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Plasmids (circular DNA molecules) represent an ingenious strategy for horizontal

gene transfer in prokaryotes and eukaryotic cells. Plasmids harbored in bacteria

are responsible for the spread of traits such as antibiotic resistance, virulence

factors, and the machinery for the horizontal gene transfer e.g., type IV secretion

systems. Remarkably, Bacillus thuringiensis (Bt) cryptic plasmids encode and

carry genes that, under the host environment, replicate and concomitate with

sporulation, producing parasporal crystalline proteins of two major types,

crystalline (Cry) and cytolytic (Cyt), the former toxic against different orders of

insects such as Lepidopterans, Coleopterans, and Dipterans (Cry proteins, MW

50–130 KDa); Cyt proteins, produced by B. thuringiensis subspecies israelensis

(Bti)(MW 27-kDa) are toxic against Dipterans, i.e., mosquitoes and black flies. The

X-Ray tridimensional structure for both types of toxins, formed by three domains,

mostly of beta sheets antiparallel (Domain II and Domain III) linked through loops

of different lengths. Domain I is a bundle of alpha helices. This structure is

characterized by five conserved blocks, implying a conservation in the mode of

action. Cyt proteins possess two alpha helices and some beta sheets with a

structure similar to the antimicrobial peptides. Indeed, the mode of action

proposed is mediated by the toxin-lipid interaction that hypothetically could

result in transmembrane ionic channel formation. Several pieces of evidence

support the action of both toxins in insects and mammals. The question is to

what extent these Bt/Bti plasmid-encoded Cry or Cyt genes can be applied as

bioinsecticides individually or in combination with Lysinibacillus sphaericus. The

feasibility of being considered a promising and safe biological strategy for crop

pests and vector-borne neglected infectious diseases is an issue pinpointed in

the present review.
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1 Introduction

The genetic microbial strategy for DNA exchange is

conjugation, a process shaping microbial communities (1, 2). The

genetic process driving and leading to diversity is the horizontal

transfer of mobile genetic elements or plasmids (3). This process

allows the acquisition of exogenous DNA and recombinant bacteria

with novel and potential properties or new phenotypes. It is

paramount that Bacillus thuringiensis (Bt) has cry genes encoded

in plasmids, and these genes are transferred to other bacteria of the

same genus or different, expressed for the production of crystalline

proteins (1, 4). Understanding the hidden lifestyle of the plasmid

vectors in the genus Bacillus family (B cereus, B. thuringiensis, and

B. anthracis) unveils the dynamic bacterial communication and

genetic transfer of diverse traits such as antibiotic resistance,

virulence factors, and secretory system components. The

spreading resistance in the microbial communities of the genus

Bacillus is genetic information that allows survival, diversity,

adaptation, and evolution. Indeed, data from 5, support the fact

that there is an active process of genetic exchange of plasmids (128

and 100 kb in size) (5–7) leading to the dissemination and spread of

traits (3, 5, 6, 8). Therefore, the understanding and identification of

all the extrachromosomal elements in the different strains of Bt

might provide genetic tools for improvement in the control

strategies against mosquitoes (9–11). At this point, pest vector

management and control are of utmost importance for worldwide

health as it is threatened by the chemical insecticides used to

overcome them. It becomes an urgent need and paramount

priority search for novel technological strategies to control pests

in crops of agronomical and economic importance.

One of the most successful strategies to counteract it is the

entomopathogen Bacillus thuringiensis. This Gram-positive soil

bacteria discovered in the flour moth larvae in the province of

Thüringia in 1911 (12–14) caused toxicity to different orders of

insects. Despite the emergence of insect resistance populations to Bt

and its products, they are used as bioinsecticides in proper formulations

and efforts are being made to improve their range of action as well as

their application (15–17). Another alternative that has been

approached and developed with promising results is the transfer of

plasmids encoding Crystalline (Cry) and the cytolitic (Cyt) proteins,

which have been transformed with a cocktail of genes for a more

diverse plant resistance response to insect attacks (18–20). But still, this

strategy raised concerns about the endemicity of crops.

The most recent advances in the biological control of crop pests are

the genetic and molecular techniques, in particular, the genetic

engineering that has played a role in the design of biopesticides that

can properly aid in vector control (mosquitoes) of disease transmission

(e.g., dengue, malaria) (2, 9, 10, 21). By harnessing the synergy of the Bt

products, Cry and Cyt toxins, as recently reviewed by Silva-Miranda

et al. (11), are among the different strategies for the control of

mosquitoes; the most feasible and safe is based on Bacillus

thuringiensis subsp israelensis because the low persistence of the latter

and the toxicity of both in a short period (11, 21). Gaining insight into

this might represent a frontier to focus on.
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2 Plasmids encode genes for
horizontal gene transfer

Plasmids are small circular DNA in bacteria defined as mobile

genetic elements that promote the spread of several traits and

geographical distribution worldwide (22–24). Moreover, plasmids

favor bacterial fitness adaptation and evolution. Plasmids favor

horizontal gene transfer and gene recombination. Both genetic

mechanisms allow bacteria to transfer genetic information to

related and unrelated bacteria. The transfer of genetic

determinants, i.e., carrying utmost antibiotic resistance genes and

virulence factors (biofilm formation) proteins of the type IV

secretion system (22–24), is present in Gram-positive and Gram-

negative bacteria. The plasmids of the family Enterobacteriaceae

comprise more than 200 different F-like plasmids. F-plasmids or F-

factor, described in 1940, is a large 100 Kb circular conjugative

plasmid of Escherichia coli described as a vector for horizontal gene

transfer and recombination (Figure 1).

