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Introduction: Zika virus (ZIKV) infection has been associated to Guillain-Barré

syndrome in adults and congenital malformations during pregnancy, leading to

the manifestation of congenital Zika syndrome (CZS). The ZIKV envelope protein

(EZIKV), prominently displayed on the virus surface, is a primary target for the

humoral immune response. However, limited information exists regarding its

capacity to induce cellular immunity, particularly in pregnant women with a

history of ZIKV infection. The EZIKV protein comprises three domains: the central

domain (EDI), a dimerization domain (EDII), and a domain responsible for binding

to the cell surface receptor (EDIII). To examine the regions of EZIKV targeted by

cellular immunity, we examined cellular immune responses in a cohort of

mothers infected with ZIKV, whose infants exhibited microcephaly.

Methods: To assess the ZIKV-specific response, we used inactivated virus and

different recombinant viral envelope proteins (EZIKV, EDI/IIZIKV and EDIIIZIKV). All

women in the study contracted the infection during pregnancy, with 72%

experiencing symptoms such as fever, rash, joint pain, and retro-orbital pain.

Peripheral blood mononuclear cells (PMBC) were collected post- ZIKV diagnosis

confirmation, with a median time of 18 months (IQR 13.5-19) after parturition.

Using the ELISpot assay, we quantified specific interferon-gamma (IFNg)
producing cells by stimulating PBMC with either inactivated ZIKV particles or

equimolar amounts of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV.

Results and discussion:Our findings demonstrate the induction of IFN-g producing
cells in PBMC from ZIKV-convalescent mothers, whose infants manifested
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microcephaly, upon stimulation with both inactivated ZIKV particles and

recombinant proteins. The identification of immunodominant regions within ZIKV

can contribute for the development of targeted treatments and vaccine candidates

tailored for pregnant women.
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Introduction

Zika virus (ZIKV), a mosquito-borne flavivirus closely related to

yellow fever, dengue, and West Nile viruses (1) has undergone rapid

global dissemination since 2015, with over 80 countries reporting local

transmission (2). While primarily transmitted by Aedes mosquitos,

non-vector transmission can also occur including sexual contact,

transfusion, and vertical transmission from mother to child (3, 4).

Most ZIKV infections are asymptomatic, with a minority

causing self-limited acute febrile illnesses characterized by fever,

headache, arthralgia, myalgia, fatigue, and rash (5). However, in

adults, ZIKV infection has been sporadically associated with

Guillain-Barré syndrome (GBS) (6, 7). In pregnant women, the

virus can persist for weeks in the reproductive tract (8, 9), and fetal

infection has been associated with congenital malformations such as

brain calcification, microcephaly, and spontaneous abortion,

defining the Congenital Zika Syndrome (CZS) (10–12).

Studies suggest that approximately 20% of infants born to

mothers exposed to Zika virus during pregnancy, who initially

exhibited no signs of birth defects, later displayed impaired

cognitive development and other neurological abnormalities (13, 14).

The rapid global spread of ZIKV and its association with

neurological complications highlight the urgent need for an

effective vaccine and specific treatment. Despite scientific efforts,

no licensed therapeutic or prophylactic vaccines against ZIKV have

been developed until now (15).

The ZIKV genome is a single-stranded positive-sense RNA

(ssRNA) that encodes a polyprotein, subsequently cleaved into three

structural proteins (Capsid (C), Premembrane/Membrane (prM/M)

and Envelope (E)) and seven non-structural proteins (NS1, NS2A,

NS2B, NS3, NS4A, NS4B, and NS5), vital for virus replication and

assembly (16, 17). The Envelope (E) protein orchestrates viral assembly,

binds to cell receptors, and is essential for the subsequent fusion of the

membrane involved in virus entry into the target cell (18). Similar to

other flaviviruses, the ZIKV E protein comprises three distinct domains:

the central domain (EDI), the fusion peptide-containing dimerization

domain (EDII), and the cell surface receptor-binding (EDIII) (19).

Several studies have demonstrated the highly antigenic

structure of the E protein, serving as the primary target for host

antibody responses, including several neutralizing antibodies (20,
02
21). While the humoral response is fundamental in protection

against ZIKV infection, the involvement of CD4+ and CD8+ T

cell responses is essential for complete virus elimination. Despite

various animal studies highlighting the importance of CD4+ and

CD8+ T cell responses against ZIKV (22–27), limited and

conflicting data exist regarding the preferred target regions for

human-specific cellular immune response to ZIKV (28, 29).

