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Trichuris trichiura infection is
associated with changes in gut
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function among women of
reproductive age from
Pemba, Tanzania
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Large intestine-dwelling helminths affect microbiome composition. In sub-

Saharan Africa, where helminth infections are endemic, the use of

chemotherapeutic drugs is the primary strategy for controlling soil-transmitted

helminthiases (STHs). However, the emergence of anthelmintic resistance

necessitates the urgent exploration of alternative and complementary

treatments to achieve the World Health Organization’s goal of eliminating

STHs. One promising avenue involves the manipulation of gut microbiota in

at-risk populations. This study aimed to enhance the understanding of the

interplay between Trichuris trichiura and the gut microbiome. In this study, we

used the Mini-FLOTAC technique for parasitological analyses and a shotgun

metagenomic sequencing approach to investigate the effect of T. trichiura on the

gut microbiome by comparing infected and non-infected women of

reproductive age (WRA) from Pemba. Structural and functional analyses of the

gut microbiome revealed that T. trichiura infection shaped the host gut

microbiome in WRA. Some taxa vary according to infection status. Prevotella

genus was more abundant in healthy participants, whereas species such as

Weissella cibaria, Leuconostoc citreum (new emergent probiotics), and

Leuconostoc lactis (starter) decreased in infected individuals, suggesting the

use of potential probiotic treatments to mitigate dysbiosis induced by STHs.

Furthermore, the overall number of common fungi, irrespective of species, was

significantly higher in the mycobiome of Trichuris infected participants.

Functional analysis revealed significant differences in metabolic pathways (p <

0.05), with cholesterol metabolism and pathogenic infections being more

abundant in the infected samples than in the non-infected samples. In

conclusion, this study sheds light on the intricate interactions between
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helminth infections and the gut microbiome in the WRA, particularly in STH-

endemic regions. The identified associations between specific gut microbial

changes and T. trichiura infection may pave the way for innovative

complementary treatments to effectively combat STHs.
KEYWORDS

helminths, women of reproductive age, Trichuris trichiura, gut microbiome,
mycobiome, fungi
Introduction

Soil-transmitted helminth (STH) infections are among the most

common infections worldwide, with an estimated 1.5 billion infected

people, or 24% of the world’s population. The main species that infect

humans are roundworms (Ascaris lumbricoides), whipworms (T.

trichiura), and hookworms (Necator americanus and Ancylostoma

duodenale). According to the World Health Organization (WHO),

heavy infections can cause a variety of symptoms, including intestinal

manifestations (diarrhoea and abdominal pain), malnutrition,

general malaise and weakness, impaired growth, and physical

development. School-going children are most affected by STH

infections, resulting in poor school performance and impaired

cognitive function, among other detrimental effects (1). Recent

estimates indicate that > 880 million children require treatment for

these parasites. The population at risk in the African region according

to the World Health Organization is estimated to be 350 million

(www.who.int/health-topics/helminthiasis). Polyparasitism involving

STHs and Schistosoma blood flukes is common in low- and middle-

income countries. These helminths affect the gut environment and

may cause changes in the gut microbiome composition (2, 3).

Gastrointestinal pathogens can alter the host gut microbiome and

affect bacterial diversity and abundance, brain function, digestive

health, immune function, and development (4).

Studies on the human intestinal microbiota have been neglected

for several years (5), although they are at the interface between

ingested food and the gut epithelium. They are also in contact with

the first pool of immune cells and the second pool of neural cells in

the body. The gut microbiota is now gaining recognition as an

organ that plays a major role in health and disease (6). However, it

remains true that many structural analyses are limited on gut

bacteria ignoring other gut microbial members for which

important roles during health and disease have become

increasingly more appreciated (7). A pilot study revealed that

changes in gut microbial composition and structure occur in T.

trichiura infected individuals compared to uninfected individuals

(8). Regarding the relationship between Trichuris sp and the gut

microbiota, studies reveal that the hatching of some Trichuris eggs

is favoured in presence of specific bacteria such as Escherichia coli

and Lactobacillus reuteri (9). A recent study by Rosa et al. (2021)
02
showed significant positive associations for seven taxa, including

Escherichia, which has been shown to induce whipworm egg

hatching and Bacteroides, which has previously been identified as

a major component of the whipworm internal microbiome (10).

