPR homing-based drives CHDs

were developed with high, sometimes remarkably >99%

conversion rates (70–73). These high conversion rates, ease of

programming precise genome modifications with CRISPR, and

the capacity for CRISPR to function in a variety of species have

resulted in CHDs becoming the predominant gene drive system

in development today. There are, however, issues with CHDs

that may limit their long term stability in the field. There are

multiple DNA repair pathways that can either result in the

accurate copying of the gene drive into the programmed location

in the genome, or they can result in mutations at the target site.

Some of these mutations will be resistant to cleavage by the gene

drives, and as these cleavage-resistant mutations accumulate in

the population, the drive becomes ineffective in that subset of the

population (74, 75). Other mutations can occur from loss of the

recipient chromosome, recombination events, and partial

inheritance of the drive element. Additionally, cleavage

associated with the maternal deposition of the Cas9

endonuclease into the embryo can result in the generation of

resistant alleles (76–78). Multiple design considerations can be
frontiersin.org
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used to mitigate these adverse events, which will be discussed

throughout this review.

One approach to prevent the development of drive resistance is

to utilize a system that disadvantages the accumulation of resistance

alleles and selects for the inheritance of drive susceptible copies after

DNA repair. The innovative Home-and-Rescue (HomeR) drive

shares the same toxin-antidote principle asMedea, and ClvR drives

while utilizing the copyingmechanism of CHDs. HomeR drives rely

on locus-specific targeted repair that will result in an embryonic

toxic effect if the repair fails (79, 80). This drive requires a

haplosufficient gene, which is viable when one copy of the gene is

functional or is supplied in trans, but is lethal if both copies are non-

functional. The HomeR drive also includes a recoded rescue of the

haplosufficient gene, which contains a drive susceptible allele that

can rescue both gene and drive function. By selecting this target

gene mutations tend to be non-functional, leading to embryonic

lethality if the rescue gene is not inherited. Silent escape mutants,

those that alter the nucleotide but not the amino acid sequence, may

still be generated with this system but were not predicted to impact

fitness and therefore are expected to spread into the population.

Cas9 primarily causes insertions and deletions rather than base

changes, which more likely result in amino acid changes, but

unlikely repair outcomes could occur, and there may be naturally

occurring drive-resistant alleles in the population. To address these

risks, gRNAs can also be multiplexed to avoid escape mutant

resistance by requiring multiple mutations for each gRNA target

(81, 82). This approach can avoid both the development and

accumulation of inframe functional resistant mutants resulting

from CRISPR editing and the accumulation of naturally

occurring escape alleles that likely exist in wild populations.

There are multiple technologies that can support the

development of these drives, but most have yet to be adapted

to understudied insect pests or vectors. Algorithms are available

that can provide general estimates of CRISPR repair outcomes

and frameshift rates for the selected CRISPR targets. These tools

have yet to be optimized for analyzing repair outcomes in insect

species but can provide insight into expected DNA repair

outcomes (83, 84). With growing interest in HomeR, ClvR,

and CHD based drive systems for insect population control,

this CRISPR prediction software may be further developed to be

species-specific. Recent work has shown differences in repair

template preference between more traditional mammalian

models and mosquitoes, suggesting that further study of

CRISPR activity in mosquitoes or other insects of interest

could reveal different repair preferences (85). The plethora of

genetic control tools and methodologies allow for the selection of

systems specific to the application, environment, and desired

rate of spread and outcome of the system (e.g. population

reduction, local elimination, or global eradication). In many

cases, it would be prudent to prevent drives from spreading

beyond the target site, while other target sites and species may

require a robust system requiring fewer releases.
Frontiers in Tropical Diseases 06
Genetic technologies for vector
control and invasive insects

Mosquito genetic transformation started in the 1990s using

transposable elements and transposases to integrate transgenes

into the genome. Due to their impact on human health, genetic

transformation technologies were developed for many disease

vectors, including Aedes aegypti (86; 87), the primary yellow

fever, dengue, Zika and chikungunya vector; Anopheles gambiae

(88), a primary malaria vector in Africa; Culex quinquefasciatus

(89), a primary West Nile virus, lymphatic filariasis, and avian

malaria vector; Anopheles stephensi (90; 91), a primary malaria

vector in Asia; Aedes albopictus (92), a global vector of

chikungunya virus, dengue virus and dirofilariasis; Anopheles

albimanus (93), a key new world malaria vector, and Anopheles

sinensis (94), a malaria and lymphatic filariasis vector in Asia.

