
Frontiers in Tropical Diseases

OPEN ACCESS

EDITED BY

Ines Martin-Martin,
Carlos III Health Institute (ISCIII), Spain

REVIEWED BY
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Blood meal survey reveals
insights into mosquito-borne
diseases on the island of
Santiago, Cape Verde

Adéritow Augusto Lopes Macedo Gonçalves*†,
Adelina Helena Campinha Dias †,
Davidson Daniel Sousa Monteiro,
Isaı́as Baptista Fernandes Varela and Silvânia da Veiga Leal

Medical Entomology Laboratory, National Institute of Public Health, Praia, Cape Verde
Introduction: The transmission of pathogens by blood-sucking insects to humans

and other animals depends on vector-host interactions. As yet unexplored in Cape

Verde, mosquito feeding behavior plays a crucial role in pathogen transmission.

Herein, we aim to explore, through blood meal analysis, the relationship between

mosquito species and common hosts in Santiago Island, Cape Verde.

Methods: Engorged female mosquitoes were collected through mechanical

aspiration from May 2016 to December 2017 in three municipalities of Santiago

Island (Praia, Santa Cruz, and Santa Catarina). Blood-feeding behavior in each

municipality was assessed through blood meal analysis using an enzyme-linked

immunosorbent assay (ELISA).

Results:Wewere able to determine that single-host bloodmeals were common in

Aedes aegypti, Anopheles arabiensis, and Culex pipiens sensu lato (s.l.). In general,

the mosquitoes preferred to feed on humans, dogs, and chickens, and on multiple

hosts, mainly two hosts. The human blood index (HBI) was highest (i.e., 1.00) in Ae.

aegypti, with the lowest value (0.40) observed in An. arabiensis. It was observed

that, among single-host blood meals, the likelihood of Cx. pipiens s.l. feeding on

humans was significantly high, whereas the likelihood of An. arabiensis feeding on

humans was significantly low (log-odds ratio (LOR) = 0.85 and –2.44, respectively).

In addition, a high likelihood of Ae. aegypti feeding on humans was observed, but

this was not statistically significant (LOR = 0.85).

Discussion:Overall, our findings demonstrate a lack of feeding preference inCulex

pipiens s.l. compared with Ae. aegypti and An. arabiensis. These results provide

insights into possible parasite transmission and pathogen spillover/spillback, which

threaten human/animal health and the economy in Cape Verde.
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Introduction

Vector–host interactions play a key role in pathogen

transmission. More than half of the world’s population lives in

areas at risk of one or more major vector-borne diseases, with

mosquito-borne diseases being a major contributor (1). Mosquitoes

are known to be vectors of diseases that are devastating to humans,

domestic animals, and wildlife (2).

Hematophagy is an obligatory behavior for most female

mosquitoes in order to reproduce and to obtain energy (3). This

process is facilitated through catheterization of the skin

(solenophagy), as a result of which pathogens are ingested and

transmitted. Orientation toward a host is paramount for feeding

success, and in the case of temporary ectoparasites, such as

mosquitoes, host choice is underpinned by single or multiple

factors, such as host availability (4–8), abundance (8–11), season

shifting (4, 12), natural host defense (particularly in Aves) (13–17),

host size (18–21), odor (22–24), and ecology (8, 25) leading to catholic

tastes in a single gonotrophic cycle, which may favor

parasite transmission.

The ability to precisely identify the source of blood meal in

mosquitoes and to distinguish anthropophilic and zoophilic species

is of prime importance for deciphering host choice and how parasites

manipulate the host to promote infection and transmission, and for

understanding disease epidemiology for improved entomological

surveillance (2, 26–29).

Mosquito-borne pathogens, including yellow fever virus (30),

Wuchereria bancrofti (31), Zika virus (32, 33), dengue virus (34),

Plasmodium spp (35). Dirofilaria immitis (36), and Dirofilaria repens

(37), which are of public health importance, have been reported in

Cape Verde. To date, 11 species of mosquito have been described in

Cape Verde, of which Anopheles arabiensis, Aedes aegypti, Culex

pipiens sensu stricto (s.s.), and Culex quinquefasciatus are the most

important (38–40).