Furthermore, despite ZIKV’s unique impact on fetal health, few

studies have investigated the immune response of pregnant women.

A recent longitudinal study with 10 non-pregnant women with

acute ZIKV infection revealed that CD8+ T cell responses are

directed more towards non-structural antigens, while CD4+ T cell

responses are more balanced between structural and non-structural

antigens (30). Similarly, ZIKV-specific CD4+ memory T cell

responses were observed in mothers infected with ZIKV during

pregnancy, with no discernible differences in T cell responses

between children affected or unaffected by CZS (31).

In this study, we investigated whether ZIKV inactivated

particles and different ZIKV-envelope proteins induce cellular-

mediated immunity after ZIKV infection in cells from

convalescent mothers of newborns with microcephaly in vitro.
Materials and methods

Participants

A dual-center study was conducted at the Hospital Universitário

da Universidade Federal de Sergipe and Universidade Federal de São

Paulo. Cryopreserved peripheral blood mononuclear cells (PBMC)

from 32 ZIKV-infected women, who delivered babies with

microcephaly, were used. Participant characteristics are detailed in

Table 1. PBMCs were collected post ZIKV-positive diagnosis via

ELISA (IgG Euroimunn) approximately 18 months (IQR 13.5-19)

after parturition. Additionally, 10 healthy ZIKV-seronegative

participants were recruited at Universidade Federal de São Paulo

and utilized as controls. All participants provided written

informed consent, and the study received approval from the

local ethics committee (CAAE: 54835916.2.0000.5546 and

CAAE: 80487717.7.0000.5505).
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Sample collection

PBMC were isolated from participant blood using Ficoll-Paque

(GE Healthcare) density-gradient sedimentation. Subsequently,

PBMC were washed twice in Hank’s balanced salt solution

(Gibco) and cryopreserved in 90% fetal bovine serum (FBS;

Gibco) and 10% dimethyl sulfoxide (DMSO; Sigma).

Cryopreserved cells were stored in liquid nitrogen until use.
Inactivated Zika virus particles

ZIKV-Br (GenBank accession number MH882531.1) was

provided by Dr. Danielle Bruna Leal de Oliveira (Laboratório de

Virologia Clıńica e Molecular, University of São Paulo, Brazil).

Virus propagation was performed using Aedes albopictus mosquito

cells (clone C6/36), as previously described (32). The virus was

precipitated with 50% polyethylene glycol (Synth), resuspended in

DMEM (Gibco) plus 25 mM HEPES (Gibco), and stored at -80°C

until use. For inactivation, we exposed virus preparations to UV

light for up to 60 minutes (33).
Expression and purification of recombinant
EZIKV protein and its ectodomains EDI/IIZIKV
and EDIIIZIKV

The E. coli BL21 (DE3) RIL strain, harboring the plasmids

pET21a-E, pET21a-EDI/II and pET21a-EDIII (34, 35), were

cultivated in LB medium containing 100 µg/mL ampicillin exactly

as described by Lunardelli et al., 2022. After induction with 0.01mM

Isopropyl b-D-thiogalactoside (IPTG, Sigma), bacterial pellets were

suspended and lysed in the APLAB-10 homogenizer (ARTEPEÇAS,

Brazil). The inclusion bodies were solubilized in a urea-containing

solution, and the recombinant protein was refolded and purified

using nickel affinity chromatography with a HisPur™ Ni-NTA

Superflow Agarose column (Thermo Scientific™), as recommended

by the manufacturer. Purified EZIKV, EDI/IIZIKV and EDIIIZIKV
were assessed by 15% SDS-PAGE gel under reducing conditions.
TABLE 1 Cohort of participants exposed to Zika virus during pregnancy
that gave birth to babies affected by microcephaly.

ID
Age
(years)

Period of
pregnancy
which
symptoms
occur

Symptoms

001 20 not specified not specified

004 36 not specified Skin rash

005 29 first and second
trimester
of pregnancy Fever, skin rash

006 28
not specified

Arthralgia, skin rash, myalgia, retro-
orbital pain

009 26 not specified not specified

012 30
second trimester
of pregnancy

Fever, arthralgia, skin rash, retro-
orbital pain, myalgia

013 41 not specified

Fever, arthralgia, skin rash,
conjunctivitis, retro-orbital
pain, myalgia

015 40
first trimester
of pregnancy

Fever, arthralgia, skin rash,
conjunctivitis, retro-orbital pain,
myalgia, lymphadenopathy