Since then, these F-plasmids and F-related F-like plasmids serve

for bacterial conjugation purposes (25). Around 200 different F-like

plasmids participate with highly related DNA transfer genes,

including those of utmost relevance for the assemblage of a type

IV secretion system. An outstanding feature of the F-plasmids in

enterobacterial hosts is that they are isolated from clinical and

environmental samples from different geographical regions. In the

F-plasmid family (pOX38, ColB2, and R100–1), members recognize

outer membrane proteins at the surface of the recipient cell (OmpA,

OmpF, OmpK36, OmpW) (25–27) (Figures 2I-II). At this point,

there was further investigation of defined mutations in the

lipopolysaccharide (LPS) and the outer membrane protein OmpA

of the recipient cell on mating-pair formation in vitro (liquid media)

by the F-plasmid members. The transfer rate of these members is

affected differentially by mutations in the rfa (LPS) locus (27, 28).

Indeed, the F-plasmids showed increased sensitivity to mutations

that affected rfaP gene expression, which encodes the addition of

pyrophosphorylethanolamine (PPEA) to heptose I of the inner core

of the LPS. Furthermore, ompA mutation significantly affected the

mating efficiency of an F-plasmid carrying a mutation in

the mating-pair stabilization protein TraN (25, 27, 28). During

the transfer, adhesion present in the F-pilus tip could be playing a

role in the specific recognition of LPS, OmPA, or the TraT (29–32)

(Figures 2I-II).

On the other hand, Bacillus cereus (B. cereus) and its relatives

harbor a plethora of plasmids, including conjugative plasmids,

representing the heart of the group species differentiation and

specification (2, 33). Over the years more than 20 plasmids from B.

cereus have been found to be conjugative. The large plasmid can

potentially “circulate” among members of the Bacillus cereus group

(2). In contrast, XO16’s known natural distribution is limited to B.

thuringiensis var. israelensis. At this point, it is noteworthy to pinpoint

that Bacillus thuringiensis, a Gram-positive entomopathogenic soil

microorganism, harbors large plasmids encoding the insecticidal

crystalline proteins, with bioinsecticide and virulence factor properties

(34, 35).
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The plasmids replicate with bacteria, allowing Cry genes to express

and produce the crystalline proteins. These extrachromosomal

elements play a pivotal role in spreading along with antibiotic

resistance and other traits, transferring these genes to another

member of the genus Bacillus and even to other non-related

bacteria (36, 37). These plasmids that carry genetic traits pivotal to

bacterial survival adaptation and evolution participate in the

horizontal gene transfer (HGT) (36, 38–40).

One of them is an integrative or conjugative plasmid with a

similar structure to the modular backbone of the F-plasmids (37,

41). The conjugative plasmids transfer themselves between most

bacteria, thus being one of the main causal agents of the spread of

antibiotic resistance among pathogenic bacteria. How the plasmids

accomplish this task is as follows. The modular structure or

backbone of the integrative and conjugative plasmids (ICPs)

consists of three modules:
Fron
- Module for maintenance

- Module for dissemination

- Module for regulation.
Moreover, additional module structures are possible through

insertion sequences, transposons, and specific recombinases.

Integrative and conjugative elements (ICEs) in the plasmid

vectors transfer of the antibiotic resistance genes (40, 41), but

now it is evident that ICEs can mediate the transfer of a very

diverse set of functions. The advantages of ICEs are that they shape

bacterial genomes, promote variability between strains of the same

species, and distribute genes between unrelated bacterial genera

using conserved integration sites (42, 43). ICEs allow bacteria to

adapt to new environmental conditions and to colonize new

niches (44).
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Like phages and conjugative plasmids (45), ICEs can mediate

the transfer of virulence determinants and may promote the

mobilization of genomic islands (45).

The integrative and conjugative F-plasmids of t60 kbp can be

placed into four major genetic modules:
- Module for plasmid replication (DNA replication and DNA-

binding proteins)

- Module for stable maintenance (plasmid stability influenced

by plasmid growth and horizontal transfer rates),

- Module for DNA transfer which occupies the most

conserved part.

- Module for accessory cargo genes (within transposons

or integrons).
The organization of the different functions in the modules could

be related to the host-specific plasmid evolution that might explain

the spread of clinical antibiotic-resistance plasmids. In referring

specifically to the plasmid pXO16, which is a large conjugative

plasmid from Bacillus thuringiensis var. israelensis (Bti), it has

several properties (34, 42, 46, 47): self-transfer with high

efficiency (48); -mobilize the small pUB110 plasmid from Bti-

thermotolerant Bacillus cytotoxicus at high frequencies (3.3 × 10–

3 and 5.2 × 10–4 transconjugants per donor (T/D), respectively (49,

50). -Retro-mobilize (the capture of DNA from a recipient by a

donor cell) non-conjugative plasmids, including non-transfer

plasmids (2, 4). -Promote their transfer as well as that of co-

resident plasmids; transfer chromosomal loci; -displays a

remarkable aggregation phenotype associated with conjugation

under liquid conditions, [(Natural liquid foods (cow milk, soy

milk, and rice milk)], where conjugation, mobilization, and

retromobilization were shown to occur at frequencies of 8.0 x 10-
FIGURE 1

Plasmids as circular extrachromosomal DNA elements functioning as vectors of genetic information that can be transferred to other related bacteria
and non- related bacteria. The size of plasmids can vary, but in general are usually large plasmids such as those of genus Bacillus, encoding different
traits, such as antibiotic, heavy metal resistant genes, virulence factors, and other proteins. In addition, in these plasmids are encoded the non-
structural and structural proteins that are necessary for the horizontal genetic transfer (HGT).
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1, 1.0 x 10-2 , and 1.2 x 10-4. Altogether these properties pinpoint

the potential of this Bt plasmid in natural environments (1–4).
2.1 Mechanism for plasmid horizontal
genetic transfer: the case of conjugation.