Another study revealed a relationship between success- and failure-

associated enterotypes. Using a survival analysis, this investigation

confirmed that patients presenting an enterotype rich in

Eubacterium coprostanoligenes and Ruminococcus torques before

the treatment are more likely to be more efficiently cured from the

T. trichiura infestation by using the albendazole and ivermectin-

based treatment than those presenting an enterotype rich in

Prevotella, Roseburia and Coprococcus, or rich in Faecalibacterium

and Escherichia/Shigella (11).

With the emergence of resistance to deworming drugs (12), it is

necessary to better understand the relationship between the gut

microbiota and helminths to optimise the fight against STH/

Trichuris infections. This study was conducted in an endemic area

of helminth infections. Results of a survey published in 2021 revealed

that the prevalence of STH was evaluated at 80% (95% CI 78.1–81.5)

and most of the STH cases were due to T. trichiura (13). In Unguja

and Pemba, the twomain islands that form the Zanzibar Archipelago,

STH infections were recognised as a major public health problem in

the early 1990s. In 1994, the Ministry of Health and Social Welfare of

Zanzibar, in collaboration with the WHO, established an action plan

for controlling STHs and urinary schistosomiasis (14).

Chemotherapy consisting of albendazole has yielded interesting

results by reducing the intensity of STH infections and morbidity.

However, the burden of STH infection remains a public health

challenge in Unguja and even more so in Pemba. Hence, it is

imperative to explore complementary strategies for their use in

conjunction with the administration of chemical drugs to combat

helminth infections. One promising avenue involves manipulation of

the gut microbiota of at-risk populations. This study aimed to

enhance our understanding of the interplay between T. trichiura

and the gut microbiome. This study aimed to investigate the effects of

T. trichiura on the gut microbiome of women of reproductive age

(WRA), where soil-transmitted helminths (STHs) are highly

prevalent. This study employed shotgun metagenomic sequencing

technology to compare the gut microbiomes of infected and

uninfected individuals.
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Material and methods

Ethic statement

The project was approved by the Zanzibar Health Research

Institute (ZAHRI; protocol number: ZAMREC/001/SEPT/018))

and written informed consent was obtained from all participants

enrolled in the study.
Study area and design

This pilot cross-sectional study was conducted as secondary

analysis of previously collected samples. Participants were

categorised into two groups each consisting of 5 individuals

classified as either positive or negative for T. trichiura infection (All

samples were coded as shown in Table 1). As previously reported (8),

women aged from 23 to 45 years were enrolled from sanitary centres

in Pemba Island (Tanzania) where helminth infection is endemic and

interviewed in Swahili with the help of nurses and personnel of the

Public Health Laboratory Ivo de Carneri (PHL-IdC). Each participant

completed a questionnaire (reported in 8), signed the informed

consent, and provided faecal samples. The inclusion criteria for all

the individuals were as follows: very similar origin of food and diet,

mainly consisting of banana fruit, cassava, rice, cassava leaves as

vegetable and dagaa fish, no HIV infection, no diarrhea, no fever, no

diabetes, no malaria, and no antibiotics or anthelmintic treatment in

the previous 3 months.
Parasitological analysis and selection
of participants

Parasitological analyses aimed at detecting helminth infections,

employed flotation techniques, and microscopic observations were
Frontiers in Tropical Diseases 03
independently conducted by two experts (8). The samples included

in this study were randomly chosen based on the criteria of absence

of co-infection with helminth species, non-pregnant, and having

not used any antiparasitic treatments including herbal medications.
DNA extraction, library construction and
shotgun sequencing