019 24 not specified not specified

021 26 not specified Skin rash

025 17 not specified not specified

026 21 not specified not specified

031 17 not specified Skin rash

033 28 not specified Fever, arthralgia, myalgia, skin rash

035 37 not specified Fever

037 19 not specified Fever, arthralgia, myalgia, skin rash

038 25
eighth month
of pregnancy

Fever, arthralgia, skin rash, myalgia,
retro-orbital pain

040 19 not specified Fever, rash skin

041 27 not specified not specified

044 15 not specified Fever, skin rash

047 23 not specified
arthralgia, myalgia, skin rash, retro-
orbital pain

048 19 not specified not specified

051 17 not specified not specified

053 38
third month
of pregnancy

Fever, arthralgia, skin rash, myalgia,
retro-orbital pain

054 40
third trimester
of pregnancy Skin rash, myalgia

055 20
third month
of pregnancy Arthralgia, skin rash, retro-orbital pain

056 28
second month
of pregnancy

Arthralgia, skin rash, retro-orbital
pain, myalgia

057 19 not specified Fever

(Continued)
TABLE 1 Continued

ID
Age
(years)

Period of
pregnancy
which
symptoms
occur

Symptoms

060 N/S
sixth month
of pregnancy Skin rash

062 21
first month
of pregnancy Arthralgia, skin rash, retro-orbital pain

067 29
second month
of pregnancy

Fever, arthralgia, skin rash, retro-
orbital pain

068 19 not specified not specified
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Dot blot

Approximately 10 mL containing 2x105 PFU of inactivated

ZIKV or 10 mL containing 3 mg of BSA (negative control) were

added to nitrocellulose membranes (Hybond-C extra nitrocellulose

– GE Healthcare). After drying, the membranes were blocked with

PBS Tween 20 (PBST) (0.02% v/v), non-fat milk (5% w/v) and BSA

(2.5% w/v) or PBS BSA (5% w/v, for human sample), for 2 h at

room temperature (rt). Next, the membranes were washed three

times with PBST (0,05% v/v) and incubated with monoclonal pan-

flavivirus antibody 4G2 (1 mg/mL) or human serum (ZIKV-infected

patient or healthy individual, 1:500) for 2 h at rt. After 3 washes

with PBST (0.05% v/v) the membranes were incubated with

horseradish peroxidase-labeled goat anti-mouse IgG (1:5000;

KPL) or alkaline phosphatase AffinePure goat anti-human IgG

(1:2000; Jackson ImmunoResearch) for 1 h. After 3 washes with

PBST, the reaction was developed with a chemiluminescence

detection system ECL (GE Healthcare) or NBT/BCIP (Thermo

Fisher Scientific) according to manufacturer’s instructions and

analyzed by Alliance 4.7 software (Uvitec; Cambridge).
Western blot

Approximately 1 mg of recombinant EZIKV, EDI/IIZIKV or

EDIIIZIKV proteins were subjected to SDS-PAGE gel electrophoresis

under reducing conditions and transferred to nitrocellulose

membranes (Hybond-C extra nitrocellulose – GE Healthcare). Next,

the membrane was blocked with PBS BSA (5% w/v), overnight at 4°C.

The membrane was washed three times with PBST (0,05% v/v) and

incubated human serum (ZIKV-infected patient, 1:500) for 2 h. After

3 washes with PBST (0.05% v/v) the membrane was incubated with

alkaline phosphatase AffinePure goat anti-human IgG (1:2000;

Jackson ImmunoResearch) for 1 h. After 3 washes with PBST, the

reaction was developed with NBT/BCIP (Thermo Fisher Scientific)

according to manufacturer’s instructions and analyzed by Alliance 4.7

software (Uvitec; Cambridge).
Detection of IFN-g producing cells
by ELISPOT

The ELISPOT assay was performed using human IFN-g ELISPOT
Ready-SET-Go! (eBiosciences) according to manufacturer’s

instructions. At the time of the assay, PBMC were rapidly thawed in

a 37°C water bath, washed and transferred to tubes containing R10

(RPMI supplemented with 10% of fetal bovine serum, 2 mM l-

glutamine, 1% v/v vitamin solution, 1 mM sodium pyruvate, 1% v/v

non-essential amino acids solution, 40 mg/mL of gentamicin, 2-

mercaptoethanol (all from Gibco), 20 mg/mL of Ciprofloxacin

(Ciprobacter, Isofarma) and 30 U/mL of recombinant IL-2 (Zodiac)

and incubated in a 5% CO2 chamber at 37°C for 20 hours. After this

period, cells were counted, checked for viability by Trypan blue dye

exclusion (only samples with 80% or more viable cells were used) and

resuspended (concentration 2x106 cells/mL; 100 ml/well – 2x105 cells/
Frontiers in Tropical Diseases 04
well) in R10. Then the cells were stimulated with inactivated ZIKV

particles (1x105 PFU/well), equimolar amounts of recombinant EZIKV
(10 mg/mL) protein and its ectodomains EDI/IIZIKV (7.78 mg/mL) and