Nevertheless, mosquito bites and diseases may be preventable by

decreasing contact with humans through zooprophylaxis, by the use
Frontiers in Tropical Diseases 02
of repellant air-sprays and house improvements, and, at an individual

level, by covering the skin and using insecticide-treated bed nets (1, 6,

23, 41–47). Thus, integrated vector management (IVM) with multiple

strategies, included as part of the One Health Initiative, has greater

potential to improve vector-borne disease control and facilitate

elimination than isolated or routine approaches (48, 49).

Understanding the temporal and spatial dynamics of the vector–

host relationships is a key element in planning IVM.

Entomological studies in Cape Verde have focused more on

mosquito density, distribution, and genetic and phenotypic

composition than on feeding behaviors, although these are crucial

for disease transmission. In our study, we investigated the blood

feeding patterns of mosquitoes in three municipalities in Santiago

Island: Praia, Santa Cruz, and Santa Catarina.
Materials and methods

Ethics statement

All mosquito collections were carried out in private spaces (i.e.,

homes and their vicinity). We sought consent from owners before

collecting the mosquitoes on their properties. The field collections did

not involve any endangered or protected species. Materials used in the

study posed no health risk to researchers or owners, and no vertebrate

animals were harmed.
Sampling sites and collection

As part of vector surveillance activities, led by the National Institute

of Public Health, Cape Verde, mosquitoes were collected from May

2016 to December 2017 in randomly selected areas in three

municipalities of Santiago Island [Praia (12 areas), Santa Cruz (four

areas), and Santa Catarina (two areas)] (Figure 1). The selection was

based on the history of mosquito-borne diseases, and mosquito and
FIGURE 1

Map of Cape Verde and areas where mosquitoes were collected.
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vertebrate composition. Both outdoor and indoor collections were

carried out in the morning (7 to 11 a.m.). At each sampling site,

mosquitoes were collected through 15minutes of mechanical aspiration

using a modified Centers for Disease Control and Prevention (CDC)

backpack aspirator (model 1412; John W. Hock Company, Gainesville,

FL, USA). All collected mosquitoes were transported alive in cups to the

Medical Entomology Laboratory at the National Institute of Public

Health, Cape Verde, and then killed by freezing.
Mosquito species identification

Mosquito specimens were separated according to blood digestion

status (i.e., blood fed and unfed) following Reeves et al.’s

recommendations (50). Only blood-fed mosquitoes were

morphologically identified using dichotomous keys (39, 51).

Therefore, mosquitoes with fresh blood and with an intermediary

blood digestion status were used for the blood meal analysis. Each

mosquito was separated into head, thorax, and abdomen. The

abdomens were crushed on Whatman grade 1 qualitative filter

paper (GE HealthCare Technologies Inc., Chicago, IL, USA) and

preserved at –20°C for enzyme-linked immunosorbent assay (ELISA)

analysis. The heads and thoraxes were individually preserved in silica

gel (Merck KGaA, Darmstadt, Germany) for DNA extraction.

Mosquitoes morphologically identified as Anopheles gambiae sensu

lato (s.l.) were submitted to a single total DNA extraction using the

NZY Tissue gDNA Isolation Kit (NZYTech genes & enzymes, Lisbon,

Portugal). Sibling species of the An. gambiae complex were identified

using PCR following the protocol described by Scott et al. (52).
Blood meal identification