Genomic DNA was extracted from frozen faecal samples using

the NORGEN BIOTEK Stool DNA Isolation Kit, according to the

manufacturer’s instructions. DNA quality and quantity were

determined using a NanoDrop spectrophotometer and direct gel

electrophoresis, respectively. DNA integrity was confirmed by

analysing 300 ng of DNA by electrophoresis and visualisation

under ultraviolet (UV) light. The extracted DNA was stored at

-20°C. The purified DNA was sent to the SynBiotec laboratory

(spin-off of the University of Camerino) for shotgun sequencing,

which was carried out using the Illumina Miseq platform 2×150PE.

Prior to library construction, the DNA was quantified using a Qubit

4.0 Fluorometer. A DNA library was prepared according to the

Illumina DNA Prep Guide for Illumina paired-end-indexed

sequencing. The extracted DNA (150–500 ng) were used as the

library input. Bead-Linked Transposomes (BLT) were used to

fragment and tag DNA with adapter sequences. The adapter-

tagged DNA was washed with BLT before polymerase chain

reaction (PCR) amplification, using a limited-cycle PCR program

comprising five cycles. The amplified library was subjected to

double-sided bead purification. To confirm the size distribution,

the resulting libraries were validated using an Agilent Bioanalyzer

2100 (High-Sensitivity DNA kit). The library concentrations were

quantified using a Quibit 4.0 Fluorometer. The indexed DNA

libraries were normalised to 4 nM and combined into equal

volumes. The samples were then sequenced using an Illumina

Miseq, 2×150bp V2 paired end run. On average, each sample

yields 1,282,162.5 reads with an average read length of 146.825 bp.
Bioinformatics and statistical analyses

Bioinformatics and statistical analyses were performed using

the OmicsBox software (version 3.0.30). The step of cleaning from

contaminants such as the human DNA was performed. All read

data were cleaned of human and phiX DNA using the Bowtie2

tool. Next, kraken2 classifier, a taxonomic classification system

that allows high accuracy and fast classification (database version

2019.06), was used for taxonomic profiling. Paired-end reads were

selected as the type of input data, and a confidence filter was

enabled and set at 0.05. A Stacked bar chart was used to provide a

view for inter-sample comparison separated at the main

taxonomic level. The average operational taxonomic units

(OTUs) were ordered by abundance from high to low. Only the

500 largest OTUs are shown for each sample; the remaining were

grouped into an extra group called others. OTUs groups were

also studied by analysing Krona pie charts using the same
TABLE 1 Characteristics of the selected samples in relation to Trichuris
infection status and detected number of eggs/g.

No Sample
code

Age
(Years)

Infectious
status

Number of
eggs/g

1 M 06 25 Infected 22

2 M 07 33 Non infected 0.00

3 M 09 38 Infected 450

4 M 11 28 Infected 20

5 M 22 35 Non infected 0.00

6 M 30 26 Infected 150

7 M 61 30 Infected 70

8 M 67 45 Non infected 0.00

9 MS 10 30 Non infected 0.00

10 MS 11 32 Non infected 0.00
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software. A rarefaction curve was generated to determine whether

the sequencing coverage was sufficiently deep to obtain an

accurate estimate of the total number of OTUs present in a

specific sample. A Diversity Curve was generated and used to

evaluate the benefits of microbial diversity, including additional

samples, in the dataset. Principal Coordinate Analysis (PCoA

plot), a two-dimensional plot reporting the Bray-Curtis

distances between samples, was generated to perceive the

distance between samples according to Trichuris infection

status. Differential Abundance Analysis of Taxa was performed

by dividing samples into two groups and comparing features using

the edgeR module of OmicsBox. Non-infected samples were

assigned to the reference group and compared with infected

samples set as the contrast group. A false discovery rate (FDR)

<0.05 was considered significant. For each sample, a genome

assembly was generated using the assembly pipelines of meta-

SPAdes, based on the de Bruijn graph included in OmicsBox, and

setting the K-mer sizes as automated. In the following step, gene

prediction was performed for each assembly using the application

FragGeneScan, also available in OmicsBox, which is capable of

predicting intact and incomplete ORFs in short sequencing reads.