There are many other vectors, particularly vectors of neglected

tropical diseases (NTDs), or which are secondary vectors of

malaria, in which there are no genetic tools to generate

transgenic lines. Additional investment into genetic tools for

these species would improve research capabilities and foster the

generation of genetic control tools for these species.

Limited effort has been put into developing genetic tools for

invasive species. Invasive species have profoundly impacted the

environment, ecology, and human health or food security. The

red imported ant, Solenopsis invicta (95), social wasps, Vespula

spp. (96) and the gypsy moth, Lymantria dispar (97), are just a

few insects that have had a profound negative impact on

agriculture, wildlife or forest health when introduced to new

areas. Invasive insect species are one of the biggest threats to

forest health in the United States, for example, with potentially

high impact invasive species established every two to three years

(3). The economic loss of these introductions is billions of

dollars annually (4, 5). Invasive species introductions require

an integrated pest management (IPM) approach to limit the

spread or eradicate invasive populations; however, current

technologies are few, often expensive and inefficient (98).

There has been a lot of recent interest in developing genetic

tools to support IPM approaches to control invasive species (99–

103); nonetheless, there are limited genetic technologies

currently available for even basic functional genetic studies in

many invasive insects.
Culex quinquefasciatus, a
disease vector and threat to
bird conservation

C. quinquefasciatus is an ideal target for genetic suppression

technologies. It is a member of a complex of mosquitoes known as

the Culex pipiens complex and is one mosquito species that poses a
frontiersin.org
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substantial threat to both human health and conservation. C.

quinquefasciatus is a vector of both viral and parasitic pathogens

of humans and wildlife and is a nuisance biter. C. quinquefasciatus

is also invasive in many sensitive island habitats where it transmits

avian malaria, Plasmodium relictum, and Avipoxvirus (APV),

which has led to the extinction of unique island bird species

(104–108), and threatens many more, such as Hawaiian

honeycreepers, some of the most threatened bird species in the

world (109). Even in the absence of disease transmission, this

species has a negative impact on the tourism industry due to its

nuisance biting. (110) Removing this species would, therefore, result

in the elimination of multiple pathogens, improve outcomes for

endangered species, and provide economic benefits to communities.

Culex quinquefasciatus has spread worldwide with human

travel and has a global tropical and subtropical distribution

(111). It is an opportunistic feeder of avian and mammalian

hosts, making it a bridge vector for arboviruses, such as West

Nile virus (WNV) (112). Bridge vectors are the species that

transition pathogens from their wild, enzootic cycle to humans.

When introduced into naive avian populations in the United

States during the late 1990s, WNV also led to the death of

thousands of wild birds (113). WNV may also play a role in

increased mortality amongst conservation flagship species, such

as raptors (114, 115) and other endangered birds (116, 117).

Culex quinquefasciatus is also a vector of other arboviruses, such

as Saint Louis encephalitis virus (SLEV), which is an arbovirus

that is maintained in an enzootic cycle between birds and

mosquitoes, including C. quinquefasciatus. This virus is

endemic to the Americas, but there have been more human

cases since the recent introductions into the western United

States (118, 119) This mosquito is also considered to be a

secondary vector of Japanese encephalitis virus (JEV)

throughout Southeast Asia, but its vector competence for JEV

(120–123), opportunistic feeding behaviors and urban

distribution make it a high risk for becoming an enzootic

vector (123) and urban bridge vector of JEV (124) throughout

its distribution.