EDIIIZIKV (2.44 mg/mL), medium alone as negative control or phorbol

12-myristate 13-acetate (PMA) and ionomycin (50 ng/mL and 1 mg/
mL, respectively) as positive control. Spots were counted using an AID

ELISPOT Reader System (Autoimmun Diagnostika GmbH,

Germany). The number of IFN-g producing cells/106 PBMC was

calculated after subtracting the negative control values and the cutoff

was 22 spots for inactivated ZIKV and 64; 65; 96 spots per million cells

for EZIKV, EDI/IIZIKV and EDIIIZIKV, respectively.
Data analysis

Statistical significance (p-values) was calculated by Kruskal-

Wallis followed by Dunn’s post hoc test for multiple comparisons

(ZIKV vs EZIKV and ectodomains) or Mann-Whitney test. Statistical

analysis and graphical representation were conducted using

GraphPad Prism version 9.0 software.
Results

Characteristics of convalescent samples

All 32 mothers delivered babies with microcephaly attributed to

ZIKV infection. The majority (21/32 or 65.62%) were unable to specify

the exact onset of ZIKV-related symptoms. Seven (21.87%) participants

reported symptom initiation during the first trimester of pregnancy,

and the remaining (4/32 or 12.5%) during the second or third

trimester. Seventy-two percent (72%) of the participants presented

one or more symptoms, including fever (18.3%), rash (29.5%),

arthralgia (16.9%), conjunctivitis (2.8%), retro-orbital pain (15.4%),

myalgia (15.49%) and lymphadenopathy (1.4%) (Figure 1A). Blood

samples were collected post ZIKV diagnosis confirmation, with a

median time of 18 months (IQR 13.5-19) after delivery. Serum

samples were tested for IgG detection for both ZIKV and DENV

infection, following the Brazilian Ministry of Health recommendations.

All participants tested positive for ZIKV and DENV, with significantly

higher reactivity against ZIKV (Figure 1B).
Antigenicity of the recombinant proteins
and inactivated virus

EZIKV (50kDa), EDI/IIZIKV (36kDa) and EDIIIZIKV (11kDa)

were purified by affinity chromatography. To assess whether the

recombinant proteins retained their antigenicity, a western blot

analysis was conducted using serum from a convalescent individual

infected with ZIKV. The serum antibodies recognized all EZIKV
recombinant proteins indicating that the recombinant proteins

retained their antigenic properties (Supplementary Figure 1A).

Subsequently, serum from a ZIKV-infected individual and the

monoclonal antibody 4G2 (pan flavivirus) recognized the
frontiersin.org
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inactivated ZIKV by dot blot analysis (Supplementary Figure 1B),

confirming that it retained conformational and antigenic properties

post inactivation. In contrast, no recognition of the inactivated

ZIKV was observed by the control serum (ZIKV-).
Inactivated ZIKV and different E-proteins
induce specific IFNg-secreting cells from
convalescent mothers

To analyze whether PBMC from convalescent mothers could

produce specific IFN-g against inactivated virus or different ZIKV-
Frontiers in Tropical Diseases 05
envelope proteins, an ELISpot assay was performed. Initially, PBMC

from all participants produced IFN-g when stimulated with

inactivated ZIKV particles (Figure 2), with most (31/32)

displaying a higher number of IFN-g-producing cells compared to

PBMC from healthy controls. Subsequently, the response against

the recombinant EZIKV protein and its ectodomains was evaluated.