For functional investigation, Clusters of Orthologous Genes

(COG) and protein family (Pfam) databases were used for

metabolic pathway analysis and gene annotation. The contrast-

infected group was compared with the reference uninfected group

to determine the differences in terms of over- or under-

represented metabolic pathways. Statistical significance was set

at P < 0.05. T test analysis and plotting were performed using

GraphPad Prism (version 9.5.1).
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Results

Sample diversity according to the Trichuris
infection status

Principal coordinate analysis (PCoA) mapping was performed to

better understand the relationships between the participants’ gut

microbiota and to identify similarities and differences. PCoA

facilitated the visualisation of clusters based on the infection status,

as highlighted in Figure 1. In addition, PCoA allowed the

identification of subclusters emerging in response to parasitic loads.

Notably, subjects M06 andM11, with similar loads (22 and 20 eggs/g,

respectively), showed a close relationship, implying greater

similarities in their gut microbiota composition. In addition,

subjects M61 and M30, who carried slightly elevated parasitic loads

(70 and 150 eggs/g, respectively), formed another subcluster.

Intriguingly, subject M09, bearing the heaviest load (450 eggs/g),

appeared to be isolated, although closer to the group of non-infected

subjects. This suggests a different impact of the worm on the gut

microbiota depending on the infection load. Samples from non-

infected individuals showedmore cohesive clustering than those from

infected individuals. This suggests that the gut microbiota of the non-

infected samples shared greater similarity.
Taxonomic profiling

Shotgun metagenomic sequencing of ten selected samples

yielded a total number of 12,652,028 reads. On average, each
FIGURE 1

Class PCoA plot showing different clusters between non-infected and infected samples. Non-infected samples M07, M67, M22, MS10, MS11 are
indicated by blue color circle and infected samples M06, M09, M11, M30, M61 by red color circle.
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sample contained 1,265,203 reads, with an overall average read

length of 146.87. Distribution of the top 10 hits revealed that

bacteria accounted for more than 90 percent of each sample,

followed by eukaryotes, archaea, and viruses. The microbiome

composition, visualised up to the species level in each sample

using Krona charts, remained unclassified in approximately 50%

of the reads. This indicates that a considerable number of sequenced

genes remained unannotated. This phenomenon is well known and

can be attributed to different reasons, such as limitations in the

databases with respect to the high microbial biodiversity of the gut,

specifically for eukaryotic microbes that may not have matches in

the existing databases. This can also be attributed to the software’s

limitations in accommodating (annotating) genes and taxa with a

limited presence, which cannot be easily interpreted by sequencing

with short read lengths.

In addition, an intriguing observation emerged: the percentage

of classified reads was relatively higher in non-infected samples

than in infected samples (see Supplementary Material, Table l:

Percentage of classification). The rarefaction curve provided

evidence that the richness was adequate in the sequenced samples

(Supplementary Material, Figure 1). The diversity curve used to

assess and compare the diversity across populations confirmed that

the number of samples was sufficient to obtain the expected

diversity (Supplementary Material, Figure 2).
Taxonomic composition at the
phylum level

Taxonomic analysis revealed that, at the phylum level (Figure 2),

the community was dominated by Firmicutes (also named Bacillota),

Bacteroidetes, Proteobacteria, and Actinobacteria. Notably, the

Firmicutes/Bacteroidetes ratio (as shown in Figure 3A), a widely

used indicator for assessing the state of intestinal microbiota health,

was significantly low in subjects without T. trichiura infection. In

infected samples, a higher relative abundance of Firmicutes was

observed than in noninfected samples, whereas noninfected

samples showed a higher relative abundance of the phylum
Frontiers in Tropical Diseases 05
Bacteroidetes, except for sample M09. Proteobacteria, known to

include more pathogenic species, displayed a higher relative

abundance in Trichuris infected samples (Figure 3B).
Taxonomic composition at the genus level

Analysis of the community composition at the genus level

unveiled Prevotella as the most abundant genus, followed by

Faecalibacterium, Bacteroides and Roseburia (Figure 4). The ratio of

Prevotella/Bacteroides (Figure 3C), both members of the phylum

Bacteroidetes, was only slightly higher in Trichuris infected samples.