Blood meal sources were identified through a direct ELISA

adapted from Lardeaux et al. (53). Immunoglobulin G (IgG) from

five vertebrate hosts of interest (human, pig, dog, goat, and chicken)

was assessed. The choice of alternatives to human hosts was based on

observations made during field collections at the sites. The

absorbance values were obtained using an absorbance microplate

reader (Stat Fax® 4200) at 450 nm. The cut-off values for each plate

were calculated from the mean of three negative controls chosen

randomly, plus three times their standard deviation (SD) [i.e.,

cut-off = mean + (3×SD)].
Statistical analysis

The human blood index (HBI) was estimated for each group of

mosquitoes from each municipality in accordance with the Garrett-

Jones formula (54). The probabilities of single-host blood meals on

humans for each mosquito species, by municipality, and their

corresponding 95% confidence intervals (CIs), were calculated. In

addition, as proposed elsewhere (55), log-odds ratios (LORs) were

calculated from hypergeometrically distributed data on a 2 × 2

contingency table (95% confidence interval) between each mosquito

species and host (where positive and negative LORs indicate,

respectively, a positive and negative feeding association, meaning
Frontiers in Tropical Diseases 03
that the likelihood that a blood meal of that mosquito species would

originate from a given host is, respectively, higher and a lower than

random chance). The greater the LOR, the stronger the feeding

association. LORs close to 0 suggest no association between the

mosquito species and host. In addition, RStudio version 1.4.1717

(packages gglot2, ggdendrogram, and reshape2) was used to generate

a heatmap of the LORs in hierarchical clustering, which assembled

mosquito species with similar feeding patterns. The percentages of

blood meals by host according to season, municipality, and land use

were represented graphically using JMP Pro 16.1.0.

Results

A total of 1,008 mosquito specimens freshly blood fed and with

intermediary blood digestion were analyzed from the three

municipalities of Santiago Island: Praia (n = 834; 83%), Santa Cruz

(n = 127; 13%), and Santa Catarina (n = 47; 5%). The majority of

these, 860 specimens, were Cx. pipiens s.l. (85%), followed by Ae.

aegypti (n = 103; 10%) and An. arabiensis (n = 45; 4%) (Table 1). No

engorged An. arabiensis or Ae. aegypti were caught in Santa Catarina.

Single-host blood meals were more common [Ae.aegypti (84.3%),

An. arabiensis (64.7%), and Cx. pipiens s.l. (81.6%)] than multiple-

host blood meals [Ae. aegypti (15.7%), An. arabiensis (35.3%), and Cx.

pipiens s.l. (18.4%)]. Single-host blood meals were mainly represented

by human blood (56 for Ae. Aegypti, nine for An. arabiensis, and 581

for Cx. pipiens s.l.). Regarding multiple-host blood meals, the

mosquitoes fed on human and other animal hosts (18 for Ae.

Aegypti, 15 for An. Arabiensis, and 159 for Cx. pipiens s.l.).

Following humans, dogs were the most frequent host among Cx.

pipiens s.l. (represented 116 times) (Table 1).

As regards the HBI, the lowest HBI (0.40) was recorded in An.

arabiensis, whereas Ae. aegypti from the municipality of Santa Cruz

had the highest HBI (1.00). The overall average HBIs in the Santiago

Island were 0.98, 0.55, and 0.92 for Ae. aegypti, An. arabiensis, and Cx.

pipiens s.l., respectively (Table 1).

The calculated probabilities of mosquito species taking a single-

host blood meal from humans indicated that, for Cx. pipiens s.l., the

probability was lowest in Santa Catarina (HBI = 0.88; 95% CI 0.71 to

0.96) and highest in Santa Cruz (HBI= 0.93; 95% CI 0.84 to 0.97).

Whereas for An. arabiensis the chance was lower (HBI = 0.40; 95% CI

0.07 to 0.83) but higher (HBI = 1.00; 95% CI 0.63 to 1.00) for Ae.

aegypti in the Santa Cruz municipality (Table 2).

Only An. arabiensis took single-host blood meals from all five

hosts (pigs, humans, goats, dogs, and chickens) especially in urban

areas like Praia during the rainy season (Figure 2). Cx. pipiens s.l. had

a higher preference for human blood, followed by chicken, and this

preference did not differ across seasons, municipalities, or land uses

(Figure 3). Ae. aegypti also preferred to feed on humans but this

preference did not differ across seasons and was not different in Praia

and Santa Cruz, the two municipalities where it was possible to

capture this mosquito species (Figure 4).