The majority of PBMC from infected participants produced IFN-g
when stimulated with recombinant EZIKV protein (90.6% of

positivity, Figure 3A), and its ectodomains EDI/IIZIKV (96.9% of

positivity) and EDIIIZIKV (90.6% of positivity) (Figures 3B, C,

respectively). Only one participant (#068) presented values below

the cutoff (22 spots). In contrast, PBMC from healthy controls
FIGURE 2

Peripheral blood mononuclear cells (PBMC) of convalescent mothers of newborns with microcephaly produce ZIKV-specific IFN-g. PBMC were
cultured in the presence of inactivated ZIKV (105 PFU) for 24 h to evaluate the number of IFNg-producing cells by ELISpot assay. SFU, spot-forming
units. Cutoff = 22.63 SFU/106 cells.
B

A

FIGURE 1

Cohort characteristics. (A) Schematic diagram of symptoms from convalescent mothers of newborns with microcephaly; (B) Antibody response
against dengue virus (DENV) and Zika virus (ZIKV) by ELISA (IgG Euroimunn). Statistical significance was tested by Mann-Whitney test. ****p<0.0001.
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exhibited a low number of specific IFN-g producing cells when

stimulated with inactivated ZIKV particles (Figure 2), EZIKV
protein, or its ectodomains (Figure 3). Notably, PBMC of

participant #068 failed to produce IFN-g against all stimuli tested,

despite the high antibody titers against ZIKV in the serum. A

comparison of the number of IFN-g producing cells among all

stimuli (Figure 4A) revealed a difference in the magnitude of the

response. In general, when a sample was positive for the EZIKV
protein, it also responded to its ectodomains, suggesting that the

ectodomains are as antigenic as the entire EZIKV protein. Samples

from healthy controls showed numbers of IFN-g-producing cells

below their respective cutoffs (Supplementary Figure 2).

Figure 4B displays the magnitude of the IFN-g response for each
participant. Overall, a high specific cellular response was observed,
Frontiers in Tropical Diseases 06
with patient #057 presenting the highest magnitude against the

three recombinant proteins tested. Additional analysis (Figure 5)

revealed a significant correlation of IFN-g production between

ZIKV virus particles and all recombinant proteins, suggesting that

the recombinant proteins preserved their structures similarly to the

native virus. Furthermore, no significant correlation was observed

between the number of symptoms and cellular immunity against

the virus nor to recombinant proteins (Supplementary Figure 3).
Discussion

The recent global spread of ZIKV infection, together with its

association with neurologic morbidity in neonates and adults,
B

C

A

FIGURE 3

Convalescent PBMC produce IFN-g against recombinant EZIKV and its ectodomains. PBMC were cultured in the presence of recombinant EZIKV
protein (A) or its ectodomains EDI/EDIIZIKV (B) and EDIIIZIKV (C) for 24 h to evaluate the number of IFN-g-producing cells by ELISpot assay. Cells were
cultured with equimolar amounts of recombinant EZIKV protein or its ectodomains. SFU, spot-forming units. Cutoff EZIKV = 64 SFU/106 cells; EDI/
EDIIZIKV = 65.86 SFU/106 cells and EDIIIZIKV = 96.51 SFU/106 cells.
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BA

FIGURE 4

Comparison of the number of IFN-g producing cells. (A) PBMC were cultured in the presence of inactivated ZIKV (105 PFU), EZIKV protein or its
ectodomains EDI/EDIIZIKV and EDIIIZIKV (equimolar amounts) for 24 h to evaluate the number of IFN-g-producing cells by ELISpot assay. SFU, spot
forming units. Cutoff EZIKV = 64 SFU/106 cells; EDI/EDIIZIKV = 65.86 SFU/106 cells and EDIIIZIKV = 96.51 SFU/106 cells. Statistical significance was
tested using the Kruskal-Wallis and Dunn’s post hoc tests for multiple comparisons. (B) Heat map showing the number of IFN-g-producing cells
(SFU) for each stimulus. NS, Non-significant.
B C

D E F

A

FIGURE 5

Correlation of IFN-g response. Spearman correlation was used to evaluate the correlation between the number of IFN-g-producing cells when
stimulated with ZIKV inactivated versus EZIKV (A), ZIKV inactivated versus EDI/IIZIKV (B), ZIKV inactivated versus EDIIIZIKV (C), EZIKV versus EDI/IIZIKV
(D), EZIKV versus EDIIIZIKV (E), and EDI/IIZIKV versus EDIIIZIKV (F).
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underscores the urgent need for a safe and effective vaccine against

this virus. Success in developing vaccines for flavivirus, such as the

yellow fever and Japanese encephalitis viruses, demonstrated the

feasibility of vaccine-induced immunity (36, 37). However, existing

vaccines based on live attenuated viruses have limitations, with

contraindications for certain populations, such as children

(<6months of age), pregnant women, and immunocompromised

individuals (38, 39). In this study, we aimed to better understand the

specific regions of EZIKV targeted by cellular immunity, with a focus

on understanding T cell responses in PBMC from women infected

with ZIKV during pregnancy. All mothers in the cohort delivered

babies with microcephaly and tested seropositive for both ZIKV

and DENV.