The abundance of these two bacterial genera is driven by distinct

dietary preferences and contributes to the classification of different

enterotypes. Furthermore, this analysis also revealed that some

bacteria responsible of short chain fatty acids (SCFAs) production,

including Prevotella, Prevotella 9, and Ruminococcus showed a lower

relative abundance in infected samples in comparison to healthy

samples (as illustrated in Figure 4 for samples MS10, MS11, M07,

M22, and M67). In contrast, Faecalibacterium was significantly more

prevalent in infected samples than in non-infected samples.
Analysis of the differential abundance of
taxonomy at the species level

Species level analysis revealed that Prevotella copri, Simiaoa sunii

and Faecalibacterium prausnitzii were the predominant species

(Figure 5). These were followed by other species, including

Ruminococcus torques, Ruminococcus SP.JE7A12, Roseburia

intestinalis, Lachnospira eligens, and Treponema succinifaciens.

The differential taxonomic abundance analyses conducted at

the species level yielded distinct taxonomic compositions based on

the Trichuris infection status in the WRA. Species such asWeissella

cibaria, Weissella paramesenteroides and Leuconostoc citreum

(emerging probiotics) and Leuconostoc lactis (used as a starter in

fermentation) were underrepresented in infected samples compared

with healthy samples. Species of Bacteroides genus, such as B.
FIGURE 2

Taxa bar chart analysed at the phylum level. Non-infected samples M07, M67, M22, MS10, MS11 are indicated by blue color rectangle and infected
samples M06, M09, M11, M30, M61 by red color rectangle.
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stercoris and B. fragilis were also underrepresented in the same

group. Conversely, other species displayed contrasting patterns,

such as Butyrivibrio crossotus, Bifidobacterium bifidum,

Ligalactobacillus salivaris, and Methanobrevibacter woesei that

were more abundant in T. trichiura infected subjects when

compared to healthy individuals. (Figure 6). Potentially

pathogenic species, such as Treponema succinifaciens and

Streptococcus gallolyticus, the latter being the main causative

agents of septicaemia and infective endocarditis in elderly and

immunocompromised individuals, and strongly associated with

colorectal cancer (15), were notably present in infected samples.
Functional analysis of the shotgun
sequencing data: differential abundance
analysis of metabolic pathways and
protein families

The differential abundance analysis of metabolic pathways

(Table 2) using COG and Pfam databases showed significant

over-representation and no under-represented pathways in
Frontiers in Tropical Diseases 06
Trichuris infected compared to non-infected women (P < 0.05).

Additionally, eight COG metabolic pathways were significantly

overrepresented. These pathways include Human T-cell

leukaemia virus 1 infection, cholesterol metabolism, and

pathogenic E. coli infection. This finding indicates that Trichuris

infection not only influences the composition of the gut

microbiome, as highlighted by structural analysis, but also has a

discernible impact on its functional pathways. The effect of

Trichuris infection on the function of the gut microbiome was

further confirmed by differential analysis of protein families. This

analysis revealed several protein families that were either over-

represented or under-represented based on the Trichuris infection

status of the participants (Table 3). Notably, most of these proteins

remain functionally uncharacterized, except for the endothelial cell-

specific chemotaxis regulator ATP synthase subunit C, Restriction

endonuclease, and putative tight adherence pilin protein family,

which are overrepresented in infected WRA. In contrast, certain

protein families were less abundant in infected samples. They are

nodavirus V-methyltransferase, four C-terminal TMM regions of

protein-O-mannosyltransferase, and the GldH Lipoprotein families

(as detailed in Table 3).
FIGURE 4

Taxa bar chart analysed at the genus level. Infected and non-infected samples are indicated by red and blue columns, respectively.
A B C