The LOR calculated only for single-host blood meals clustered

together Cx. pipiens s.l. and Ae. aegypti with similar feeding patterns.

These estimations revealed positive LORs for all the mosquito–host

relationships; however, the Cx. pipiens s.l.–dogs and Cx. pipiens s.l.–

goats relationships show negative LORs, i.e., negative associations.

This is similar to An. arabiensis–human host (Figure 5).
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TABLE 1 Blood meal frequency distribution.

Culex pipiens s.l.

No. of positive samples

Total (N = 860)
8) Santa Cruz (n = 108) Santa Catarina (n = 47)

75 29 581

1 – 10

5 4 50

– – 1

– – –

81 33 642

81.8 64.7 79.5

3 2 58

– 1 5

1 7 27

– – 13

14 1 24

– – 2

– 1 20

– – –

– – 2

– – 6

– – 2

– – 4

– – 1

– – 2

18 12 166

18.2 26.7 20.5

99 45 808

0.94 0.91 0.92a
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Aedes aegypti Anopheles arabiensis

Host

No. of positive samples

Total (N = 103)

No. of positive samples

Total (N = 45)
Praia

(n = 89)
Santa Cruz (n = 14) Praia (n = 40) Santa Cruz (n = 5) Praia (n = 7

Human 47 9 56 7 2 9 477

Dog 1 – 1 1 – 1 9

Chicken – – – 3 – 3 41

Goat 1 – 1 5 3 8 1

Pig 1 – 1 1 – 1 –

Total single-host blood meals 50 9 59 17 5 22 528

% single-host blood meals 75.8 81.8 76.6 53.1 100.0 59.5 79.5

Human + dog 3 – 3 4 – 4 53

Human + dog + chicken – – – 1 – 1 4

Human + dog + pig 1 1 2 – – – 19

Human + dog + pig + chicken 3 1 4 1 – 1 13

Human + chicken 4 – 4 1 – 1 9

Human + pig + chicken – – – – – – 2

Human + pig 1 – 1 5 – 5 19

Human + goat + dog 1 – 1 – – – –

Human + goat + dog + pig 1 – 1 2 – 2 2

Human + goat + dog + pig + chicken 2 – 2 – – – 6

Human + goat + pig – – – 1 – 1 2

Dog + chicken – – – – – – 4

Goat + dog + pig – – – – – – 1

Pig + chicken – – – – – – 2

Total multiple-host blood meals 16 2 18 15 – 15 136

% multiple-host blood meals 24.2 18.2 23.4 46.9 0.0 40.5 20.5

Positives identified 66 11 77 32 5 37 664

HBI (single-host + multiple-host blood
meals)

0.95 1.00 0.98a 0.69 0.40 0.55a 0.91

n, number of mosquito specimens; HBI, Human Blood Index.
a, overall HBI calculated for Santiago Island.
“-“ means “0” (Zero). Zero mosquitoes were found with that specific blood meal.
0
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Significant positive or negative associations were found for two

out of the five hosts (humans and goats). There was a significant

clustering positive LOR (LOR = 0.85, p = 0.01) for Cx. pipiens s.l. for

human hosts and a strong negative association for goats (LOR = –

4.38, p < 0.0001), meaning a higher and a lower likelihood of this

mosquito species taking blood from humans and goats, respectively.

Similarly, positive associations between Ae. aegypti and humans

(LOR = 0.85, p = 0.10) and between Ae. aegypti and pigs

(LOR = 2.44, p = 0.16) were observed, but these were not

statistically significant. For An. arabiensis–humans a significant

strong negative correlation (LOR = –2.44, p < 0.0001) was

observed, which points to a lower likelihood of this mosquito

species biting humans. A strong positive association was observed

between An. arabiensis and goats (LOR = 5.30, p = 7.80) and between

An. arabiensis and pigs (LOR = 3.51, p = 0.06), but these associations

were not statistically significant. An LOR value closer to 0 was found

only for Ae. Aegypti–dogs, which suggests no relationship

(LOR = 0.02, p = 0.64) (Figure 5).
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Discussion