Bacterial communities establish communication through

molecular crosstalk to share genetic information that influences

their physiology and their lifestyle outside of their host (51–54) and

is essential for them for survival, adaptation, and evolution. One
Frontiers in Tropical Diseases 04
genetic process by which bacteria can do this is through bacterial

conjugation, a mechanism of mobile genetic elements (55–57) that

uses the F-pilus that serves as a conduit for DNA transfer (26, 27,

29, 32, 40, 51, 56). DNA transfers through a conjugation

mechanism into eukaryotic host cells. In this process, plasmids

function as mobile genetic elements conformed in a conjugation

module with the relaxosome complex targeting the type IV

secretion system or to the sexual piles for conjugation or mating

(41, 42, 46). Microorganisms respond and adapt to environmental

conditions by acquiring genetic material in large amounts (58).

Conjugation of plasmids contributes to this process, allowing lateral
FIGURE 2

Conjugation as a mechanism. Horizontal gene transfer (HGT) is described initially for Gram-negative bacteria (I) and through evolution to the
Gram-positive (II) and eukaryotic cells. Recently, this process was proposed as a kit tool for conjugation and, therefore, for gene transfer of encoded
toxins, accessory proteins, antibiotics and enzymes. Different adhesins in Gram-negative bacteria recognize donor cells at the cellular surface
membrane. Plasmids through this conjugosome are endowed with the capacity of HGT because these mobile genetic elements encode the proteins
and the accessory factors for DNA replication (relaxase) and DNA transfer (VirB1, VirD4) as well as some non-structural proteins promote the
conjugation process. The stabilization mating by TraN and OMPA in the recipient contribute significantly also to the transfer of ssDNA and
conjugation efficiency.
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gene flow in prokaryotes, carried out through ICE self-transmissible

mobile genetic elements that contribute to shaping genomes and

lateral gene flow in prokaryotes through the conjugative process.

The ICEs of most temperate bacteriophages integrate into the

genome. Like conjugative plasmids, they disseminate by conjugative

transfer to new hosts (26, 27, 32, 55–57). The process of

conjugation, as one of the mechanisms of HGT, consists of two

principal steps: 1) DNA rolling circle relaxing accomplished by the

passage of the plasmid through the complex called the relaxosome

(59–61), and 2) interaction with the complex of VirB1 (Gram-

negative) or the VirD4 (Gram-positive) to recluse with the type IV

secretion system (T4SS) present in Gram-negative and Gram-

positive bacteria (40, 52, 53, 58, 62–67) (Figures 2I-II).

2.1.1 Two hallmarks of the plasmid bacterial
conjugation
2.1.1.1 What participates

-The type IV secretion systems (T4SSs) encoded in the F-

plasmid, e.g., the pED208 encoded the T4SS (TrapRD/208). E. coli

and other Gram-negative and –positive bacteria employ a type IV

secretion system (T4SS) (62–64) to translocate DNA and protein

substrates, generally by a contact-dependent mechanism, into other

cells. In Enterobacteriaceae family (including E. coli), T4SS identified

to date function exclusively in conjugative DNA transfer. In these

species of bacteria, in the plasmid-encoded systems classified as P, F,

and I types, Ancestral P-, F-, and I- systems adapted throughout

evolution to yield the extant effector translocators, highlighting the

adaptive and mosaic nature of these highly versatile machines

(Figures 2I-II).

The T4SS has two main subfamilies: conjugation systems and

effector translocators. The first ones are for inter-bacterial transfer

of antibiotic resistance genes, virulence factors, and genes encoding

other traits of potential benefit to the bacterial host. The effector

translocators used by many Gram-negative pathogens for delivery

of potentially hundreds of virulence proteins termed effectors to

eukaryotic cells during infection (62–64) (Figures 2I-II).

-The non-structural genes are closely linked. These genes are

not part of the T4SSs for conjugative transfer, such as the

membrane pore, the relaxosome, and replication machinery.

Moreover, the non-structural genes assist in core conjugative

functions and mitigate the cellular burden on the host. During

conjugation, they modulate dormancy, transfer, and establish a

commensal relationship with the host, allowing manipulation of the

host for efficient T4SS ensemble and assist in conjugative evasion of

recipient cell immune functions. These genes take in a broad

ecological context and ensure proper propagation of the

conjugation system in a natural environment. Proteins with

functions associated with plasmid maintenance, e.g. PsiB and SSB,

suppress the mating-induced SOS response. This property

establishes a novel biological function for conjugative protein

translocation and suggests the potential for diverse outcomes

from interbacterial protein translocation, influencing bacterial

communication, physiology, and evolution. Conjugative protein

translocation machinery through the TrapRD/208 requires the

engagement of the pED208 relaxosome with the TraD substrate
Frontiers in Tropical Diseases 05
receptor or coupling proteins for activating the signal for protein

translocation (Figures 2I-II).