FIGURE 3

Analysis of markers of the healthy condition of the gut microbiota. (A) Firmicutes/Bacteroidetes ratio in Trichuris-negative vs Trichuris-positive
samples (unpaired t. test, P = 0.0009); (B) relatively higher abundance of Proteobacteria in Trichuris-positive samples (P = 0.1099); (C) the
Prevotella/Bacteroides ratio is higher in infected samples (P = 0.6979). *** stands for a P value ≤ 0.001 and ns stands for P value ≥ 0.05.
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FIGURE 6

Heat map of relative abundances of species. The bar at the top indicates the infected (in red) and non-infected (in blue) samples. Numbers indicate
the differential abundances between the two groups.
FIGURE 5

Taxa bar chart at the species level. Infected and non-infected samples are indicated by red and blue columns, respectively.
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Mycobiome analysis of most common
fungal species

To further investigate the microbiome composition and

influence of Trichuris infection, we conducted an analysis of the

mycobiome, with specific attention directed toward common gut

fungi, including Candida spp, Aspergillus spp., Saccharomyces spp,

and Malassezia (Figure 7B). Candida albicans was the dominant

species (Figure 7B). The cumulative fungal content, irrespective of

species, displayed a higher abundance in the mycobiome of

Trichuris non-infected individuals (see Figure 7A). Although we

did not observe beneficial Saccharomyces boulardii, known for its

positive effects on human health, our findings showed distinct

trends. Candida albicans, Candida dublinensis and Aspergillus

fumigatus were more abundant in T. trichiura infected samples

than in non-infected samples (Figure 7B). Conversely,

Saccharomyces cerevisiae, Saccharomyces paradoxus were more

abundant in healthy individuals (Figure 7B). No significant

differences were observed between groups.
Discussion

This study highlights the distinct nature of gut microbiota

composition according to T. trichiura infection status. Principal

coordinate analysis revealed the subdivision of the samples into two

distinct clusters: infected and non-infected. In particular, samples

within the latter cluster had a tighter grouping than the Trichuris

infected samples, implying a higher degree of similarity in their gut

microbiota composition. This is in agreement with a previous study,

in which significant differences in both alpha and beta diversities

were found between helminth-positive and-negative groups (8).

Another study demonstrated microbial shifts associated with

helminthiases in endemic regions of Thailand, manifested in both

faecal and saliva microbiota (16). Another study also explored the

interplay between Trichuris and gut microbiota, showing

interconnections (17). Furthermore, the exploration of potential

interactions between Trichuris and the gut microbiota revealed that

embryonated eggs incubated with gut explants containing caecal
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bacteria or bacterial cultures of E. coli and/or Staphylococcus aureus,

provided the microbial cues necessary for successful worm larval

hatching at the onset of infection. Moreover, investigations on

antibiotic treatment prior to T. muris infection showed a

significant reduction in the gut microbiota, with a consequent

decrease in hatching rates. This provides evidence of a symbiotic

relationship between Trichuris and the gut microbiota, which is

crucial for initiating infection (18).

The Firmicutes/Bacteroidetes ratio observed in this study is

higher in the microbiota of infected participants in contrast to a

lower ratio in individual not affected by the parasite. This ratio has

attracted attention as a marker for assessing the health status of gut

microbiota and has been extensively investigated in relation to

obesity and gut inflammation. Alterations in the dominant phyla

Firmicutes and Bacteroidetes depletion have been described in

obese animals (19). A calorie-restricted diet for 1 year has shown

an increase in Bacteroidetes abundance and the restoration of the

Firmicutes/Bacteroidetes ratio (20). For patients with irritable

bowel syndrome (IBS), an increased Firmicutes/Bacteroidetes
TABLE 3 Differential abundance analysis of pfam families.