Insecticide treatment of passenger and commercial vessels is

the main tool to prevent this species’ further spread. Once

established, the predominant methods to control C.

quinquefasciatus are through larval source reduction and

insecticide application, but in areas with high usage of

insecticides, C. quinquefasciatus can be highly insecticide

resistant (125). Larval source reduction is also difficult since

they prefer diverse, nutrient-rich larval habitats ranging from

artificial containers to man-made water bodies, such as ponds

and drainage areas. There is a need to develop more tools to

prevent the spread of C. quinquefasciatus and to control C.

quinquefasciatus where it has been established and causes

negative impacts on human and wildlife health. CRISPR-based

mutagenesis was demonstrated in C. quinquefasciatus

(126–129). In the earliest study, CRISPR was used in C.

quinquefasciatus to generate frameshift mutations to disrupt
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the function of an insecticide resistance gene. The more recent

CRISPR mutagenesis studies targeted genes with observable

markers that could be useful in generating additional genetic

tools (127, 128). More recently, CRISPR homology directed

repair (HDR) based transgenesis was also demonstrated,

making it possible to site-specifically engineer this mosquito

(129). Transgenesis with conventional transposable elements

and transposase has been achieved in the past (89, 130) but

has proven difficult overall. These new CRISPR based

mutagenesis and transgenesis technologies make it more likely

that more comprehensive genetic research and genetic control

tools can be accomplished in the future.
Essential technologies for genetic
engineering and gene drives

There are many technical obstacles to developing genetic

technologies for understudied vectors and insects of interest to

conservation programs, particularly control technologies

(Table 1). First and foremost, the target species must be

amenable to laboratory colonization and ideally have shorter

generation times (days or weeks as opposed to many months) to

expedite the creation and expansion of genetic lines and

streamline mass rearing for large-scale production. Target

species would also benefit from having an easily sourceable,

effective, and affordable diet, ensuring the downstream products

are scalable. Straightforward sexing methods are also ideal for

accelerating genetic tool development and are essential for many

control technologies that will rely on the release of non-biting

males. In species that are difficult to sex sort, for example, species

without easily and rapidly screenable sexual dimorphisms in

pre-mating stages, then other sex sorting techniques may need to

be engineered into the species, such as drug inducible (164) or

fluorescent marker (165) based methods for sex sorting. Many

other biological considerations may also preclude a potential

target species from being a suitable candidate for genetic control,

including reproductive capacity, egg storage, and handling and

shipping conditions, among others. There are numerous

understudied species, however, that may have characteristics

that may warrant investment into improving their genetic

toolset for future research and control efforts.

If these biological conditions are reasonably met, then a

sequenced genome, preferably one assembled and annotated, is

required to identify target genes and genetic elements, such as

promoters and other regulatory sequences useful for the

expression and regulation of transgenes. For understudied

species closely related to well-studied species, such as the case

with the Anopheles gambiae complex where the molecular

genetics in all but Anopheles gambiae is understudied, some

genetic elements and target genes may be orthologous and

similar enough to function adequately between species.
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TABLE 1 State of genetic capabilities in selected colonizable, but genetically understudied insects of importance to human health
and/or conservation.

Species Problem Generation
time;

reproductive
capacity

Sex
separation

demonstrated

Annotated
genome

CRISPR-
Cas9

mutagenesis

Transgenesis Genetic elements
(target genes,

promoters, etc.).
identified

Genetic
control
potential

Select understudied disease vectors

Anopheles
arabiensis

malaria Days; high
reproductive
capacity

Yes and genetic
sexing strain

Partial (131,
132)

Not
demonstrated

Not
demonstrated

Shares homology with
Anopheles gambiae
which is well
characterized.