2.1.1.2 What is needed for the transfer

a) Transfer of mobile genetic elements (MGES) and plasmids

together with their cargoes of antibiotic resistance and virulence

genes. T4SSs translocate MGEs as single-stranded DNA

intermediates (T-strands), which triggers the SOS response in

recipient cells.

b). Protein transfer (e.g., single-stranded DNA-binding proteins

(SSB) such as ParA, ParB1, PaarB2, PsiB, and PsiA)(set of shared

proteins) (59–61). The genesis or ssb encodes the SOS inhibitor

protein PsiB and single-stranded DNA-binding protein SSB,

eliciting a significantly stronger SOS response (59–61).

Interestingly, translocation of PsiB or SSB, but not PsiA, through

the TrapRD/208T4SS suppressed the mating–induced SOS

response being triggered in recipient cells upon the acquisition of

the single-stranded DNA transfer intermediate during mating.

This provides evidence of novel biological functions for

conjugative protein translocation in mitigating the potentially

negative consequences to plasmids and genome integrity resulting

from SOS-induced recombination and mutation events. The set of

known substrates of conjugation systems includes proteins with

functions associated with plasmid maintenance. Of relevance is the

fact that the first report of a conjugation–like event between strains

of B. cereus sensu lato (s-l-) was 40 years ago. Many have studied the

potential of plasmid transfer across the group, especially for

plasmids encoding toxins, e.g. Bt Cry toxins. B. cereus s.l. (sensu

lacto), in diverse environmental niches, mimics laboratory

conditions to study the conjugation–related mechanism.

On referring to the conjugation system in Bt subsp. israelensis

encoded on the large plasmid pXO16 (350 kb), the system is

characterized by the formation of macroscopic aggregates (Agr+) in

social exponential growth in liquid cultures. The recipients Agr- has

been identified in the genus Bacillus, specifically those belonging to the

Bacillus cereus group, such as Bacillus subtilis, Bacillus megaterium,

Bacillus sphaericus, and 24 subspecies of B. thuringiensis (Bt) (1, 2, 4,

68). The transfer of the plasmid pXO16 to Bti Agr- strains (n= 14) was

100% effective and all recipients had acquired the aggregation-plasmid

pXO16 and converted to the Agr+ phenotype. The genetic basis for this

remarkable conjugative transfer system is not known, since no type IV

secretion system homologs have been found. However in a more recent

study it was reported a novel novel T4SS-mediated DNA transfer used

by the Bti pXO16 plasmid. It was identified a 'transfer-Bti-plasmid'

(tip) region encoding FtsK/SpOIIIE ATPase for an unrelated

conjugative system T4SSs necessary for conjugative transfer, and

distantly to the other Gram-positive bacteria. Furthermore, in the

study it was observed up to 791 kb Bti chromosomal regions

mobilization (2, 4, 68).

At this point, the question of what are the recipient genetic

requirements for the conjugative transfer? Several studies have

addressed this (69, 70). One of them using the IncI2 –(self

transferable plasmids of the incompatibility group P-1 considered

important carriers of genes for antibiotic resistance) plasmid TP114

which was recently shown to transfer at high rates in the gut
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microbiota (71, 72). In transfer experiments in vitro, 4000 single-

genes deletion mutants of E. coli in a solid medium impaired

transfer rates not associated with a specific cellular function. In

contrast, broth medium were largely dependent on the

lipopolysaccharide biosynthesis pathway. The specific structures

used as recipient cells surface receptors by PilV adhesins associated

with the type IVb accessory pilus F TP114 (71, 72). Moreover, using

live-cell microscopy, while most transfer events occur between cells

in direct contact, the F pilus serves as a conduit for the DNA during

transfer between physically distant cells. Therefore, the F pilus

function aids in understanding how is accomplished the

dissemination of drug resistance and virulence genes within

complex bacterial communities (60, 73–77).Thus, the genetic

requirements for the recipients to participate in bacterial

conjugation vary between different plasmids, among them: 1) the

receptor molecules recognized by the conjugative pilus or other

accessory pili involved in mating pair formation (MPF) (25, 78–80).

2) the cellular and molecular stabilization required at the surface of

a recipient bacterium (25, 69, 70, 81). 3) the DNA replication (55,

57, 82), and 4) the Gene expression (71, 72, 83).
3 Plasmids encode genes for insect
control and for infectious diseases

Large plasmids are present in the different strains of Bacilus

thuringiensis (Bt). These extrachromosomal elements have the

particular and outstanding feature of harboring the encoded

genes. The product of these genes are proteins with endowed

properties that allow for broad application as bioinsecticides, but

also potential use as immunogens, carriers, or adjuvants (84–89). At

the same time, insects are vectors of pathogens, such as viruses,

fungi, and even other bacteria, and transmit to animals and plants.

In this way, plasmids become a fundamental vehicle for

horizontal genetic transfer and play a role in spreading virulence

factors (4, 68, 90). B. thuringiensis harbor these plasmids which

express the delta-endotoxins that are toxic against a wide range of

insect orders (17–20, 91, 92). Some outstanding features of the

plasmids gene encoded Cry and Cyt proteins are the structure,

composition and mode of action (12, 91–93). Remarkably these

proteins are produced during the sporulation phase as inactive

parasporal bodies (12, 91–93).
3.1 Structure and composition

The three-dimensional structure of the Cry proteins determined

to 1.5 A of the resolution, highly conserved in structure and

function (14, 92–95). 3D Cry toxins show a dual role, either as

bioinsecticides for crop pests of agronomical importance endowed

with the ability to colonize the insect world or as potential candidate

adjuvants. Furthermore, and on referring to the Cyt toxins (cytolitic

toxins), the three-dimensional X-ray structure of the Cyt2Aa1 was

determined by Li et al., (96), comprised of two outer alpha helix

hairpins (A-B and C-D)(rev (97, 98) and a core of mixed beta sheets
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(1 to 7). The structure of Cyt1Aa1 was similar. The alignment of

amino acid sequences of six Cyt proteins from different B.

thuringiensis subspecies revealed high scores and high statistical

significance in the four blocks that comprise helix A, the loop after

helix D plus beta strand four, the strands five and six, and finally the

strand six-a and the following loop (94, 96, 97, 99–101).