Overrepresented
features

Underrepresented features

Feature Description Feature Description

PF15820 Endothelial cell-
specific
chemotaxis
regulator

PF20089 Family of unknown
function (DUF6481)

PF00137 ATP synthase
subunit C

PF19222 Nodavirus
Vmethyltransferase

PF14018 Domain unknown
function
(DUF4234)

PF17320 Family of unknown
function (DUF5363)

PF04471 Restriction
endonuclease

PF16192 C-terminal four TMM
rerion of protein-
O-mannosytransferase

PF16964 Putative tight
adherence pilin
protein F

PF15889 Domain of unknown
function (DUF4738)

PF11026 Protein of
unknown
function
(DUF2721)

PF14109 GldH Lipoprotein

PF19992 Family of unknown
function
(DUF6427)

PF13642 Protein structure with
unknown function

PF19700 Family of unknow
function
(DUF6198)

PF11554 Protein of unknown
function (DUF3232)

PF17461 Family of unknown
function
(DUF5423)

PF1434 Chemotaxis-inhibiting
protein CHIPS

PF14017 Protein of
unknown
function
(DUF4233)

PF11369 Protein of unknown
function (DUF3160)
The top ten differentially abundant features are reported (FDR < 0.05).
TABLE 2 Differential abundance analysis of metabolic pathways (COG).

Feature Description (overrepresented)

map04742 Taste transduction

map04723 Retrograde endocannabinoid signalling

map04080 Neuroactive ligand-receptor interaction

map04979 Cholesterol metabolism

map04075 Plant hormone signal transduction

map05166 Human T-cell leukaemia virus 1 infection

map05130 Pathogenic Escherichia coli infection

map04392 Hippo signalling pathway-multiple species
Top ten differentially abundant features (Overrepresented), P-value < 0.05. No
underrepresented features were detected.
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ratio has been reported (21). The divergence in the Firmicutes/

Bacteroidetes ratio between Trichuris-infected and non-infected

individuals holds potential significance. This finding suggests that

modulation of the gut microbiota of infected individuals through

dietary interventions can potentially reduce this ratio, promoting

the development of a resilient and healthy gut microbiota.

Comparative analysis at the genus level revealed that some SCFA-

producing bacteria, Prevotella, Prevotella 9, and Ruminococcus, were

relatively decreased in infected individuals and were overrepreseted in

healthy subjects. Moreover, the Prevotella/Bacteroides ratio was higher

in healthy samples and lower in Trichuris infected samples, which is in

agreement with previous research on the same population (8) and

another study on the Bantu population in Central Africa (22), where

Prevotella was found to be the most representative genus in the gut

microbiome. Prevotella and Bacteroides are members of the phylum

Bacteroidetes and are known to be driven by different types of diets. A

diet rich in carbohydrates is associated with an elevated representation

of Prevotella, whereas a diet rich in protein and animal fat is associated

with an elevated proportion of Bacteroides (23). Schneeberger et al.

(2022) reported that knowing the pretreatment enterotype or gut

microbiota composition can be predictive of anthelminthic treatment

outcomes (11). In that study, a Prevotella rich enterotype was

associated with a lower efficiency of the albendazole-ivermectin

treatment. In a context where helminth infection is endemic and the

effect of treatments is limited owing to drug efficacy issues (24), the

Prevotella/Bacteroides ratio could be better investigated with the

objective of modulating the gut microbiota to facilitate drug efficacy.

Thus, it is possible to investigate the effects on drug treatment by

different Prevotella species. In this study, Prevotella copri appeared to be

the dominant species in both infected and non-infected samples.