High

Anopheles
funestus

malaria Days; high
reproductive
capacity

Yes Yes (133) Yes (134) Yes, HDR
mediated (135)

Few Low; difficult
to colonize
and scale
production

Glossina
morsitans
(Tsetse Fly)

African
trypanosomiasis

Days; low
reproductive
capacity

Yes Yes (136) Yes Not
demonstrated,
Reproduction is
viviparous so
will be difficult.

No Low-
reproductive
capacity too
low to scale

Lutzomyia
longipalpus
(sand fly)

visceral
leishmaniasis

Over 1 month;
moderate
reproductive
capacity

Yes Yes (137) Not
demonstrated

Not
demonstrated,
but
microinjection
methods have
been established
(138).

Few- some sex
deteriminate genes
have been identified
(139)

Moderate

Phlebotmus
papatasi (sand
Fly)

cutaneous
leishmaniasis

Moderate, Mean
of 34 eggs/female
(140)

Yes. (140) Yes,
EuPathDB rel.
49, 2020-
NOV-05

Yes (141, 142) Not
demonstrated,
but CRISPR
mutagenesis was
done via
microinjection

Few- some sex
deteriminate genes
have been identified
(139)

Moderate

Triatoma
infestans

American
trypanosomiasis

Moderate Mean
of 35 eggs/
female/life (143)

Genetic sexing,
developing
morphological
techniques
(144)

No,
mitochondrial
only (145)

Not
demonstrated

Not
demonstrated

No Moderate

Rhodnius prolixus American
trypanosomiasis

Low, about 30
(146)

Yes and genetic
sexing
(147)

Yes, 95%
coverage.
(148)

Not
demonstrated

Not
demonstrated,
microbiome
modifications
have been done.
(149)

Few. Some coloration
genes have been
identified. (150)

Low

Select insects with conservation applications

Agrilus
planipennis-
emerald ash borer

Forest
conservation

Low, on average
lays 50 eggs with
50-60% being
viable. (151, 152)

Yes Yes- NCBI
Apla_2.0

Not
demonstrated

Not
demonstrated

Few. Genes have been
identified as RNAi
targets. (153)

Low

Cactoblastis
cactorum

Cactus
conservation

Months; high
reproductive
capacity

Yes, pupal stage No No No No Moderate

Lymantria dispar
dispar

Forest
conservation

Months in egg,
produces 500
eggs/female.
(154)

Yes. Adult
morphological
differences are
very distinct. Sex
differences by
female
heterogametic sex
chromosome.
(154, 155)

Yes (154) Not
demonstrated

Not
demonstrated

Few. Sex determining
chromosome
identified. (156)

Moderate;
long
generation
times

(Continued)
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Genomic information is scarce though for many invasive species

or species of interest to conservation biologists (166).

Certainly, other considerations will facilitate the

development of genetic technologies in understudied species.

Characterization of genes that also encode easily observable

characteristics, which can be used to rapidly evaluate genome

engineering tools, and be designed as gene drive insertion targets

allowing rapid evaluation and tracking of gene drives. When

serving as markers, disrupting these phenotypic genes would

ideally have minimal fitness costs (167). Without these types of

phenotypic markers, genetic engineering efforts will be more

difficult. Characterizing promoters that can be used for the tissue

or stage-specific expression of fluorescent markers necessary for

tracking transgene inheritance would also be useful. Promoters

that drive the expression of fluorescent proteins before the adult

stage, for instance, facilitate downstream genetic crosses, and

promoters that drive distinct tissue-specific fluorescent protein

expression allow the simultaneous tracking of multiple linked

elements. Flexible options for marker expression can also reduce

fitness costs associated with marker insertion and expression.

The considerations discussed so far are needed for basic

genetic engineering, but the genetic population suppression

technologies, such as pgSIT and RIDL, and self-propagating

gene drive technologies have additional considerations.