The composition of the parasporal body of Bti differs from the

pyramidal toxic to lepidopterans. The Bti parasporal body is

spherical and contains four proteins, 27 (Cyt1A), 72 (Cry11A),

128, and 135 (Cry4A and Cry4B), packaged into three different

inclusion types held together by a lamellar envelope (102, 103).

Cry4A, Cry4B, and Cry11A are similar to the Cry1A-type proteins

and toxic against lepidopterans (104). However, Cyt1As toxins

(cytolytic) are different in sequence and structure (95, 99, 100,

103, 105–107).

3.1.1 Mechanism of action
The mode of action of the Bt Cry proteins has been proposed is

a multistep process, starting with a) ingestion of mix spore+crystal

by the insect(s) (12, 91–93); b) solubilized under the alkaline

midgut insect conditions; c) activated after proteolytic digestion;

d) Sequential binding to midgut receptors like-proteins; e)

conformational change favouring pore formation; f) Osmotic

swelling of the cell, and g) insect death (13, 15, 16, 20), In the

case of the mode of action of the Cyt1A toxins is not well

understood. However, structural studies have revealed that these

toxins have an affinity for unsaturated fatty acids in the lipid portion

of the microvillar membrane (21, 97, 98, 101, 108, 109). Cyt1A

toxins insert into the microvillar membrane and then aggregate

with each other in small clusters of lytic pores (21, 98, 108, 110).

However, more recent evidence favors a membrane perturbing,

detergent- like mode of action in which faults are created in the lipid

bilayer of the membrane, disrupting and causing cell lysis and cell

death (21, 96–101, 103, 107, 111). In vivo, the effects of the Cyt1A

toxins, the soluble crystal delta-endotoxin proteins caused

hemolysis in rats, mice, sheep, horse, and human erythrocytes

(105, 110, 112). Furthermore, Cyt toxins can function as Cry

receptors, a type of synergy favoring the biocidal action of the Cry

proteins (113–115).
3.2 The Cyt and Cry proteins for the insect
biological control

3.2.1 Pest control management
Crop pests (rodents, nematodes, mites, and insects), plant

pathogens (bacteria, fungi, and viruses), and weeds impact the

world’s agriculture and livestock and cause hundreds of millions

of disease cases every year due to the transmission of pathogens and

parasites (116–118). Moreover, there has been an increase in the

undernourished population from 777 million in 2015 to 815 million

in 2016 (119, 120). The risk of insufficient food for the global

population is higher in subtropical and tropical geographical

regions where there is no control of crop pests and vectors that

transmit pathogens of humans (malaria, dengue, paludism,
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filariasis, and chagas) (117, 118, 121–124). This is an issue that

demands urgent priority (125, 126).

Indeed, insect crop pests cause 10% to 30% loss of crop yields

annually worldwide, and vector-borne pathogens have become a

cause of emerging diseases of crop plants and of neglected infectious

diseases (118, 123, 124). In the last decades, crop pest control has

relied on pesticides, such as insecticides, fungicides, bactericides,

and herbicides, which provide the mainstay of crop protection (119,

120). These chemical compounds affect animal health and humans

(119, 120, 127, 128). In arthropods (insects), chemicals have an

effect at the level of the nervous system by inhibiting

acetylcholinesterase, voltage-gated sodium channels, and GABA

receptors, and therefore interrupting synapse and immune

regulation (127, 128).

Furthermore, the action of the pesticides is through targeting

several metabolic, physiological and biochemical pathways, the

nerve receptors of pests, and even microbial organisms (122, 129).

While insecticides are part of and a strategy in integrated pest

management, they represent barriers to effective biological control

(130–133) and can increase the development of resistance to

principal substance classes worldwide and in many different species.

Of relevance is the observation that HGT favour is the insect

vectors’ ability to transmit between different organisms, like a

spatial bridge, and thus increase the infectious opportunities.

Furthermore, a pathogen can adapt to an insect vector

transmission rate and pathogen dispersal (117, 134, 135). For

instance, HGT might represent under this natural setting a

drawback for the control of pathogen-vectored insects. At this

point, combined strategies might aid in the decrease of the rate of

transmission of crop pests and vector-borne diseases (21, 104, 110,
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135–140) (Figure 3). The combined system strategies include the

delivery of novel and specific chemical insecticides, the

development of vaccines (which only exist for yellow fever),

bacterial larvicides, and transgenic mosquitoes for reducing

pathogen transmission (11, 105, 117, 141–144).

The integrated planning might include insecticides and natural

enemies (145, 146), combined tactics between selective insecticides

and selective genetically modified crops or chemical tools and

genetically modified (GM) crops (147) or broad-spectrum

organophosphate with biological control conservation (148). The

environmental impacts of chemical pesticides and resistance among

pests have stimulated the development and utilization of microbial

agents to improve human well-being and agricultural

productivity (149).

Genetic engineering has proved to be one of the most promising

technologies to improve crop resistance to disease and pests

through the generation of lethal genes (OxitecO) to interrupt

vector pathogen compatibility (150–152) (Figures 3, 4).