The transmission potential of a vector-borne pathogen by a

competent vector is influenced to a large extent by blood feeding

behavior, vector population density, and longevity (56). In our study,

data gathered from multiple sites indicate that the major pathogen

vectors (i.e., An. arabiensis, Ae. aegypti, and Cx. pipiens s.l.) share up

to three hosts, although this may be influenced by host availability

rather than by species-specific host choices. A limitation at this point

is the fact that our data could be more accurate if PCR-based

molecular approaches were used. Despite Praia being more

urbanized, multiple-host blood meals (from four or five hosts) were

also observed (Table 1). This observation is not new in mosquitoes, as

shown in studies in Brazil, Honduras, and Peru (57–60).

A pertinent result that we found was the generic feeding behavior

among An. arabiensis and Cx. pipiens s.l., in contrast to Ae. aegypti,

which showed a specific feeding behavior with a strong predilection

for human hosts (HBIsingle-host + multiple-host blood meals = 0.98; HBIsingle-
TABLE 2 Probability of Aedes aegypti, Anopheles arabiensis, and Culex pipiens s.l. from each municipality of Santiago Island taking a single-host blood
meal from a human host.

Municipality No. of single-host blood
meals w/human blood

Total number of single-
host blood meals

Probability (P) of single-host blood
meals with human blood

95% confidence
interval of p-value

Ae. aegypti

Praia 47 50 0.94 0.83 to 0.98

Santa Cruz 9 9 1.00 0.63 to 1.00

Total 56 59 0.95 0.85 to 0.99

An. arabiensis

Praia 7 17 0.41 0.19 to 0.67

Santa Cruz 2 5 0.40 0.07 to 0.83

Total 9 22 0.41 0.22 to 0.63

Cx. pipiens s.l.

Praia 477 528 0.90 0.87 to 0.93

Santa Cruz 75 81 0.93 0.84 to 0.97

Santa Catarina 29 33 0.88 0.71 to 0.96

Total 581 642 0.91 0.88 to 0.93
FIGURE 2

Single-host blood meals by Anopheles arabiensis according to season, municipality, and land use. *no mosquitoes captured.
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Gonçalves et al. 10.3389/fitd.2023.1070172
host blood meals = 0.95). Work carried out in Grenada, the USA,

Thailand, Puerto Rico, and Australia also found similar feeding

behaviors in Ae. aegypti (61–67), as humans provide reproductive

and metabolic advantages (68). This feeding behavior could be one of

various factors that would explain the large number of cases of dengue

fever in 2009 (34) and of Zika in 2015 (32) in Cape Verde, and this is

also a point of consideration, as Ae. aegypti from Cape Verde is also

able to transmit the Chikungunya virus (69).

Few (n = 45) blood-fed An. arabiensis were caught, which limits

conclusions on any blood meal analyses. These low numbers could be

due to the collection technique employed (70), as we collected only

mosquitoes that were within range of the suction effect of the aspirator.

It is likely that the use of a collecting tool with wider coverage, such as

pyrethrum spray catches, would have increased the numbers collected.

In any case, in our study, An. arabiensis showed low anthropophily

[HBIsingle-host + multiple-host blood meals = 0.55; HBIsingle-host blood meals = 0.41

(LOR = –2.44, p < 0.0001)], similar to the findings of studies in Burkina

Faso, Kenya, and Ethiopia (71–73). We verified that An. Arabiensis fed

from multiple hosts in the same gonotrophic cycle (from two to four

hosts), which agrees with the gonotrophic discordance phenomenon

previously described in other species of this genus in Ethiopia, Brazil,

Kenya, Mexico, and Sri Lanka (73–78). The low anthropophily observed

in this species could also explain the relatively low prevalence of malaria

in Cape Verde, in contrast to other countries in Africa, where the main

malaria vector, An. gambiae s.s., is, essentially, anthropophilic (79).
Frontiers in Tropical Diseases 06
Although there have been reports of D. immitis and D. repens

among dogs in Cape Verde (80–87), and the West Nile virus and W.