Population suppression technologies have multiple attributes

that must be considered when designing a drive. First, it is

important to consider targeting highly conserved regions of

essential or fertility genes. If a mutation occurs at a highly

conserved site, it will likely destroy the gene function. This

design consideration is particularly important if drive cleavage

resistant mutations arise at the cut sites as cleavage resistant
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mutants will be eliminated from the population if the essential

gene is nonfunctional. Knowledge of genomics, population

genetics, and population structure of the target wild

population can also facilitate the selection of conserved targets.

With the high fitness costs of suppression drives, any natural

population variation that is resistant to the drive would have an

advantage and therefore increase to a high frequency in the

population. Better insight into the population genetics and

structure can also be used to support efforts to model the

impact of the drive on a wild population, a necessity for

assessing drive performance and a precursor to planning any

field release. The gene drive can also be designed to target

multiple unique sequences in one or more target genes (66, 75,

81, 168, 169), so if a functional cleavage resistant mutation arises

at one target site, then the drive will persist as the other target

sites can compensate.

For the generation of CRISPR homing suppression drives,

many additional elements are needed to support the drive, such

as identifying functional Polymerase III U6 promoters or other

promoters to drive the gRNA production. Some of these may

function across many taxa, but further studies are needed to

validate this in vivo (170). Flanking ribozymes or tRNA

sequences have also been used to process gRNAs in other

species and could be utilized to time gRNA expression or co-

expression from the same transcript as the Cas9 (171–173).

These designs may allow gRNAs to be expressed from any

promoter, not just type III RNA polymerase III promoters.

This added flexibility may better regulate CRISPR activity by

limiting the window in which both the Cas9 and the gRNA are

expressed; however, they are more complicated to design, which

is an obstacle to their development, particularly in the many
TABLE 1 Continued

Species Problem Generation
time;

reproductive
capacity

Sex
separation

demonstrated

Annotated
genome

CRISPR-
Cas9

mutagenesis

Transgenesis Genetic elements
(target genes,

promoters, etc.).
identified

Genetic
control
potential

Solenopsis
invicta- red
imported fire ant

Agriculture,
humans and
wildlife

Around 1 month;
high reproductive
capacity

Yes- haplodiploid Yes (157, 158) Yes (159) Not
demonstrated

No Moderate

Vespula spp.-
social wasps

Forest
conservation

Around 1 month;
high reproductive
capacity, but
seasonal variation
in production
may make scaling
difficult

Yes- haplodiploid Yes (160) No, but
achieved in
other wasps
(161)

Not
demonstrated

Spermatogenesis genes
identified that may be
useful for suppression
drives and variation
assessed in wild
populations (102)
other elements not yet
identified

Moderate

Select dual impact insects with human health and conservation applications

Culex
quinquefasciatus-
Southern house
mosquito

WNV, JEV,
lymphatic
filariasis;
Conservation-
avian malaria

Days; high
reproductive
capacity

Yes- sexual Yes Yes (127–129,
162)

Yes-
transposable
element Hermes
(89) and HDR
mediated (129,
163)

Few High
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understudied species of interest to conservation. The selection of

the Cas9 promoter also significantly impacts drive performance.

Cas9 promoters with minimal somatic expression and

appropriate timing can reduce the parental deposition of Cas9,

which can lower drive fitness and contribute to the generation of

drive cut site resistance. Germline specific promoters, however,

are often difficult to identify even in well-characterized model

organisms. Temporal control of Cas9 may be further refined by

putting the gRNA under any promoter that shares some

expression time with the Cas9 promoter. Alternatively,

endogenous genes with appropriately timed expression can be

used to drive the expression of Cas9 (174). Even with this

knowledge, considerable resources will need to be expended to

generate the genomic data needed to support the rational

development of gene drives in many species.
Considerations for using genetic
control tools for conservation

Genetic tools have many attributes that make them

beneficial to conservation programs. Many conventional

methods of pest control use insecticides, traps, or other

methods that are not species specific. These methods often kill

unintended species targets while trying to control the invasive

target population. Due to their broad effects, pesticide use, for

example, impacts many trophic levels and ecosystems and is a

threat to biodiversity worldwide (175–178) Genetic tools can be

designed to have high species specificity so that they will have

minimal impact on unintended species.