The ZIKV envelope protein, essential for virus entry, is the main

antigen that triggers the host immune response (18). The EDIIIZIKV
domain, in particular, has shown promise as a vaccine candidate,

inducing protection against ZIKV challenge in mice (40–42).

Furthermore, antibodies generated against EDIII persist for a long

period of time (43). Our study revealed that not only the entire

envelope protein (EZIKV) but also its structural domains, EDI/IIZIKV
and EDIIIZIKV, induced robust adaptive immune responses.

Characterization of the immune response against the ZIKV in

animal models has been extensively investigated by various studies

(22, 23, 27, 44), including our group, revealing increased

recognition of envelope regions by the adaptive immune

response, presenting promising implications for the ZIKV

diagnosis and vaccine development (35, 45). However, elucidating

the immune response against ZIKV in humans poses challenges,

primarily attributable to a substantial decline in the reported cases.

A recent study, using PBMC fromZIKV-infected pregnant women,

analyzed the immune response 2-3 years post-infection. This study

demonstrated sustained CD4+ T cell immunity, but the same was not

observed for CD8+ T cells. Intriguingly, the T cell response of the

mothers against ZIKV did not exhibit a clear correlation with the

clinical outcomes of their children (31). Using PBMC from

convalescent ZIKV patients, we detected a specific cellular immune

response 1.5 years post-infection, suggesting that natural infection

induces the generation of memory T cells capable of producing IFN-

g against the inactivated virus and various EZIKV proteins.

A longitudinal study involving 10 nonpregnant ZIKV-infected

women observed the presence of ZIKV antibodies and virus-specific

CD4+ and CD8+ T cells (30). Indeed, structural proteins of ZIKV,

including E, prM, and C, emerged as major targets for both CD4+

and CD8+ T cell responses (28). Notably, the immune response

against ZIKV is detectable during acute infection, with CD4+ T cell

responses primarily targeting E, prM, C and NS5 (46). Prior

exposure to DENV was suggested to influence the T cell response

to subsequent ZIKV infection (28), with cross-reactive T cells

potentially expanded via stimulation with ZIKV peptides (47).

Considering the co-circulation of DENV and ZIKV in Brazil

(48), it is probable that our cohort was exposed to DENV before

ZIKV, supported by the positive serology for DENV. However, the

chronological sequence of DENV exposure and ZIKV infection

remains uncertain and could potentially influence or alter the

observed responses. We cannot exclude the possibility that DENV

exposure could have occurred after ZIKV infection and may have
Frontiers in Tropical Diseases 08
skewed or altered the responses in some way. Although several

studies evaluated T cell immune responses against ZIKV proteins in

DENV immune or non-immune participants (27, 49–51), the

precise influence of a previous DENV exposure on ZIKV

response modulation remains unclear. A study indicated that

acute ZIKV infection proceeded by DENV infection had limited

effects on T cells (30, 52). In DENV-naïve/ZIKV-infected patients,

CD4+ and CD8+ T cell responses targeted envelope proteins (53).

Thus, even without being able to state whether previous exposure to

the DENV virus can interfere with the modulation of the response

against ZIKV, all mothers presented strong immune response

against envelope proteins when compared to control individuals,

thus demonstrating that the EZIKV-immune response is long-term

and specific.

Finally, interpretation of our findings must consider certain

limitations. A longitudinal study, following volunteers during the

acute phase rather than just convalescence, would provide a more

comprehensive understanding of acquired immunity to ZIKV.

Additionally, the sample size was limited, and it would be

valuable to compare immune responses from mothers who were

infected and did not have babies with microcephaly. Unfortunately,

such cases were not available and further studies are required to

address these issues.

In summary, our findings highlight the recognition of ZIKV

envelope protein regions by memory T cells in mothers 1.5 years

post-infection. These results provide important insights into

vulnerable regions of viral proteins, contributing to the

development of specific treatments (monoclonal antibodies) and

an effective and safe vaccine suitable for administration to

pregnant women.
Conclusion

Taken together, our data reveal that distinct EZIKV proteins

elicited specific IFN-g production in PBMC derived from women

previously infected with ZIKV. This feature holds significant

promise for helping the design of safe ZIKV vaccines tailored for

pregnant women.
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