bancrofti in other African countries (31, 88, 89), Cx. Pipiens s.l. has

not been implicated in any human disease in Cape Verde. Two species

of the Cx. pipiens complex, Cx. pipiens s.s. (ornithophilic) and Cx.

quinquefasciatus (anthropophilic), and their hybrids, have been

observed in Cape Verde (90). Both species are more eclectic than

An. Arabiensis and Ae. Aegypti. In our study Cx. pipiens s.l. showed a

preference for human blood meals (HBIsingle-host + multiple-host blood

meals = 0.92; HBIsingle-host blood meals = 0.91 [LOR = 0.85, p = 0.01])

followed by blood meals in chickens and dogs. Similar trends have

been found in Grenada, the USA, Ecuador, India, Brazil, Germany,

Australia, and Kenya (61, 62, 91–98).

The mosquito feeding behavior observed in our study

demonstrates that it is important to consider the closeness of dogs

to humans and their role in parasite transmission. Although humans

are dead-end hosts for D. immitis and D. repens (both found in dogs

in Cape Verde), earlier stages can cause dirofilariasis and

inflammatory response when parasites die in human tissues (99).

Ocular and pulmonary dirofilariasis with benign pulmonary and

subcutaneous nodules that may be confused with cancer can also be

found in humans (99–102). In addition to Cx. pipiens s.l., Ae. aegypti

has also been implicated in the transmission of both parasites,

although we observed a low probability of this species biting dogs

(Table 1, Figure 5) (87, 103, 104).
FIGURE 4

Single-host blood meals by Aedes aegypti according to season, municipality, and land use. *no mosquito captured.
FIGURE 3

Single-host blood meals by Culex pipiens s.l. according to season, municipality, and land use.
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It is possible that our results could be a reflection more of host

availability than of mosquito host preference: the high numbers of Cx.

pipiens s.l. and Ae. aegypti individuals collected and their feeding

behaviors (on both humans and domestic animals), as reported in this

study, call for further investigations into parasites circulating in these

mosquitoes and also in dogs and humans in Cape Verde. For

situations where humans would behave as amplifying hosts of other

dog parasites not mentioned here, from our results of simultaneous

blood meals in dogs and humans, we may have an even greater

amplification event due to interaction augmentation between these

two hosts, which increases as their abundance also increases (105).

However, as pointed out elsewhere (18, 106, 107), it is necessary to

consider the specific attributes to such interactions.

Future directions from this study should therefore consider on

combining data from mosquito and animal densities and richness to

explore transmission risk according to season and land use. In addition,

considering a larger panel of hosts, including non-domestic animals,

and increasing sampling efforts with proper sampling techniques, will

ensure enough representation of samples for biological relevance of

data generated. Another limitation is that we did not record the total

number of collected mosquitoes. Therefore, we cannot provide the

percentage of blood-fed mosquitoes for our field study.

In conclusion, our study provides the first characterization of

blood sources utilized by medically important mosquitoes in Santiago

Island, Cape Verde. Importantly, this work has shown that feeding

behavior among Cx. pipiens s.l. is more random than that

demonstrated by Ae. aegypti and An. arabiensis. Our findings also

provide interesting information on disease transmission between

hosts and pathogens spillover or spillback phenomena. These

phenomena, despite the fact that they have not yet been thoroughly

investigated in the country, could threaten livestock, poultry farming,

wildlife health, and the economy, and this may be even more

important in view of climate change. Thus, inclusion of the One

Health Initiative (involving animals) in disease surveillance could

help track diseases of humans with animal ancestry and zoonosis for

planning interventions. Interventions such as zooprophylaxis, in

which animals are treated with mosquito-killing drugs, and
Frontiers in Tropical Diseases 07
mosquito bites are redirected can greatly reduce mosquito survival

and lower their potential to transmit pathogens.
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FIGURE 5

Single-host blood meals associations between hosts (humans, dogs,
chickens, goats, and pigs) and mosquito species. Mosquito species
were arranged by hierarchal clustering according to the likeness.
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de Investigações Científicas do Ultramar (1980).