However, one alternative explored and applied is the release of

sterile insects and insect recombinants. However, there is concern

about the ecological threat and risks because nontargeted and

indigenous species could harm and alter the wild and natural

interaction host-pathogen (11, 116) (Figures 3, 4).

Another approach, is the theoretical models, which take into

account all the factors that could have a role in the host-pathogen

interaction (134, 139, 153–156). Modeling can be helpful to

understand how the environmental conditions and abiotic and

biotic factors could influence the underlying mechanism of how

to limit the spread of the vectored insects. Several other potential

strategies are mixed strategies such as chemical and biological
FIGURE 3

The mode of action of the B. thuringiensis subsp israelensis(Bti) is a complex of proteins, Cry4A, Cry11A Cyt1A, and Cyt2A, toxic against dipterans,
mosquitoes, and flies. Cry and Cyt possess the structural information to act at the level of the cellular membrane of insect midgut to cause cell lysis
and death but also to bind to proteins in the cellular membrane of the vertebrate (mammals), resulting in signalization of the pathways involved in
the induction of immune responses, or pathways involved in cell death, caspases, or apoptosis programs.
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control to optimize the control and management of pests (135,

157–162).

3.2.2 Bacillus thuringiensis subsp. Israelensis (Bti)
and Lysinibacillus sphaericus (LBs) to control pest
of agronomical important crops

The frontier in the knowledge of the pest crops and utmost of

Neglected Infectious Diseases is to unravel the biology of the

interaction host-pathogen. Basic knowledge research is pivotal to

approach the control specifically of the mosquitoes (please refer to

the review by Silva-Miranda et al., (11) for further details on the

different strategies used until that year after the pandemic. Herein,

we aimed to pinpoint some aspects of the control of mosquitoes.

Despite several alternatives for the control of dipterans,

mosquitoes and flies, main pest crops, and Neglected diseases in

developed and developed countries, the synergism between the

toxins produced by B. thuringiensis subsp israelensis (Bti) and

Lysinibacillus sphaericus remains as the most promising and safe

strategy for the biological control of vectored dipterans. Among

other reasons is that the combined toxicity and low persistence

make these two entomopathogenic bacteria with a lower risk for

insect resistance development (11, 21), which continues to be a hot

spot in South American countries, e.,g. Brazil country is endemic to

dengue and malaria vectorized by mosquitoes.

Several studies have shown that Bt is the most widely used

biological insecticide (16–21, 92, 110, 139). Bt strains produce a

variety of toxic proteins used in insecticidal formulations and

transgenic crops against caterpillars, beetles, and flies (16, 18,
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163). In particular, the specific toxicity of Bti against larval

mosquitoes and black flies was discovered by Goldberg and

Margalit in 1977 (164), leading to the development and

registration for use in aquatic environments (164, 165).

Referring to the use of Bti in a proper dosage (166), several

studies have revealed direct effects on non-target diptera,

particularly chironomids (167–170), but also on other insect taxa

such as lepidoptera (171) and coleoptera (172) Bti is recommended

as a means of control. Beside the direct effects and their

consequences on insect species (173), concerns have been raised

about its persistence in the ecosystem, specially attributed to the

spore stage (162, 174–176).

Bacillus thuringiensis subsp isralensis serotype H14 discovered

in Israel (177) highly toxic at an LC50 of 13-20 ng/ml against the

fourth instar of most Aedes, Ochlerotatus and Culex species (21, 103,

105, 106, 177–184) (Figure 3). Thus, Bt subsp Israelis extend its

mosquito spectrum and overcome insect resistance (110, 111, 185–

188). Indeed, when combined with Bacillus sphaericus (Bs) (189)

(Lysinibacillus sphaericus) (21, 190, 191) at the same ratio, Cyt1A

improved significantly the toxicity of Bs to Aedes. aegypti, a species

considered insensitive to this bacterium (192–194) Lastly, selection

studies have shown that resistance to Bti Cry proteins develops

much more slowly when Cyt1A is present in the toxin mixture used

for selection (Figure 3). The Cyt1A’s unique capacity to avoid,

delay, or overcome resistance and extend its spectrum of activity is

due to its unique mode of action, specifically its affinity for the lipid

portion of the microvillar membrane (21, 98, 184, 190, 191). This

property enables mosquitocidal endotoxins to bind to the midgut
FIGURE 4

The control of mosquito vectors of pathogens that cause neglected infectious diseases (e.g., malaria, paludism, filiarasis) through integral control
management (ICM) has had some success. Genetic Engineering and Molecular techniques such as gene driver, CRISP-Cas9, and Transgenesis have
proved to be one of the most promising technologies to improve crop resistance to disease and pests for the generation of lethal genes (OxitecO)
to interrupt vector pathogen compatibility. Furthermore, sterile technique of the insects and insect recombinants, alternatives explored and applied
with potential future. Recent work on the toxicity and synergism of the toxins produced by Lysinibacillus sphaericus and B. thuringiensis subsp.
israelensis supports the biotechnological development of both in proper formulation and dosage since there is a balance between toxicity,
persistence in the environment, and avoiding insect resistance development compared to chemical insecticides and transgenic insect release.
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microvillar membrane independent of receptors (195–197). In a

recent review related to the mechanisms of action and resistance of

the Cyt proteins produced by Bti and Lysinibacillus sphaericus (21,

98, 184, 190, 191) highlights the relationship structure and function

and the importance of using combined or a cocktail of toxins with

different specificity that allow overcoming insect resistance (18, 21,

185, 186). The strain 2362 of Bs toxic against the fourth instar of

Culex mosquitoes (196) produced the binary toxin two composed of

two proteins, a 41.9 kDa toxin domain (BinA) and a 51.4 Kda

binding domain (BinB) that co-crystallize into a single small

parasporal body. Strain 2297 of Bs possesses a larger parasporal

body and lower toxicity than strain 2362 (190, 197, 198). After

ingestion of the inactive binary toxin by mosquito larvae, the 51.4

and 41.9 kDa proteins are cleaved by proteases yielding peptides of

43 and 39 kDa, respectively, that form the active toxin (196) (Figure

3). These associated toxins bind to receptors (e.g. alpha-glucosidase)