Spatial confinability is essential for genetic control tools for

conservation applications. Species that are invasive and cause

negative impacts in one area may be beneficial in another area or

within their native range. Gene drives with the ability to spread

globally would, therefore, be inappropriate for controlling many

invasive species. Gene drives where the active drive components

are unlinked (split drives or daisy drives) (47, 99) or only target

multiple mutations unique to the target population (99) would

prevent the global spread of gene drives and therefore secure

biodiversity outside of areas where the target species is

undesirable. Additional considerations are required for

eradicating a native species with a negative impact on human

interests or eradicating a long-established invasive species (179).

In these cases, environmental impact assessments may be

needed to determine if eradication will have downstream

effects on predator or prey species. The potential impact of

gene drive technology on native species should be considered in

the development of these technologies. Criteria for reducing

hazards to endangered species and humans should be considered

when planning field trials of any genetic and gene drive

suppression systems (180, 181).
Frontiers in Tropical Diseases 10
Another approach to spatially and temporally confining

gene drives is to make their non-Mendelian inheritance

conditional. These conditionally functional drives can be

dependent on environmental conditions (e.g. temperature) or

another natural or synthetic factor (e.g. small molecule activators

or inhibitors). Small molecule gene drive activators or inhibitors

have been developed in multiple species. The small molecule

dependent gene drive was a self-limiting drive in Drosophila

designed to excise Cas9 via a site-specific recombinase, Rippase,

under the control of an RU486 inducible promoter (182). Small

molecule gene drive activators have also been developed (183);

however, it is still unclear if these have utility outside of the

laboratory for many insect species. The function of these systems

is drug dose-dependent, and the expression and shutoff of these

systems are heavily reliant on the fidelity of the expression of the

main components of these systems. The drug dose required for

these current systems to function will likely be higher than

feasible in natural environments, and most promoters have leaky

basal expression, resulting in incomplete activation or

deactivation of the drive. Novel inducible agents should also

be explored for gene drive control due to the potential off-target

effects of the RU486 and trimethoprim chemicals used to date.

These gene drive systems are regulated at the DNA and protein

level, but could also be regulated at the mRNA level, as seen in

some examples of gene therapy (184). This approach uses an

expression cassette that contains a self-cleaving ribozyme that

translates protein when the ribozyme is disrupted by a

morpholino, an oligomer that can modify gene expression. In

a gene therapy context, it is possible to deliver morpholinos to

the patient directly, but leveraging this technology in a gene

drive system will require alternate designs and delivery

mechanisms. Again, however, developing small molecule

inducible or repressible drives is complicated and beyond the

current genetic capabilities available for most invasive species.

Substantial effort would be required to generate tools to develop

these technologies in most species.

To limit their spread, gene drive organisms can also be designed

to function in response to environmental factors. A recent example

of this approach is a heat-sensitive ClvR suppression drive

developed in Drosophila melanogaster that functions in response

to seasonal changes in temperature. This ClvR system was designed

to target an essential gene, dribble, and encodes a recoded cleavage

resistant rescue gene that contains a temperature sensitive intein. At

low temperatures, the intein splices itself out of the recoded gene

and maintains gene function (185). At high temperatures, however,

the intein is not spliced out of the recoded gene and cannot rescue

the gene function, thereby killing all individuals that inherit the

drive. If this temperature sensitive ClvR system persists for multiple

generations in the population at low temperatures, it can therefore

drive itself into the population at a high frequency facilitating rapid

population suppression upon an increase in temperature. This

system can limit the drive spread to regions that do not reach
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lethal or sterilizing temperatures or to seasons with lower

temperatures. Another proof of concept drive system developed

in D. melanogaster is designed to replace insecticide resistant alleles

with a susceptible wildtype allele (186). This drive could be used to

restore insecticide susceptibility to target populations, and by simply

applying insecticides to the environment, the drive could be

removed from a population. Certainly, these are innovative

approaches to spatially or temporally confining a gene drive but

are currently beyond the technical capabilities of many organisms of

interest to conservation. These examples do, nonetheless,

demonstrate the future technologies that may be available for

conservation and NTD applications with further investment into

genetic and genome technologies in these fields.
Ethical and regulatory
considerations for deploying
gene drive