40. Alves J, Pina AD, Diallo M, Dia I. First report of Culex (Culex) tritaeniorhynchus
Giles, 1901 (Diptera: Culicidae) in the cape Verde islands. Zool CV (2014) 5(1):14–9.

41. Foley DH, Bryan JH, Lawrence GW. The potential of ivermectin to control the
malaria vector Anopheles farauti. Trans R Soc Trop Med Hyg (2000) 94(6):625–8.
doi: 10.1016/s0035-9203(00)90211-6

42. Githinji S, Herbst S, Kistemann T. The human ecology of malaria in a highland
region of south-West kenya. Methods Inf Med (2009) 48(5):451–3. doi: 10.3414/ME9242

43. Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes M, Lindsay SW,
et al. Household risk factors for malaria among children in the Ethiopian highlands. Trans
R Soc Trop Med Hyg (2000) 94(1):17–21. doi: 10.1016/s0035-9203(00)90424-3

44. Hewitt S, Rowland M. Control of zoophilic malaria vectors by applying pyrethroid
insecticides to cattle. Trop Med Int Health (1999) 4(7):481–6. doi: 10.1046/j.1365-
3156.1999.00433.x

45. Iwashita H, Dida GO, Sonye GO, Sunahara T, Futami K, Njenga SM, et al. Push by
a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets
on malaria control? Parasit Vectors (2014) 7:52. doi: 10.1186/1756-3305-7-52

46. Kaburi JC, Githuto JN, Muthami L, Ngure PK, Mueke JM, Mwandawiro CS. Effects
of long-lasting insecticidal nets and zooprophylaxis on mosquito feeding behaviour and
density in mwea, central kenya. J Vector Borne Dis (2009) 46(3):184–90.

47. Seyoum A, Balcha F, Balkew M, Ali A, Gebre-Michael T. Impact of cattle keeping
on human biting rate of anopheline mosquitoes and malaria transmission around ziway,
ethiopia. East Afr Med J (2002) 79(9):485–90. doi: 10.4314/eamj.v79i9.9121

48. World Health Organization. Toolkit for integrated vector management in Sub-
Saharan Africa (2016) (Accessed April 5, 2022).

49. World Health Organization. Handbook for integrated vector management (2012)
(Accessed June 5, 2022).

50. Reeves LE, Gillett-Kaufman JL, Kawahara AY, Kaufman PE. Barcoding blood
meals: New vertebrate-specific primer sets for assigning taxonomic identities to host DNA
from mosquito blood meals. PloS Negl Trop Dis (2018) 12(8):e0006767. doi: 10.1371/
journal.pntd.0006767

51. Ribeiro H, da Cunha Ramos H. Guia ilustrado para a identificac ̧ão dos mosquitoes
de Angola (Diptera: Culicidae). Lisboa: Sociedade Portuguesa de Entomologia (1995).

52. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the
Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg (1993)
49(4):520–9. doi: 10.4269/ajtmh.1993.49.520
frontiersin.org