(199) on the brush border insect midgut and cause cell lysis after

internalization (200–202). Many strains of Lysinibacillus sphaericus

produce other mosquitocidal toxins referred to as Mtx toxins. Two

of these have been well-studied. Mtx (100 kDa) and Mtx (30.8 kDa),

but they are not as toxic as the binary toxin (186, 190). Lysinibacillus

sphaericus targeting dipterans (111, 179, 184, 186, 203–206) (Figure

3). The Mosquitoes (Diptera: Culicidae) of the Aedes species (Ae

spp) are main vectors in tropical and subtropical of different

serotypes of several viruses, such as dengue, the yellow fever

virus (203, 207–211) the Zika virus (ZKV) (138, 212–215), and

the virus Chikungunya (CHIKV) (157–161, 216–219). Therefore,

mosquitoes, as vectored of pathogens, represent a threat because of

their resistance and require frequent control (124, 133, 139, 159,

211, 220, 221). Neglected vector diseases cause morbidity and

mortality (121, 124–126, 133, 137, 139) with an estimated 2

billion people worldwide living in areas where these are endemic

(125, 211, 222, 223). One of the alternatives that have risen hopes to

control insect vectors of pathogens causing human diseases

(mosquitoes) is the formulations based on Cry-Cyt toxins, one of

the most optimal and safe biological controls. Interestingly while

Cry toxins are of low persistence (110, 111, 186), Cyt toxins have

high persistence (21, 185). Therefore, a combination of these

capabilities between Bti and LBs (138, 185, 188, 224–226), or a

combination of Wolbachia and Leptolegnia chapmanii (facultative

bacteria pathogen of diverse species of mosquitoes spp of the genus

Aedes, Culex and Anopheles) can be highly effective to control to the

insect vectored of mosquitoes (21, 223–225).

Interestingly, the potential for pest biological control of these

insects depends on several factors, among them the levels of

specificity to the different larvae stages of mosquito spp (227,

228). Interestingly, crop lines expressing active insecticidal cry

genes from Bt have to achieve an efficient control of insect pests.

Recently, identification of a mutation in the Bt toxin receptor

recognizing Bt molecular patterns. Mutation genes of the toxin

receptors lead to changes in the immune system response of the

insect (129, 169, 170, 228–231) (Figures 2, 3), compromising the

defensive systems of the mosquito (proteases for the peritrophic

matrix) or exploiting receptors used by the virus to deliver toxins via

the midgut to mosquito larvae Insight knowledge and

understanding of the biology and the mechanism of interaction of
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insect pests and Bti, LBs, and their products (11, 18, 110, 231)

represent a frontier for the advances in the development of

improved or novel mosquito control strategies (Figures 3, 4).
3.3 Bt Cry proteins as carriers of immune
dominant antigens of insect vectors
pathogens causing human neglected
infectious diseases

The mechanism of action for the bacterial toxins is dependent

on receptors present in the epithelial cells, such as ganglioside

(GM1) distributed in the human body, and the activation of G

proteins and adenylate cyclase (232–239). Interestingly, in the case

of the pCry1Ac and the 3D-Cry toxins, studies pointed out a specific

interaction with brush border membranes in mice intestines (240).

More recent reports have found that pCry1Ac, as an antigen,

interacts with the TLR present on the antigen-presenting cells,

triggering signalization pathways such as mitogen-activated protein

kinase (MAPK), specifically the extracellular signal-regulated kinase

(ERK), a subclass of the MAPK pathway (240, 241), activated by a

wide variety of receptors involved in growth and differentiation

including receptor tyrosine kinases (RTKs), integrins, and

ion channels.

Since MAPK activation is via ligand-receptor interactions,

pCry1Ac-induced activation (as a ligand) of RaW264.7

macrophages leads to MAPK ERK1/2, p38, and JNK

phosphorylation. However, using immunoprecipitation assays and

MALDI-TOFF, pCry1Ac colocalizes with several binding proteins

(as receptors), such as heat shock proteins (HSPs), vimentin, a-
enolase, and actin. Flow cytometry and confocal microscopy cell-

surface pCry1Ac-HSP70 co-localization suggests that the ligand-

receptor interaction that activates MAPK and JNK phosphorylation

signalization pathways is pCry1Ac-HSP70 (242, 243).

This leads to the regulation of targets in the cytosol and further

translocation to the nucleus, where it can phosphorylate several

transcription factors to regulate gene expression (241). In another

setting in the mouse model, the immunogenic properties of

pCry1Ac were administered by different routes, with significant

induction of IgG antibodies (84, 85, 242). Furthermore, there was a

structural implication of the N-terminal region in the induction of

antibodies IgG and IgA after systemic and intranasal route

immunization by 3D-Cry1A toxins (Cry1Aa, Cry1Ab, and

Cry1Ac) (243). Moreover, pCry1Ac and the 3D- Cry toxins have

been carriers of and properties of important clinical epitopes or

antigens of clinical importance (diphtheria toxin, HIV) (82, 86–88).