Genetic suppression and gene drive technologies are promising

technologies with the potential to address many problems in

conservation and other fields. Current approaches to controlling

invasive species have many unintended off-target effects on human

health and the environment. Many of these conventional

approaches are also becoming increasingly ineffective at

controlling target species. These genetic engineering approaches

have the potential to effectively address NTDs and conservation

issues by targeting the species of interest directly, which avoids the

side effects of pesticides on non-target species. As with most novel

technologies, genetic and gene drive technologies are not without

risk, and there is a potential for inadvertent and unexpected

outcomes. To maximize the benefits of genetic and gene drive

technologies while minimizing potential harm, principles have been

set to guide future work in the conservation field (187). In brief, the

key principles outlined are to ensure tools used for conservation

applications 1) have public and expert approval, 2) state and

international governance, 3) a broad consideration of ethical and

moral systems, and 4) developers of the technology must self

regulate the development of these technologies. While this list is

succinct, these principles are complex and their execution more so.

Developing and maintaining a dialogue with the communities

affected by these technologies is paramount, but how this is

achieved will vary by region, country, and community. Focusing

on more localized and confinable technologies rather than non-

localizations systems, particularly early in the development of these

technologies, may help improve and maintain public trust

throughout this process. In addition to public support, it is

important to engage experts in many fields, including developers,

social scientists, basic researchers, regulators, and experts in public

health, conservation, and the local community, who can provide

insights into the technology, community, and potential risks. While
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a consensus may not be made among all relevant experts, some

guiding principles on the use of genetic and gene drive technologies

in the laboratory and the field should be considered. The literature is

abundant with discussions of these principles (187–193). There is

also a need for governance to approve the use of these technologies

and when required, this governance needs to be able to negotiate the

use of this technology on an international level. Genetic and gene

drive technologies are currently regulated at the national level, but

as many of these technologies have the potential to spread beyond

their release area, this may preclude the use of some of these

technologies in target species with distributions spanning multiple

countries. Several multinational entities, such as the World Health

Organization and the African Union, have recognized that these

technologies will require international cooperation and consent and

have begun to discuss the use of these technologies and these issues

(194, 195). With further development of gene drive technology and

the expansion of these technologies to NTD and conservation

targets, this technology will likely require additional international

governance. Finally, the development of these technologies is

centered in laboratories and institutions throughout the world by

experts in the field of genetics and gene drive, but there is a need to

better communicate this science and risks to the public and other

experts. While other institutions will assist with these important

duties, we must keep these goals in mind as stewards of genetic

suppression technology.

There are also multiple practical examples of genetic

technologies that have been studied in the field. Within the

United States, the non-gene drive suppression technologies

developed by Oxitec and MosquitoMate have required approvals

from multiple regulatory agencies, which evaluate the safety of the

technology and deployment plan. Oxitec was the first to market,

and therefore faced regulatory jurisdictional conflicts prior to its

assignment to the Environmental Protection Agency (196). Brazil

has had multiple field trials with self-limiting systems and will soon

deploy these technologies on a country-wide scale (37, 197, 198).

Brazil also has had multiple regulatory, health, and biosafety

agencies take part in determining the safety of mosquito

deployment (199). As these technologies become more commonly

used, there will likely be more standardization in the regulatory

processes and more regulations to guide the development of safe

and effective genetic control systems. To date, however, only non-

gene drive mosquitoes have been studied in the field. Due to their

ability to spread beyond their release point and persist in the

environment, the regulatory requirements for gene drive

technologies is much more uncertain.
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