https://doi.org/10.1146/annurev.en.41.010196.002203
https://doi.org/10.1093/jmedent/14.2.233
https://doi.org/10.1038/215662a0
https://doi.org/10.1186/s12936-014-0536-8
https://doi.org/10.1186/s12936-014-0536-8
https://doi.org/10.1603/0022-2585-38.1.12
https://doi.org/10.1186/s13071-021-04735-0
https://doi.org/10.1093/jmedent/28.3.307
https://doi.org/10.1371/journal.pbio.0040082
https://doi.org/10.1093/beheco/arm043
https://doi.org/10.1093/aesa/64.2.513
https://doi.org/10.2307/3278923
https://doi.org/10.1093/jmedent/22.4.370
https://doi.org/10.1093/jmedent/22.4.370
https://doi.org/10.1016/S0003-3472(72)80040-X
https://doi.org/10.1371/journal.pntd.0003048
https://doi.org/10.1371/journal.pntd.0003048
https://doi.org/10.4103/0974-777X.62873
https://doi.org/10.4103/0974-777X.62873
https://doi.org/10.1371/journal.pntd.0002702
https://doi.org/10.1017/S0007485300009834
https://doi.org/10.1603/0022-2585(2006)043[0225:leoaof]2.0.co;2
https://doi.org/10.1186/1475-2875-6-100
https://doi.org/10.1073/pnas.0906932106
https://doi.org/10.1073/pnas.0906932106
https://doi.org/10.1093/jmedent/30.3.518
https://doi.org/10.1590/s0034-89101996000200003
https://doi.org/10.1098/rspb.1998.0358
https://doi.org/10.1590/S0037-86822004000600003
https://doi.org/10.1186/1475-2875-1-17
https://doi.org/10.2307/219938
https://doi.org/10.1371/currents.outbreaks.19433b1e4d007451c691f138e1e67e8c
https://doi.org/10.1186/s13071-020-04356-z
https://doi.org/10.1186/s12936-020-03455-7
https://doi.org/10.1016/j.vetpar.2012.09.032
https://doi.org/10.1016/j.vetpar.2012.09.032
https://doi.org/10.1017/S0022149X16000067
https://doi.org/10.1111/j.1948-7134.2010.00087.x
https://doi.org/10.1016/s0035-9203(00)90211-6
https://doi.org/10.3414/ME9242
https://doi.org/10.1016/s0035-9203(00)90424-3
https://doi.org/10.1046/j.1365-3156.1999.00433.x
https://doi.org/10.1046/j.1365-3156.1999.00433.x
https://doi.org/10.1186/1756-3305-7-52
https://doi.org/10.4314/eamj.v79i9.9121
https://doi.org/10.1371/journal.pntd.0006767
https://doi.org/10.1371/journal.pntd.0006767
https://doi.org/10.4269/ajtmh.1993.49.520
https://doi.org/10.3389/fitd.2023.1070172
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org
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76. Arredondo-Jiménez JI, Rodrıǵuez MH, Washino RK. Gonotrophic cycle and
survivorship of Anopheles vestitipennis (Diptera: Culicidae) in two different ecological areas
of southern mexico. J Med Entomol (1998) 35(6):937–42. doi: 10.1093/jmedent/35.6.937
Frontiers in Tropical Diseases 09
77. Amerasinghe PH, Amerasinghe FP. Multiple host feeding in field populations of
Anopheles culicifacies and an. subpictus in Sri lanka. Med Vet Entomol (1999) 13(2):124–
31. doi: 10.1046/j.1365-2915.1999.00160.x

78. Ndenga BA, Mulaya NL, Musaki SK, Shiroko JN, Dongus S, Fillinger U. Malaria
vectors and their blood-meal sources in an area of high bed net ownership in the western
Kenya highlands. Malar J (2016) 15:76. doi: 10.1186/s12936-016-1115-y

79. Orsborne J, Furuya-Kanamori L, Jeffries CL, Kristan M, Mohammed AR, Afrane
YA, et al. Using the human blood index to investigate host biting plasticity: a systematic
review and meta-regression of the three major African malaria vectors.Malar J (2018) 17
(1):479. doi: 10.1186/s12936-018-2632-7

80. Bravo-Barriga D, Parreira R, Almeida AP, Calado M, Blanco-Ciudad J, Serrano-
Aguilera FJ, et al. Culex pipiens as a potential vector for transmission ofDirofilaria immitis
and other unclassified filarioidea in southwest spain. Vet Parasitol (2016) 223:173–80.
doi: 10.1016/j.vetpar.2016.04.030

81. Cancrini G, Scaramozzino P, Gabrielli S, Di Paolo M, Toma L, Romi R. Aedes
albopictus and Culex pipiens implicated as natural vectors of Dirofilaria repens in central
italy. J Med Entomol (2007) 44(6):1064–6. doi: 10.1603/0022-2585(2007)44[1064:aaacpi]
2.0.co;2

82. Ferreira CAC, de Pinho Mixão V, Novo MTLM, Calado MMP, Gonçalves LAP,
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