Differential abundance analysis also revealed that some species

known as emergent probiotics, such as Weissella cibaria,

Leuconostoc citreum and Leuconostoc lactis, were significantly

underrepresented in infected samples and overrepresented in

healthy samples. Bacteria belonging to the genus Weissella may be

important in controlling foodborne diseases through the

production of bacteriocins and hydrogen peroxide. This genus

has a great potential for use in the food industry (25).
Frontiers in Tropical Diseases 09
Functional analysis of the metagenomic data showed significant

differences in metabolic pathways (P-value < 0.05), such as cholesterol

metabolism, pathogenic E. coli infection, and human T-cell leukaemia

virus 1 infection, which were overrepresented in the infected samples.

An association between gut microbiota and cholesterol metabolism

has been reported in the literature. However, there is little evidence on

how and which bacteria are involved in this metabolism. Some

researchers have reported coprostanol-forming bacteria such as

Eubacterium coprostanoligenes, Bacteroides dorei, Lactobacillus sp.,

and Bifidobacterium spp (26–29). According to Lawson et al. (17),

helminths require bacteria to hatch eggs. The absence of microbiota

(germ-free mice) prevents Trichuris hatching and infection, whereas

the presence of highly diverse microbiota enhances host susceptibility

to infection. Further investigation is required to understand how

bacterial metabolism affects Trichuris infections. Differential analysis

of the protein families revealed significant differences. This confirms

that Trichuris infection not only modulates the composition, but also

the function of the gut microbiome.

Mycobiome analysis revealed that Candida albicans was the

dominant species in the population. This agrees with a previous

study in which Candida spp were the dominant fungal species in the

human gut (30). However, Hoffman et al. (31) found Saccharomyces

to be the most prevalent genus, followed by Candida and

Cladosporium. On the other hand, the discrepancy regarding the

abundances of Candida and Saccharomyces might be simply

explained by the fact that fungi are poor gut colonizers, but

transient in the gut that rapidly changes according to the diet

(31). In a non-human primate study, Barelli et al. (32) found that in

red colobus monkeys and yellow baboons, Trichuris infection was

associated to different gut fungal compositions. These findings

suggest that greater attention should be given to gut fungi.

To the best of our knowledge, this is the first human gut

microbiome analysis, including functional investigations, in the

Zanzibar population, an area with a high prevalence of STH

infection. The differences in the Firmicutes/Bacteroidetes and the

Prevotella/Bacteroides ratios suggest that the modulation of the gut

microbiota with diet and/or probiotics could be used as

complementary approach to fight against helminths infections in
A B

FIGURE 7

Selective mycobiome analyses. (A) Relative increase of the total fungal species in negative samples (unpaired t test P = 0.4875); (B) Heatmap
showing variation of selected common gut fungal species in positive and negative samples; positive and negative refer to T. trichiura-infected and
non-infected samples, respectively. ns stands for P value ≥ 0.05.
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Pemba. This approach may also produce a higher efficacy for

deworming drug administration.

Although shotgun metagenomic sequencing generates a large

amount of data, we must acknowledge that this approach has

limitations, such as the missed characterisation of approximately

50% of genomic sequences that remain unannotated, and that they

may include viruses and protozoan parasites, for which the

contribution to the gut microbiome is less studied and less

present in databases.
Conclusion

The purpose of this study was to assess the influence of Trichuris

infection on the composition and function of the microbiome in

women of reproductive age using a shotgun metagenomic

sequencing approach. Our results confirmed that T. trichiura

infection significantly shapes the gut microbiome structure and

function in WRA. Notably, we identified markers of the gut

microbiome health that were changed in infected participants. These

indicators can be used as targets for the modulation of gut microbiota

in this population. Some taxa known for beneficial characteristics and

less abundant in infected participants require further attention in order

to see if they can be used as probiotics in prevention or therapeutic

support against helminth infection. Therefore, a well-elaborated and

sustainable diet with the aim of modulating the gut microbiome and

favouring the development of beneficial species can be used as a

preventive and complementary approach against T. trichiura

infection in Pemba and potentially in other areas where this

infection is endemic. Since this was a pilot cross-sectional study with

a relatively small sample size, a larger cohort investigation with the

same population is needed to better understand the results found so far.
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