Furthermore, pCry1Ac is a potential adjuvant when it is co-

administered to mice with antigens of infectious diseases such as

those caused by Naegleria fowleri (244), Plasmodium falciparum

(245), Brucella melitensis (246), and cysticercosis (247), and it has

demonstrated enhanced humoral and cellular immune response in

BCG vaccinated Balb/c mice (248). In each case, pCry1Ac augments

the magnitude of the secondary immune response (IgG subclass of

antibodies, IgG1, IgG2a, IgG2b) and cellular immune response

(Th1-, Th2-type cytokines, B and T cell differentiation) (86–89)

(Figures 3, 4).
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4 Highlights and perspectives

It is clear that plasmids and the natural conjugation mating

systems play a role in spreading virulence factors but also endow the

bacteria with an ecological niche. To harness the biological control

of crop pests and vectored insects of pathogens that affect animal

health integrated tools to achieve meaningful results, unraveling

and identifying the abiotic and biotic complex interaction factors

among insect pests, humans, and entomopathogens remains a hope

for the advancement and development of novel strategies to protect

humans without affecting biodiversity and environmental health.

The interaction of pests and pathogens favored host defenses by

secreting virulence factors injected into their targets.

What about the limitations and challenges of the plasmid-

encoded cry or cyt genes producing bioinsecticide proteins? The

limitations are the insect response and the climatic change that

plays a role. Another limitation and challenge is the development of

resistance to the cry and cyt gene products. The challenge is

biological control of the crop pests without affecting wild species.

The effort is toward a proper and safe formulation and dosage of

combined individual Cry or Cry + Cyt toxins. The challenge is to

combine several strategies. The insect response to the Cry and Cyt

toxins could provide targets to keep balance with the synergy

between the Cry and Cyt proteins’ capabilities—the genetic

engineering of crops. However, the fitness cost is too high for the

ecosystem. An alternative is the biological control of mosquitoes

using an endosymbiotic bacteria, Wolbachia to block virus entry.

Thus, transgenic mosquitoes with this bacteria could potentially

lead to a relatively biological control of mosquitoes. The challenge

in either of these alternatives for biological control is the genetic

diversity of the insects and the pathogen. The diversity could even

lead to unexpected results. We expect no variation, even though the

genetic background plays a role. In either case, the combinations of

different Cry and different Cyt proteins against different insect

orders, the genetics of the host, and the pathogen play a role. The

cry or cyt genes can lead to a more feasible horizontal genetic

transfer between insect orders. In addition, the remarkable

properties of these bacterial toxins could perfectly match

biotechnological and pharmacological issues.

The perspective is not just to use bioinsecticides for biological

control but to harness the insect immune response (REPAT) for

biomarker identification that allows further targeting. Indeed, it is

evident that despite the recent advancements in molecular

techniques such as driver gene, CRISPR-Cas9 (transgenic insects),

and RNAi, the toxins from B. thuringiensis subsp israelensis and

Lysinibacillus sphaericus, alone or in combination, are the most

feasible to continue the development of a formulation that does not

compromise the biodiversity and the health in the ecosystems.

Recent technology called biomimetic lure-and-kill exploits

biomimetic principles of biocompatible/biodegradable biopolymers
Frontiers in Tropical Diseases 10
(e.g., natural hydrogel) to develop new substrates that selectively

attract insects by reproducing specific natural environmental

conditions (biomimetic lure) and kill them by hosting and delivering

a natural biopesticide or through mechanical action.

Biomimetic lure-and-kill-designed substrates point to provide a

new attractive system to develop/improve and make more cost-

competitive new and conventional devices (e.,g. traps). The tiger

mosquito Aedes albopictus has been proposed as a model to gain

insight into this novel technology. Finally, the clinical perspective of

the Cry and Cyt proteins in infectious disease as adjuvants of

clinical antigens and in non-infectious disease (for example in

cancer) is an issue that remains latent and to continue

investigation of their structures allows them to interact with

epithelial surfaces and with the host immune system.
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81. Pérez-Mendoza D, de la Cruz F. Escherichia coli genes affecting recipient ability
in plasmid conjugation: Are there any? BMC Genomics. (2009) 10:71. doi: 10.1186/
1471-2164-10-71

82. Frost LS, Koraimann G. Regulation of bacterial conjugation: balancing opportunity
with adversity. Future Microbiol. (2010) 5:1057–1071. doi: 10.2217/fmb.10.70

83. Polzleitner E, Zechner EL, Renner W, Fratte R, Jauk B, Hogenauer G, et al. TraM
of plasmid R1 controls transfer gene expression as an integrated control element in a
complex regulatory network. Mol Microbiol. (1997) 25:495–507. doi: 10.1046/j.1365-
2958.1997.4831853.x

84. Vázquez-Padron RI, Moreno-Fierros L, Neri-Bazán L, de la Riva GA, López-
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225. Rueda ME, López CC, Garcıá JJ, Fernandes EKK, Marreto RN, Luz C. Effect of
ultraviolet-Aradiation on the production of Leptolegnia chapmanii (Saprolegniales:
Saprolegniaceae)zoospores on dead Aedes aEgypti (Diptera: Culicidae) larvae and their
larvicidal activity. J Invertebr Pathol. (2015) 130:133–5. doi: 10.1016/j.jip.2015.08.002
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